Background:A differential gene,triggering receptor expressed on myeloid cells 1(TREM1),was identified in blood sequencing datasets from myocardial infarction patients and healthy controls.Myocardialfibrosis following my...Background:A differential gene,triggering receptor expressed on myeloid cells 1(TREM1),was identified in blood sequencing datasets from myocardial infarction patients and healthy controls.Myocardialfibrosis following myocardial infarction significantly contributes to cardiac dysfunction.Objectives:This study aimed to unveil the intrinsic regulatory mechanism of TREM1 in myocardialfibrosis.Methods:Mimicking pathology by angiotensin II(Ang II)treatment of human cardiacfibroblasts(HCFs),the impacts of TREM1 knockdown on its proliferation,migration,and secretion of the pro-fibrotic matrix were identified.Using the Human Transcription Factor Database(HumanTFDB)website,lysine-specific demethylase 5B(KDM5B)was found to bind to the TREM1 promoter,which was further validated through luciferase reporter and chromatin immunoprecipitation(ChIP).By promoting KDM5B overexpression,its effect on the regulation of TREM1 was examined.Results:TREM1 knockdown suppressed the proliferation,migration,and secretion of the pro-fibrotic matrix in HCFs upon Ang II treatment.KDM5B bound to the TREM1 promoter and upregulated its transcriptional expression.Furthermore,KDM5B overexpression reversed the regulation of the above cellular phenotypes by TREM1 knockdown.Conclusion:This study sheds light on the positive regulation of TREM1 by KDM5B,demonstrating their role in promoting myocardialfibrosis.Thisfinding provides a theoretical foundation for understanding disease pathology and potentially advancing the development of new targeted therapies.展开更多
Objective Cardiac fibroblasts(CFs)proliferation and extracellular matrix deposition are important features of cardiac fibrosis.Various studies have indicated that vitamin D displays an anti-fibrotic property in chroni...Objective Cardiac fibroblasts(CFs)proliferation and extracellular matrix deposition are important features of cardiac fibrosis.Various studies have indicated that vitamin D displays an anti-fibrotic property in chronic heart diseases.This study explored the role of vitamin D in the growth of CFs via an integrin signaling pathway.Methods MTT and 5-ethynyl-2′-deoxyuridine assays were performed to determine cell viability.Western blotting was performed to detect the expression of proliferating cell nuclear antigen(PCNA)and integrin signaling pathway.The fibronectin was observed by ELISA.Immunohistochemical staining was employed to evaluate the expression of integrinβ3.Results The PCNA expression in the CFs was enhanced after isoproterenol(ISO)stimulation accompanied by an elevated expression of integrin beta-3(β3).The blockade of the integrinβ3 with a specific integrinβ3 antibody reduced the PCNA expression induced by the ISO.Decreasing the integrinβ3 by siRNA reduced the ISO-triggered phosphorylation of FAK and Akt.Both the FAK inhibitor and Akt inhibitor suppressed the PCNA expression induced by the ISO in the CFs.Calcitriol(CAL),an active form of vitamin D,attenuated the ISO-induced CFs proliferation by downregulating the integrinβ3 expression,and phosphorylation of FAK and Akt.Moreover,CAL reduced the increased levels of fibronectin and hydroxyproline in the CFs culture medium triggered by the ISO.The administration of calcitriol decreased the integrinβ3 expression in the ISO-induced myocardial injury model.Conclusion These findings revealed a novel role for CAL in suppressing the CFs growth by the downregulation of the integrinβ3/FAK/Akt pathway.展开更多
Objective:A cell model of cardiac fibroblasts proliferation induced by aldosterone was established to observe the effect of aldosterone on the proliferation of rat cardiac fibroblasts.Methods:Primary cardiac fibroblas...Objective:A cell model of cardiac fibroblasts proliferation induced by aldosterone was established to observe the effect of aldosterone on the proliferation of rat cardiac fibroblasts.Methods:Primary cardiac fibroblasts were cultured by trypsin digestion method and differential adhesion method,primary cardiac fibroblasts were sub-cultured by conventional digestion method,and the immunocytochemical assay was used to identify cardiac fibroblasts.The second-generation cardiac fibroblasts were randomly divided into five groups:standard control group,10-9 mol/L aldosterone(ALD1)group,10-8 mol/L aldosterone(ALD2)group,10-7 mol/L aldosterone(ALD3)group,and 10-6 mol/L aldosterone(ALD4)group.The viability of fibroblast cells in each group was detected by the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method.Results:Vimentin staining assay showed that the cultured cells staining positive,and the purity of cultured mouse cardiac fibroblasts was 95%.The results of methyl thiazolyl tetrazolium showed that compared with the control group,the low concentration of aldosterone(10-9 mol/L)had no significant effect on the proliferation of normal cardiac fibroblasts.With the increase in the intensity of(10-8–10-6)mol/L,aldosterone could significantly promote the proliferation of cardiac fibroblasts.Moreover,there was no significant difference in absorbance value between the aldosterone group(10-6 mol/L)and the aldosterone group(10-7 mol/L)(P>0.05).The highest concentration of aldosterone group 10-7 mol/L promoted the proliferation of cardiac the optimum concentration was 10-7 mol/L.Conclusion:Aldosterone can promote the spread of cardiac fibroblasts in a specific concentration range.展开更多
[Objectives]To explore the effects of paeonol on the inhibition of myocardial fibrosis in high glucose induced cardiac fibroblasts(CFs).[Methods]Differential adherence method was used to culture the primary CFs of neo...[Objectives]To explore the effects of paeonol on the inhibition of myocardial fibrosis in high glucose induced cardiac fibroblasts(CFs).[Methods]Differential adherence method was used to culture the primary CFs of neonatal rats(passage culture);CCK-8 method was used to detect the cell proliferation;MTT assay was used to screen the safe concentration of paeonol;the 2 nd to 3 rd generation CFs were randomly divided into normal group(5.5 mmol/L,expressed in C),high glucose group(30 mmol/L,expressed in HG),paeonol low dose group(Pae-L,17.5 mg/L),and medium dose paeonol group(Pae-M,35 mg/L),paeonol high dose group(Pae-H,70 mg/L);Western Blot method was used to detect the expression of Col-I and Col-III protein.[Results]The extraction of CFs from primary neonatal rats was successful;high glucose(30 mmol/L)induction had a significant proliferation effect on CFs;compared with the normal group,the expressions of COI-I and Col-III protein were increased in the high glucose group(P<0.05);compared with the high glucose group,the expression of COI-I protein was decreased in each treatment group(P<0.05,P<0.01),and the decrease was most significant in the high dose group(P<0.01);the expression of COI-III in the high dose group was decreased and it was statistically significant(P<0.05).[Conclusions]Paeonol significantly inhibited the proliferation of high glucose induced CFs in neonatal rats.This experiment is intended to provide a new experimental basis for the prevention and treatment of diabetic cardiomyopathy(DCM).展开更多
Human induced pluripotent stem cell derived cardiac fibroblasts(hiPSC-CFs)play a critical role in modeling human cardiovascular diseases in vitro.However,current culture substrates used for hiPSC-CF differentiation an...Human induced pluripotent stem cell derived cardiac fibroblasts(hiPSC-CFs)play a critical role in modeling human cardiovascular diseases in vitro.However,current culture substrates used for hiPSC-CF differentiation and expansion,such as Matrigel and tissue culture plastic(TCPs),are tissue mismatched and may provide pathogenic cues.Here,we report that hiPSC-CFs differentiated on Matrigel and expanded on tissue culture plastic(M-TCP-iCFs)exhibit transcriptomic hallmarks of activated fibroblasts limiting their translational potential.To alleviate pathogenic activation of hiPSC-CFs,we utilized decellularized extracellular matrix derived from porcine heart extracellular matrix(HEM)to provide a biomimetic substrate for improving hiPSC-CF phenotypes.We show that hiPSC-CFs differentiated and expanded on HEM(HEM-iCFs)exhibited reduced expression of hallmark activated fibroblast markers versus M-TCP-iCFs while retaining their cardiac fibroblast phenotype.HEM-iCFs also maintained a reduction in expression of hallmark genes associated with pathogenic fibroblasts when seeded onto TCPs.Further,HEM-iCFs more homogenously integrated into an hiPSC-derived cardiac organoid model,resulting in improved cardiomyocyte sarcomere development.In conclusion,HEM provides an improved substrate for the differentiation and propagation of hiPSC-CFs for disease modeling.展开更多
In heart disease, transforming growth factor-β1 (TGF-β1) converts fibroblasts into myofibroblasts, which synthesize and se- crete fibrillar type I and III collagens. The purpose of the present study was to investi...In heart disease, transforming growth factor-β1 (TGF-β1) converts fibroblasts into myofibroblasts, which synthesize and se- crete fibrillar type I and III collagens. The purpose of the present study was to investigate how hydrogen sulfide (HzS) sup- presses TGF-~l-induced differentiation of human cardiac fibroblasts to myofibroblasts. Human cardiac fibroblasts were se- rum-starved in fibroblast medium for 16 h before exposure to TGF-β1 (10 ng mL-1) for 24 h with or without sodium hydrosul- fide (NariS, 100 μmol L-1, 30 min pretreatment) treatment. NariS, an exogenous HzS donor, potently inhibited the prolifera- tion and migration of TGF-β1-induced human cardiac fibroblasts and regulated their cell cycle progression. Furthermore, NariS treatment led to suppression of fibroblast differentiation into myofibroblasts, and reduced the levels of collagen, TGF-β1, and activated Smad3 in TGF-β1-induced human cardiac fibroblasts in vitro. We therefore conclude that H2S sup- presses TGF-β1-stimulated conversion of fibroblasts to myofibroblasts by inhibiting the TGF-β1/Smad3 signaling pathway, as well as by inhibiting the proliferation, migration, and cell cycle progression of human cardiac myofibroblasts. These effects of H2S may play significant roles in cardiac remodeling associated with heart failure.展开更多
This study investigated the effects of X-ray irradiation on primary rat cardiac fibroblasts(CFs) and its potential mechanism, as well as whether sodium tanshinone ⅡA sulfonate(STS) has protective effect on CFs and it...This study investigated the effects of X-ray irradiation on primary rat cardiac fibroblasts(CFs) and its potential mechanism, as well as whether sodium tanshinone ⅡA sulfonate(STS) has protective effect on CFs and its possible mechanism. Our data demonstrated that X-rays inhibited cell growth and increased oxidative stress in CFs, and STS mitigated X-ray-induced injury. Enzyme-linked immuno-sorbent assay showed that X-rays increased the levels of secreted angiotensin Ⅱ(Ang Ⅱ) and brain natriuretic peptide(BNP). STS inhibited the X-ray-induced increases in Ang Ⅱ and BNP release. Apoptosis and cell cycle of CFs were analyzed using flow cytometry. X-rays induced apoptosis in CFs, whereas STS inhibited apoptosis in CFs after X-ray irradiation. X-rays induced S-phase cell cycle arrest in CFs, which could be reversed by STS. X-rays increased the expression of phosphorylated-P38/P38,cleaved caspase-3 and caspase-3 as well as decreased the expression of phosphorylated extracellular signal-regulated kinase 1/2(ERK1/2)/ERK 1/2 and B cell lymphoma 2(Bcl-2)/Bcl-2 associated X protein(BAX) in CFs, as shown by Western blotting. STS mitigated the X-ray radiation-induced expression changes of these proteins. In conclusion, our results demonstrated that STS may potentially be developed as a medical countermeasure to mitigate radiation-induced cardiac damage.展开更多
Background Bradykinin (BK) acts mainly on two receptor subtypes: B1 and B2, and activation of B2 receptor mediates the most well-known cardioprotective effects of angiotensin converting enzyme inhibitors (ACEi), ...Background Bradykinin (BK) acts mainly on two receptor subtypes: B1 and B2, and activation of B2 receptor mediates the most well-known cardioprotective effects of angiotensin converting enzyme inhibitors (ACEi), however, the role that B1 receptor plays in ACEi has not been fully defined. We examined the role of B1 receptor in the inhibitory effect of ACE inhibitor captopril on rat cardiomyocyte hypertrophy and cardiac fibroblast proliferation induced by angiotensin Ⅱ (Ang Ⅱ) and explored its possible mechanism. Methods Neonatal cardiomyocytes and cardiac fibroblasts (CFs) were randomly treated with Ang Ⅱ, captopdl, B2 receptor antagonist (HOE-140) and B1 receptor antagonist (des-Arg^10, Leu^9-kallidin) alone or in combination. Flow cytometry was used to evaluate cell cycle, size and protein content. Nitric oxide (NO) and intracellular cyclic guanosine monophosphate (cGMP) level were measured by colorimetry and radioimmunoassay. Results After the CFs and cardiomyocytes were incubated with 0.1 μmol/L Ang Ⅱ for 48 hours, the percentage of CFs in the S stage, cardiomyocytes size and protein content significantly increased (both P 〈0.01 vs control), and these increases were inhibited by 10 μmol/L captopril. However, NO and cGMP levels were significantly higher than that with Ang Ⅱ alone (both P 〈0.01). 1 μmol/L HOE-140 or 0.1 pmol/L des-Arg^10, Leu^9-kallidin attenuated the effects of captopril, which was blunted further by blockade of both B1 and B2 receptors. Conclusions Acting via B2 receptor, BK contributes to the antihypertrophic and antiproliferative effects of captopril on cardiomyocytes and CFs. In the absence of B2 receptor, B1 receptor may act a compensatory mechanism for the B2 receptor and contribute to the inhibition of cardiomyocyte hypertrophy and CFs proliferation by captopril. NO and cGMP play an important role in the effect of B1 receptor.展开更多
Background:Myocardial ischemia injury is one of the leading causes of death and disability worldwide.Cardiac fibroblasts (CFs) have central roles in modulating cardiac function under pathophysiological conditions.A...Background:Myocardial ischemia injury is one of the leading causes of death and disability worldwide.Cardiac fibroblasts (CFs) have central roles in modulating cardiac function under pathophysiological conditions.Activating transcription factor 3 (ATF3) plays a self-protective role in counteracting CF dysfunction.However,the precise function of CF-specific ATF3 during myocardial infarction (MI) injury/repair remains incompletely understood.The aim of this study was to determine whether CF-specific ATF3 affected cardiac repair after MI.Methods:Fifteen male C57BL/6 wild-type mice were performed with MI operation to observe the expression of ATF3 at 0,0.5,1.0,3.0,and 7.0 days postoperation.Model for MI was constructed in ATF3TGfl/flColla2-Cre+ (CF-specific ATF3 overexpression group,n =5) and ATF3TGfl/flColla2-Cre-male mice (without CF-specific ATF3 overexpression group,n =5).In addition,five mice of ATF3TGfl/flCol1a2-Cre+ and ATF3TGfl/flCol 1 a2-Cre-were subjected to sham MI operation.Heart function was detected by ultrasound and left ventricular remodeling was observed by Masson staining (myocardial fibrosis area was detected by blue collagen deposition area) at the 28th day after MI surgery in ATF3TGfl/flColla2-Cre+ and ATF3TGfl/flColla2-Cre-mice received sham or MI operation.Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect cell proliferation/cell cycle-related gene expression in cardiac tissue.BrdU staining was used to detect fibroblast proliferation.Results:After establishment of an MI model,we found that ATF3 proteins were increased in the heart of mice after MI surgery and dominantly expressed in CFs.Genetic overexpression of ATF3 in CFs (ATF3TGfl/flCol1a2-Cre+ group) resulted in an improvement in the heart function as indicated by increased cardiac ejection fraction (41.0% vs.30.5%,t =8.610,P =0.001) and increased fractional shortening (26.8% vs.18.1%,t =7.173,P =0.002),which was accompanied by a decrease in cardiac scar area (23.1% vs.11.0%,t =8.610,P =0.001).qRT-PCR analysis of CFs isolated from ATF3TGfl/flCol1a2-Cre+ and ATF3TGfl/flCol1a2-Cre-ischemic hearts revealed a distinct transcriptional profile in ATF3-overexpressing CFs,displaying pro-proliferation properties.BrdU-positive cells significantly increased in ATF3-overexpressing CFs than control CFs under angiotensin Ⅱ stimuli (11.5% vs.6.8%,t =31.599,P =0.001) or serum stimuli (31.6% vs.20.1%,t =31.599,P =0.001).The 5(6)-carboxyfluorescein N-hydroxysuccinimidyl ester assay showed that the cell numbers of the P2 and P3 generations were higher in the ATF3-overexpressing CFs at 24 h (P2:91.6% vs.71.8%,t =8.465,P=0.015) and 48 h (P3:81.6% vs.51.1%,t =9.029,P =0.012) after semm stimulation.Notably,ATF3 overexpression-induced CF proliferation was clearly increased in the heart after MI injury.Conclusions:We identify that CF-specific ATF3 might contribute to be MI repair through upregulating the expression of cell cycle/proliferation-related genes and enhancing cell proliferation.展开更多
Background Cellular cardiomyoplasty by transplantation of various cell types has been investigated as potential treatments for the improvement of cardiac function after myocardial injury. A major barrier for the clini...Background Cellular cardiomyoplasty by transplantation of various cell types has been investigated as potential treatments for the improvement of cardiac function after myocardial injury. A major barrier for the clinical application of cell transplantation is obtaining sufficiently large quantities of suitable cells. AIIogeneic cellular cardiomyoplasty may provide an alternative source of abundant, transplantable, myogenic cells by in vitro manipulation of cardiac fibroblasts using chemicals including 5-azacytidine. This study evaluated cardiomyogenic differentiation of cardiac fibroblasts, their survival in myocardial scar tissue, and the effect of the implanted cells on heart function. Methods Primary cardiac fibroblasts from neonatal rats were treated with 5-azacytidine (10 pmol/L) or control. Treatment of 5-azacytidine caused myogenic differentiation of cultured cardiac fibroblasts, as defined by elongation and fusion into multinucleated myotubes with sarcomeric structures as identified by electron microscopy, and positive immunostaining for cardiac specific proteins, troponin I and 13-myosin heavy chain (13-MHC) and the gap junction protein connexin 43. The myogenic cells (1.0x106) were transplanted into the infarcted myocardium 2 weeks after coronary artery occlusion. Results By 1 month after transplantation, the converted fibroblasts gave rise to a cluster of cardiac-like muscle cells that in the hearts occupied a large part of the scar with positive immunostaining for the myogenic proteins troponin I and 13-MHC. Engrafted cells also expressed the gap junction protein connexin 43 in a disorganized manner. There was no positive staining in the control hearts treated with injections of culture medium. Heart function was evaluated at 6 weeks after myocardial injury with echocardiographic and hemodynamic measurements. Improvement in cardiac function was seen in the hearts transplanted with the 5-azacytidine-treated cardiac fibroblasts which was absent in the hearts treated with control. Conclusion The 5-azacytidine has a unique capacity to induce myogenesis in cardiac fibroblasts in vitro and transplantation of cardiac-like muscle cells into ventricular scar tissue improves myocardial function.展开更多
Background Macrophage migration inhibitory factor (MIF) is a key pro-inflammatory cytokine, exhibiting antioxidant properties. However, the role of MIF in cardiac fibrosis is not well known. In the present study, th...Background Macrophage migration inhibitory factor (MIF) is a key pro-inflammatory cytokine, exhibiting antioxidant properties. However, the role of MIF in cardiac fibrosis is not well known. In the present study, the effects of MIF on Smad3 and Nrf2 signalings in cardiac fibroblasts were investigated. Methods Cardiac fibroblasts were isolated from 1-3 days old C57BL/6 mice, and the cardiac fibroblasts from passage 2 to 4 were used in this study. Expression of fibrosis-associated Collal, Col3al and oL-SMA in mouse cardiac fibroblasts was de- tected by immunofluorescence staining and Western-blot assay, respectively. Intracellular oxidants in mouse car- diac fibroblasts were measured by using the probe dichlorofluoroscindiacetate (DCFH-DA) under confocal mi- croscopy. Western-blot assay was also used to detect Smad3 and Nrf2, antioxidant proteins, MLL and HCF-1 in mouse cardiac fibroblasts. Results Immunofluorescence staining and Western- blot assay showed that MIF could markedly inhibit fibrosis-associated Collal, Col3al and oL-SMA expression in cardiac fibroblasts. DCFH- DA staining revealed that MIF can efficiently decrease reactive oxygen species (ROS) level in Ang-II-induced cardiac fibroblasts. Additionally, Smad3 activation was inhibited, but transcription factor Nrf2 and the downstream antioxidant genes, including HO-1, SOD-l, SOD2, Trx-2 and e-NOS, were increased in MIF-treated cardiac fibroblasts. MLL and HCF-lwere up-regulated by MIF, and either MLL knockdown or HCF-1 knock- down could consistently suppress Nrf2 expression in cardiac fibroblasts. Conclusions MIF possesses anti-fibro- sis effect by inactivating Smad3 and activating Nrf2 in cardiac fibroblasts.展开更多
Objective: To explore the effects of Tetramethylpyrazine (TMP) and Radix Salviae Miltiorrhizae (RSM) on collagen synthesis and proliferation of cardiac fibroblasts. Methods: Using collagenase and pancreatin digested r...Objective: To explore the effects of Tetramethylpyrazine (TMP) and Radix Salviae Miltiorrhizae (RSM) on collagen synthesis and proliferation of cardiac fibroblasts. Methods: Using collagenase and pancreatin digested rat cardiac tissue assay to isolate cardiac fibroblasts (FB). Different dosage of TMP, RSM and norepinephrine were used to study their effects on the collagen synthesis and proliferation of cultured cardiac FB. Results: Compared with the control group, moderate or high dosage TMP and RSM could significantly inhibit the collagen synthesis and the proliferation of cultured cardiac FB. Moreover, low-dose TMP (50 mg/L) and low-dose RSM (3 g/L) could antagonize the collagen synthesis and the proliferation of cultured cardiac FB stimulated by NE (500μg/L). Conclusion: Both TMP and RSM can inhibit the collagen synthesis and proliferation of cultured cardiac FB processes.The mechanisms of these effects might be correlated to their Ca++ antagonistic action. Original article on CJIM(Chin) 1998; 18(7): 423展开更多
Background Cardiac fibrosis,characterized by excessive extracellular matrix(ECM)deposition and increased cardiac fibroblasts(CFs)activity,is a common pathology of various cardiovascular diseases.Cardiac fibrosis decre...Background Cardiac fibrosis,characterized by excessive extracellular matrix(ECM)deposition and increased cardiac fibroblasts(CFs)activity,is a common pathology of various cardiovascular diseases.Cardiac fibrosis decreases ventricular compliance,increases diastolic filling pressure,decreases cardiac oxygen supply,and ultimately impairs the cardiac output.CFs are the main effecter cell type in regulating ECM and predominantly drive the fibrosis process.Despite the critical importance of CFs,our limited understanding of CFs impedes the development of potential therapies that effectively target this cell type and its pathological contribution to disease progression.Recently,long non-coding RNAs(lncRNAs)are emerging as important pathological and physiological regulators of cardiac fibrosis,shedding light on novel molecular mechanisms and potential therapeutic targets.This review discussed the current knowledge regarding the lnc RNAs involved in cardiac fibrosis and summarized their possible molecular mechanisms with special focus on the regulation of CFs.展开更多
Excess activation of cardiac fibroblasts inevitably induces cardiac fibrosis. Emodin has been used as a natural medicine against several chronic diseases. The objective of this study is to determine the effects of emo...Excess activation of cardiac fibroblasts inevitably induces cardiac fibrosis. Emodin has been used as a natural medicine against several chronic diseases. The objective of this study is to determine the effects of emodin on cardiac fibrosis and the underlying molecular mechanisms. Intragastric administration of emodin markedly decreased left ventricular wall thickness in a mouse model of pathological cardiac hypertrophy with excess fibrosis induced by transaortic constriction(TAC) and suppressed activation of cardiac fibroblasts induced by angiotensin II(AngII). Emodin upregulated expression of metastasis associated protein 3(MTA3) and restored the MTA3 expression in the setting of cardiac fibrosis. Moreover, overexpression of MTA3 promoted cardiac fibrosis;in contrast, silence of MTA3 abrogated the inhibitory effect of emodin on fibroblast activation. Our findings unraveled the potential of emodin to alleviate cardiac fibrosis via upregulating MTA3 and highlight the regulatory role of MTA3 in the development of cardiac fibrosis.展开更多
The present study was designed to elucidate whether the mechanism by which osthole decreases collagenⅠ/III contents and their ratio is regulating the TGF-β/Smad signaling pathway in TGF-β1-overexpressed mouse cardi...The present study was designed to elucidate whether the mechanism by which osthole decreases collagenⅠ/III contents and their ratio is regulating the TGF-β/Smad signaling pathway in TGF-β1-overexpressed mouse cardiac fibroblasts(CFs). These CFs were cultured and treated with different concentrations of osthole. Our results showed that the TGF-β1 expression in the CFs transfected with that the recombinant expression plasmids pc DNA3.1(+)-TGF-β1 was significantly enhanced. After the CFs were treated with 1.25-5 μg·m L^(-1) of osthole for 24 h, the m RNA and protein expression levels of collagensⅠand III were reduced. The collagen Ⅰ/III ratio was also reduced. The m RNA and protein expression levels of TGF-β1, TβRⅠ, Smad2/3, P-Smad2/3, Smad4, and α-SMA were decreased, whereas the expression level of Smad7 was increased. These effects suggested that osthole could inhibit collagen Ⅰ and III expression and reduce their ratio via the TGF-β/Smad signaling pathway in TGF-β1 overexpressed CFs. These effects of osthole may play beneficial roles in the prevention and treatment of myocardial fibrosis.展开更多
AIM:To investigate the effect of Tenascin C(TNC)on the expression of pro-inflammatory cytokines and matrixmetalloproteinases in human cardiac myofibroblasts(CMF).METHODS:CMF were isolated and cultured from patients un...AIM:To investigate the effect of Tenascin C(TNC)on the expression of pro-inflammatory cytokines and matrixmetalloproteinases in human cardiac myofibroblasts(CMF).METHODS:CMF were isolated and cultured from patients undergoing coronary artery bypass grafting.Cultured cells were treated with either TNC(0.1μmol/L,24 h)or a recombinant protein corresponding to different domains of the TNC protein;fibrinogen-like globe(FBG)and fibronectin typeⅢ-like repeats(TNⅢ5-7)(both 1μmol/L,24 h).The expression of the proinflammatory cytokines;interleukin(IL)-6,IL-1β,TNFαand the matrix metalloproteinases;MMPs(MMP1,2,3,9,10,MT1-MMP)was assessed using real time RT-PCR and western blot analysis.RESULTS:TNC increased both IL-6 and MMP3(P<0.01)mR NA levels in cultured human CMF but had no significant effect on the other markers studied.The increase in IL-6 mR NA expression was mirrored by an increase in protein secretion as assessed by enzymelinked immunosorbant assay(P<0.01).Treating CMF with the recombinant protein FBG increased IL-6mR NA and protein(P<0.01)whereas the recombinant protein TNⅢ5-7 had no effect.Neither FBG nor TNⅢ5-7 had any significant effect on MMP3 expression.The expression of toll-like receptor 4(TLR4)in human CMF was confirmed by real time RT-PCR,western blot and immunohistochemistry.Pre-incubation of cells with TLR4neutralising antisera attenuated the effect of both TNC and FBG on IL-6 mR NA and protein expression.CONCLUSION:TNC up-regulates IL-6 expression in human CMF,an effect mediated through the FBG domain of TNC and via the TLR4 receptor.展开更多
文摘Background:A differential gene,triggering receptor expressed on myeloid cells 1(TREM1),was identified in blood sequencing datasets from myocardial infarction patients and healthy controls.Myocardialfibrosis following myocardial infarction significantly contributes to cardiac dysfunction.Objectives:This study aimed to unveil the intrinsic regulatory mechanism of TREM1 in myocardialfibrosis.Methods:Mimicking pathology by angiotensin II(Ang II)treatment of human cardiacfibroblasts(HCFs),the impacts of TREM1 knockdown on its proliferation,migration,and secretion of the pro-fibrotic matrix were identified.Using the Human Transcription Factor Database(HumanTFDB)website,lysine-specific demethylase 5B(KDM5B)was found to bind to the TREM1 promoter,which was further validated through luciferase reporter and chromatin immunoprecipitation(ChIP).By promoting KDM5B overexpression,its effect on the regulation of TREM1 was examined.Results:TREM1 knockdown suppressed the proliferation,migration,and secretion of the pro-fibrotic matrix in HCFs upon Ang II treatment.KDM5B bound to the TREM1 promoter and upregulated its transcriptional expression.Furthermore,KDM5B overexpression reversed the regulation of the above cellular phenotypes by TREM1 knockdown.Conclusion:This study sheds light on the positive regulation of TREM1 by KDM5B,demonstrating their role in promoting myocardialfibrosis.Thisfinding provides a theoretical foundation for understanding disease pathology and potentially advancing the development of new targeted therapies.
基金supported by grants from the National Natural Science Foundation of China(No.81441016)and Key R&D Plan in Shaanxi Province of China(No.2020SF-262 and No.2019SF-200).
文摘Objective Cardiac fibroblasts(CFs)proliferation and extracellular matrix deposition are important features of cardiac fibrosis.Various studies have indicated that vitamin D displays an anti-fibrotic property in chronic heart diseases.This study explored the role of vitamin D in the growth of CFs via an integrin signaling pathway.Methods MTT and 5-ethynyl-2′-deoxyuridine assays were performed to determine cell viability.Western blotting was performed to detect the expression of proliferating cell nuclear antigen(PCNA)and integrin signaling pathway.The fibronectin was observed by ELISA.Immunohistochemical staining was employed to evaluate the expression of integrinβ3.Results The PCNA expression in the CFs was enhanced after isoproterenol(ISO)stimulation accompanied by an elevated expression of integrin beta-3(β3).The blockade of the integrinβ3 with a specific integrinβ3 antibody reduced the PCNA expression induced by the ISO.Decreasing the integrinβ3 by siRNA reduced the ISO-triggered phosphorylation of FAK and Akt.Both the FAK inhibitor and Akt inhibitor suppressed the PCNA expression induced by the ISO in the CFs.Calcitriol(CAL),an active form of vitamin D,attenuated the ISO-induced CFs proliferation by downregulating the integrinβ3 expression,and phosphorylation of FAK and Akt.Moreover,CAL reduced the increased levels of fibronectin and hydroxyproline in the CFs culture medium triggered by the ISO.The administration of calcitriol decreased the integrinβ3 expression in the ISO-induced myocardial injury model.Conclusion These findings revealed a novel role for CAL in suppressing the CFs growth by the downregulation of the integrinβ3/FAK/Akt pathway.
基金This study was supported by the project of Hebei Provincial Administration of traditional Chinese Medicine(No.2018161)the Hebei Health and Family Planning Commission(No.20170875)the Scientific Research Project of College students in Chengde Medical College(No.2019033).
文摘Objective:A cell model of cardiac fibroblasts proliferation induced by aldosterone was established to observe the effect of aldosterone on the proliferation of rat cardiac fibroblasts.Methods:Primary cardiac fibroblasts were cultured by trypsin digestion method and differential adhesion method,primary cardiac fibroblasts were sub-cultured by conventional digestion method,and the immunocytochemical assay was used to identify cardiac fibroblasts.The second-generation cardiac fibroblasts were randomly divided into five groups:standard control group,10-9 mol/L aldosterone(ALD1)group,10-8 mol/L aldosterone(ALD2)group,10-7 mol/L aldosterone(ALD3)group,and 10-6 mol/L aldosterone(ALD4)group.The viability of fibroblast cells in each group was detected by the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method.Results:Vimentin staining assay showed that the cultured cells staining positive,and the purity of cultured mouse cardiac fibroblasts was 95%.The results of methyl thiazolyl tetrazolium showed that compared with the control group,the low concentration of aldosterone(10-9 mol/L)had no significant effect on the proliferation of normal cardiac fibroblasts.With the increase in the intensity of(10-8–10-6)mol/L,aldosterone could significantly promote the proliferation of cardiac fibroblasts.Moreover,there was no significant difference in absorbance value between the aldosterone group(10-6 mol/L)and the aldosterone group(10-7 mol/L)(P>0.05).The highest concentration of aldosterone group 10-7 mol/L promoted the proliferation of cardiac the optimum concentration was 10-7 mol/L.Conclusion:Aldosterone can promote the spread of cardiac fibroblasts in a specific concentration range.
文摘[Objectives]To explore the effects of paeonol on the inhibition of myocardial fibrosis in high glucose induced cardiac fibroblasts(CFs).[Methods]Differential adherence method was used to culture the primary CFs of neonatal rats(passage culture);CCK-8 method was used to detect the cell proliferation;MTT assay was used to screen the safe concentration of paeonol;the 2 nd to 3 rd generation CFs were randomly divided into normal group(5.5 mmol/L,expressed in C),high glucose group(30 mmol/L,expressed in HG),paeonol low dose group(Pae-L,17.5 mg/L),and medium dose paeonol group(Pae-M,35 mg/L),paeonol high dose group(Pae-H,70 mg/L);Western Blot method was used to detect the expression of Col-I and Col-III protein.[Results]The extraction of CFs from primary neonatal rats was successful;high glucose(30 mmol/L)induction had a significant proliferation effect on CFs;compared with the normal group,the expressions of COI-I and Col-III protein were increased in the high glucose group(P<0.05);compared with the high glucose group,the expression of COI-I protein was decreased in each treatment group(P<0.05,P<0.01),and the decrease was most significant in the high dose group(P<0.01);the expression of COI-III in the high dose group was decreased and it was statistically significant(P<0.05).[Conclusions]Paeonol significantly inhibited the proliferation of high glucose induced CFs in neonatal rats.This experiment is intended to provide a new experimental basis for the prevention and treatment of diabetic cardiomyopathy(DCM).
基金funded by the National Institutes of Health(NIH)F31 HL154665,R01 HL133308,8P20 GM103444,R21 HL167211,R01 HL168255,U01 HL169361,R01 HL148059the NIH Cardiovascular Training Grant T32 HL007260+2 种基金the National Science Foundation(NSF)(CBET-1743346),the NSF Engineering Research Center for Cell Manufacturing Technologies(CMaT,NSF EEC-1648035)the VA Merit I01 BX005943-01A1supported by the grants,2021R1A2C3004262,2022M3A9B6082675,of the National Research Foundation of Korea(NRF)funded by the Korean government,the Ministry of Science and ICT(MSIT).
文摘Human induced pluripotent stem cell derived cardiac fibroblasts(hiPSC-CFs)play a critical role in modeling human cardiovascular diseases in vitro.However,current culture substrates used for hiPSC-CF differentiation and expansion,such as Matrigel and tissue culture plastic(TCPs),are tissue mismatched and may provide pathogenic cues.Here,we report that hiPSC-CFs differentiated on Matrigel and expanded on tissue culture plastic(M-TCP-iCFs)exhibit transcriptomic hallmarks of activated fibroblasts limiting their translational potential.To alleviate pathogenic activation of hiPSC-CFs,we utilized decellularized extracellular matrix derived from porcine heart extracellular matrix(HEM)to provide a biomimetic substrate for improving hiPSC-CF phenotypes.We show that hiPSC-CFs differentiated and expanded on HEM(HEM-iCFs)exhibited reduced expression of hallmark activated fibroblast markers versus M-TCP-iCFs while retaining their cardiac fibroblast phenotype.HEM-iCFs also maintained a reduction in expression of hallmark genes associated with pathogenic fibroblasts when seeded onto TCPs.Further,HEM-iCFs more homogenously integrated into an hiPSC-derived cardiac organoid model,resulting in improved cardiomyocyte sarcomere development.In conclusion,HEM provides an improved substrate for the differentiation and propagation of hiPSC-CFs for disease modeling.
基金supported by the State Key Program of National Natural Science of China(81230007)
文摘In heart disease, transforming growth factor-β1 (TGF-β1) converts fibroblasts into myofibroblasts, which synthesize and se- crete fibrillar type I and III collagens. The purpose of the present study was to investigate how hydrogen sulfide (HzS) sup- presses TGF-~l-induced differentiation of human cardiac fibroblasts to myofibroblasts. Human cardiac fibroblasts were se- rum-starved in fibroblast medium for 16 h before exposure to TGF-β1 (10 ng mL-1) for 24 h with or without sodium hydrosul- fide (NariS, 100 μmol L-1, 30 min pretreatment) treatment. NariS, an exogenous HzS donor, potently inhibited the prolifera- tion and migration of TGF-β1-induced human cardiac fibroblasts and regulated their cell cycle progression. Furthermore, NariS treatment led to suppression of fibroblast differentiation into myofibroblasts, and reduced the levels of collagen, TGF-β1, and activated Smad3 in TGF-β1-induced human cardiac fibroblasts in vitro. We therefore conclude that H2S sup- presses TGF-β1-stimulated conversion of fibroblasts to myofibroblasts by inhibiting the TGF-β1/Smad3 signaling pathway, as well as by inhibiting the proliferation, migration, and cell cycle progression of human cardiac myofibroblasts. These effects of H2S may play significant roles in cardiac remodeling associated with heart failure.
基金the National Natural Science Foundation of China(No.81860047)the Postdoctoral Science Foundation of China(No.22019M653474)。
文摘This study investigated the effects of X-ray irradiation on primary rat cardiac fibroblasts(CFs) and its potential mechanism, as well as whether sodium tanshinone ⅡA sulfonate(STS) has protective effect on CFs and its possible mechanism. Our data demonstrated that X-rays inhibited cell growth and increased oxidative stress in CFs, and STS mitigated X-ray-induced injury. Enzyme-linked immuno-sorbent assay showed that X-rays increased the levels of secreted angiotensin Ⅱ(Ang Ⅱ) and brain natriuretic peptide(BNP). STS inhibited the X-ray-induced increases in Ang Ⅱ and BNP release. Apoptosis and cell cycle of CFs were analyzed using flow cytometry. X-rays induced apoptosis in CFs, whereas STS inhibited apoptosis in CFs after X-ray irradiation. X-rays induced S-phase cell cycle arrest in CFs, which could be reversed by STS. X-rays increased the expression of phosphorylated-P38/P38,cleaved caspase-3 and caspase-3 as well as decreased the expression of phosphorylated extracellular signal-regulated kinase 1/2(ERK1/2)/ERK 1/2 and B cell lymphoma 2(Bcl-2)/Bcl-2 associated X protein(BAX) in CFs, as shown by Western blotting. STS mitigated the X-ray radiation-induced expression changes of these proteins. In conclusion, our results demonstrated that STS may potentially be developed as a medical countermeasure to mitigate radiation-induced cardiac damage.
文摘Background Bradykinin (BK) acts mainly on two receptor subtypes: B1 and B2, and activation of B2 receptor mediates the most well-known cardioprotective effects of angiotensin converting enzyme inhibitors (ACEi), however, the role that B1 receptor plays in ACEi has not been fully defined. We examined the role of B1 receptor in the inhibitory effect of ACE inhibitor captopril on rat cardiomyocyte hypertrophy and cardiac fibroblast proliferation induced by angiotensin Ⅱ (Ang Ⅱ) and explored its possible mechanism. Methods Neonatal cardiomyocytes and cardiac fibroblasts (CFs) were randomly treated with Ang Ⅱ, captopdl, B2 receptor antagonist (HOE-140) and B1 receptor antagonist (des-Arg^10, Leu^9-kallidin) alone or in combination. Flow cytometry was used to evaluate cell cycle, size and protein content. Nitric oxide (NO) and intracellular cyclic guanosine monophosphate (cGMP) level were measured by colorimetry and radioimmunoassay. Results After the CFs and cardiomyocytes were incubated with 0.1 μmol/L Ang Ⅱ for 48 hours, the percentage of CFs in the S stage, cardiomyocytes size and protein content significantly increased (both P 〈0.01 vs control), and these increases were inhibited by 10 μmol/L captopril. However, NO and cGMP levels were significantly higher than that with Ang Ⅱ alone (both P 〈0.01). 1 μmol/L HOE-140 or 0.1 pmol/L des-Arg^10, Leu^9-kallidin attenuated the effects of captopril, which was blunted further by blockade of both B1 and B2 receptors. Conclusions Acting via B2 receptor, BK contributes to the antihypertrophic and antiproliferative effects of captopril on cardiomyocytes and CFs. In the absence of B2 receptor, B1 receptor may act a compensatory mechanism for the B2 receptor and contribute to the inhibition of cardiomyocyte hypertrophy and CFs proliferation by captopril. NO and cGMP play an important role in the effect of B1 receptor.
基金This work was supportedby the grants from the National Science Foundation of China (No. 81470428 and No. 81770245) and Key Laboratory of Remodeling Related Cardiovascular Diseases, Ministry of Education, China (No. PXM2014-014226-000012).
文摘Background:Myocardial ischemia injury is one of the leading causes of death and disability worldwide.Cardiac fibroblasts (CFs) have central roles in modulating cardiac function under pathophysiological conditions.Activating transcription factor 3 (ATF3) plays a self-protective role in counteracting CF dysfunction.However,the precise function of CF-specific ATF3 during myocardial infarction (MI) injury/repair remains incompletely understood.The aim of this study was to determine whether CF-specific ATF3 affected cardiac repair after MI.Methods:Fifteen male C57BL/6 wild-type mice were performed with MI operation to observe the expression of ATF3 at 0,0.5,1.0,3.0,and 7.0 days postoperation.Model for MI was constructed in ATF3TGfl/flColla2-Cre+ (CF-specific ATF3 overexpression group,n =5) and ATF3TGfl/flColla2-Cre-male mice (without CF-specific ATF3 overexpression group,n =5).In addition,five mice of ATF3TGfl/flCol1a2-Cre+ and ATF3TGfl/flCol 1 a2-Cre-were subjected to sham MI operation.Heart function was detected by ultrasound and left ventricular remodeling was observed by Masson staining (myocardial fibrosis area was detected by blue collagen deposition area) at the 28th day after MI surgery in ATF3TGfl/flColla2-Cre+ and ATF3TGfl/flColla2-Cre-mice received sham or MI operation.Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect cell proliferation/cell cycle-related gene expression in cardiac tissue.BrdU staining was used to detect fibroblast proliferation.Results:After establishment of an MI model,we found that ATF3 proteins were increased in the heart of mice after MI surgery and dominantly expressed in CFs.Genetic overexpression of ATF3 in CFs (ATF3TGfl/flCol1a2-Cre+ group) resulted in an improvement in the heart function as indicated by increased cardiac ejection fraction (41.0% vs.30.5%,t =8.610,P =0.001) and increased fractional shortening (26.8% vs.18.1%,t =7.173,P =0.002),which was accompanied by a decrease in cardiac scar area (23.1% vs.11.0%,t =8.610,P =0.001).qRT-PCR analysis of CFs isolated from ATF3TGfl/flCol1a2-Cre+ and ATF3TGfl/flCol1a2-Cre-ischemic hearts revealed a distinct transcriptional profile in ATF3-overexpressing CFs,displaying pro-proliferation properties.BrdU-positive cells significantly increased in ATF3-overexpressing CFs than control CFs under angiotensin Ⅱ stimuli (11.5% vs.6.8%,t =31.599,P =0.001) or serum stimuli (31.6% vs.20.1%,t =31.599,P =0.001).The 5(6)-carboxyfluorescein N-hydroxysuccinimidyl ester assay showed that the cell numbers of the P2 and P3 generations were higher in the ATF3-overexpressing CFs at 24 h (P2:91.6% vs.71.8%,t =8.465,P=0.015) and 48 h (P3:81.6% vs.51.1%,t =9.029,P =0.012) after semm stimulation.Notably,ATF3 overexpression-induced CF proliferation was clearly increased in the heart after MI injury.Conclusions:We identify that CF-specific ATF3 might contribute to be MI repair through upregulating the expression of cell cycle/proliferation-related genes and enhancing cell proliferation.
文摘Background Cellular cardiomyoplasty by transplantation of various cell types has been investigated as potential treatments for the improvement of cardiac function after myocardial injury. A major barrier for the clinical application of cell transplantation is obtaining sufficiently large quantities of suitable cells. AIIogeneic cellular cardiomyoplasty may provide an alternative source of abundant, transplantable, myogenic cells by in vitro manipulation of cardiac fibroblasts using chemicals including 5-azacytidine. This study evaluated cardiomyogenic differentiation of cardiac fibroblasts, their survival in myocardial scar tissue, and the effect of the implanted cells on heart function. Methods Primary cardiac fibroblasts from neonatal rats were treated with 5-azacytidine (10 pmol/L) or control. Treatment of 5-azacytidine caused myogenic differentiation of cultured cardiac fibroblasts, as defined by elongation and fusion into multinucleated myotubes with sarcomeric structures as identified by electron microscopy, and positive immunostaining for cardiac specific proteins, troponin I and 13-myosin heavy chain (13-MHC) and the gap junction protein connexin 43. The myogenic cells (1.0x106) were transplanted into the infarcted myocardium 2 weeks after coronary artery occlusion. Results By 1 month after transplantation, the converted fibroblasts gave rise to a cluster of cardiac-like muscle cells that in the hearts occupied a large part of the scar with positive immunostaining for the myogenic proteins troponin I and 13-MHC. Engrafted cells also expressed the gap junction protein connexin 43 in a disorganized manner. There was no positive staining in the control hearts treated with injections of culture medium. Heart function was evaluated at 6 weeks after myocardial injury with echocardiographic and hemodynamic measurements. Improvement in cardiac function was seen in the hearts transplanted with the 5-azacytidine-treated cardiac fibroblasts which was absent in the hearts treated with control. Conclusion The 5-azacytidine has a unique capacity to induce myogenesis in cardiac fibroblasts in vitro and transplantation of cardiac-like muscle cells into ventricular scar tissue improves myocardial function.
基金supported by grants from the National Natural Science Foundation of China(No.91649109/81470439/81770264)Natural Science Foundation of Guangdong Province(No.2014A030313635,2013B022000083)Translational Medicine Foundation of Guangdong General Hospital(No.2015zh06)
文摘Background Macrophage migration inhibitory factor (MIF) is a key pro-inflammatory cytokine, exhibiting antioxidant properties. However, the role of MIF in cardiac fibrosis is not well known. In the present study, the effects of MIF on Smad3 and Nrf2 signalings in cardiac fibroblasts were investigated. Methods Cardiac fibroblasts were isolated from 1-3 days old C57BL/6 mice, and the cardiac fibroblasts from passage 2 to 4 were used in this study. Expression of fibrosis-associated Collal, Col3al and oL-SMA in mouse cardiac fibroblasts was de- tected by immunofluorescence staining and Western-blot assay, respectively. Intracellular oxidants in mouse car- diac fibroblasts were measured by using the probe dichlorofluoroscindiacetate (DCFH-DA) under confocal mi- croscopy. Western-blot assay was also used to detect Smad3 and Nrf2, antioxidant proteins, MLL and HCF-1 in mouse cardiac fibroblasts. Results Immunofluorescence staining and Western- blot assay showed that MIF could markedly inhibit fibrosis-associated Collal, Col3al and oL-SMA expression in cardiac fibroblasts. DCFH- DA staining revealed that MIF can efficiently decrease reactive oxygen species (ROS) level in Ang-II-induced cardiac fibroblasts. Additionally, Smad3 activation was inhibited, but transcription factor Nrf2 and the downstream antioxidant genes, including HO-1, SOD-l, SOD2, Trx-2 and e-NOS, were increased in MIF-treated cardiac fibroblasts. MLL and HCF-lwere up-regulated by MIF, and either MLL knockdown or HCF-1 knock- down could consistently suppress Nrf2 expression in cardiac fibroblasts. Conclusions MIF possesses anti-fibro- sis effect by inactivating Smad3 and activating Nrf2 in cardiac fibroblasts.
文摘Objective: To explore the effects of Tetramethylpyrazine (TMP) and Radix Salviae Miltiorrhizae (RSM) on collagen synthesis and proliferation of cardiac fibroblasts. Methods: Using collagenase and pancreatin digested rat cardiac tissue assay to isolate cardiac fibroblasts (FB). Different dosage of TMP, RSM and norepinephrine were used to study their effects on the collagen synthesis and proliferation of cultured cardiac FB. Results: Compared with the control group, moderate or high dosage TMP and RSM could significantly inhibit the collagen synthesis and the proliferation of cultured cardiac FB. Moreover, low-dose TMP (50 mg/L) and low-dose RSM (3 g/L) could antagonize the collagen synthesis and the proliferation of cultured cardiac FB stimulated by NE (500μg/L). Conclusion: Both TMP and RSM can inhibit the collagen synthesis and proliferation of cultured cardiac FB processes.The mechanisms of these effects might be correlated to their Ca++ antagonistic action. Original article on CJIM(Chin) 1998; 18(7): 423
基金supported by the National Natural Science Foundation of China(No.81600255)the Natural Science Foundation of Guangdong Province,China(No.2017A030313476)。
文摘Background Cardiac fibrosis,characterized by excessive extracellular matrix(ECM)deposition and increased cardiac fibroblasts(CFs)activity,is a common pathology of various cardiovascular diseases.Cardiac fibrosis decreases ventricular compliance,increases diastolic filling pressure,decreases cardiac oxygen supply,and ultimately impairs the cardiac output.CFs are the main effecter cell type in regulating ECM and predominantly drive the fibrosis process.Despite the critical importance of CFs,our limited understanding of CFs impedes the development of potential therapies that effectively target this cell type and its pathological contribution to disease progression.Recently,long non-coding RNAs(lncRNAs)are emerging as important pathological and physiological regulators of cardiac fibrosis,shedding light on novel molecular mechanisms and potential therapeutic targets.This review discussed the current knowledge regarding the lnc RNAs involved in cardiac fibrosis and summarized their possible molecular mechanisms with special focus on the regulation of CFs.
基金supported in part by the National Key R&D Program of China(2017YFC1702003)the National Natural Science Foundation of China(81570399/81773735/81811530117)Heilongjiang Outstanding Youth Science Fund(JJ2017JQ0035,China)
文摘Excess activation of cardiac fibroblasts inevitably induces cardiac fibrosis. Emodin has been used as a natural medicine against several chronic diseases. The objective of this study is to determine the effects of emodin on cardiac fibrosis and the underlying molecular mechanisms. Intragastric administration of emodin markedly decreased left ventricular wall thickness in a mouse model of pathological cardiac hypertrophy with excess fibrosis induced by transaortic constriction(TAC) and suppressed activation of cardiac fibroblasts induced by angiotensin II(AngII). Emodin upregulated expression of metastasis associated protein 3(MTA3) and restored the MTA3 expression in the setting of cardiac fibrosis. Moreover, overexpression of MTA3 promoted cardiac fibrosis;in contrast, silence of MTA3 abrogated the inhibitory effect of emodin on fibroblast activation. Our findings unraveled the potential of emodin to alleviate cardiac fibrosis via upregulating MTA3 and highlight the regulatory role of MTA3 in the development of cardiac fibrosis.
基金supported by the National Nature Science Foundation of China(No.81302772)Jiangsu Provincial Medical Talent Project(No.QNRC2016716)
文摘The present study was designed to elucidate whether the mechanism by which osthole decreases collagenⅠ/III contents and their ratio is regulating the TGF-β/Smad signaling pathway in TGF-β1-overexpressed mouse cardiac fibroblasts(CFs). These CFs were cultured and treated with different concentrations of osthole. Our results showed that the TGF-β1 expression in the CFs transfected with that the recombinant expression plasmids pc DNA3.1(+)-TGF-β1 was significantly enhanced. After the CFs were treated with 1.25-5 μg·m L^(-1) of osthole for 24 h, the m RNA and protein expression levels of collagensⅠand III were reduced. The collagen Ⅰ/III ratio was also reduced. The m RNA and protein expression levels of TGF-β1, TβRⅠ, Smad2/3, P-Smad2/3, Smad4, and α-SMA were decreased, whereas the expression level of Smad7 was increased. These effects suggested that osthole could inhibit collagen Ⅰ and III expression and reduce their ratio via the TGF-β/Smad signaling pathway in TGF-β1 overexpressed CFs. These effects of osthole may play beneficial roles in the prevention and treatment of myocardial fibrosis.
文摘AIM:To investigate the effect of Tenascin C(TNC)on the expression of pro-inflammatory cytokines and matrixmetalloproteinases in human cardiac myofibroblasts(CMF).METHODS:CMF were isolated and cultured from patients undergoing coronary artery bypass grafting.Cultured cells were treated with either TNC(0.1μmol/L,24 h)or a recombinant protein corresponding to different domains of the TNC protein;fibrinogen-like globe(FBG)and fibronectin typeⅢ-like repeats(TNⅢ5-7)(both 1μmol/L,24 h).The expression of the proinflammatory cytokines;interleukin(IL)-6,IL-1β,TNFαand the matrix metalloproteinases;MMPs(MMP1,2,3,9,10,MT1-MMP)was assessed using real time RT-PCR and western blot analysis.RESULTS:TNC increased both IL-6 and MMP3(P<0.01)mR NA levels in cultured human CMF but had no significant effect on the other markers studied.The increase in IL-6 mR NA expression was mirrored by an increase in protein secretion as assessed by enzymelinked immunosorbant assay(P<0.01).Treating CMF with the recombinant protein FBG increased IL-6mR NA and protein(P<0.01)whereas the recombinant protein TNⅢ5-7 had no effect.Neither FBG nor TNⅢ5-7 had any significant effect on MMP3 expression.The expression of toll-like receptor 4(TLR4)in human CMF was confirmed by real time RT-PCR,western blot and immunohistochemistry.Pre-incubation of cells with TLR4neutralising antisera attenuated the effect of both TNC and FBG on IL-6 mR NA and protein expression.CONCLUSION:TNC up-regulates IL-6 expression in human CMF,an effect mediated through the FBG domain of TNC and via the TLR4 receptor.