Up to now, the study on the cardinal number of fuzzy sets has advanced at on pace since it is very hard to give it an appropriate definition. Althrough for it in [1], it is with some harsh terms and is not reasonable ...Up to now, the study on the cardinal number of fuzzy sets has advanced at on pace since it is very hard to give it an appropriate definition. Althrough for it in [1], it is with some harsh terms and is not reasonable as we point out in this paper. In the paper, we give a general definition of fuzzy cardinal numbers. Based on this definition, we not only obtain a large part of results with re spect to cardinal numbers, but also give a few of new properties of fuzzy cardinal numbers.展开更多
In this paper,the pointwise characterizations of fuzzy mappings are given. Based of this definition,we give a few of new properties of fuzzy cardinal numbers.
A simple recursive algorithm to generate the set of natural numbers, based on Mersenne numbers: M<sub>N</sub> = 2<sup>N</sup> – 1, is used to count the number of prime numbers within the preci...A simple recursive algorithm to generate the set of natural numbers, based on Mersenne numbers: M<sub>N</sub> = 2<sup>N</sup> – 1, is used to count the number of prime numbers within the precise Mersenne natural number intervals: [0;M<sub>N</sub>]. This permits the formulation of an extended twin prime conjecture. Moreover, it is found that the prime numbers subsets contained in Mersenne intervals have cardinalities strongly correlated with the corresponding Mersenne numbers.展开更多
In the 19th century, Cantor created the infinite cardinal number theory based on the “1-1 correspondence” principle. The continuum hypothesis is proposed under this theoretical framework. In 1900, Hilbert made it th...In the 19th century, Cantor created the infinite cardinal number theory based on the “1-1 correspondence” principle. The continuum hypothesis is proposed under this theoretical framework. In 1900, Hilbert made it the first problem in his famous speech on mathematical problems, which shows the importance of this question. We know that the infinitesimal problem triggered the second mathematical crisis in the 17-18th centuries. The Infinity problem is no less important than the infinitesimal problem. In the 21st century, Sergeyev introduced the Grossone method from the principle of “whole is greater than part”, and created another ruler for measuring infinite sets. The discussion in this paper shows that, compared with the cardinal number method, the Grossone method enables infinity calculation to achieve a leap from qualitative calculation to quantitative calculation. According to Grossone theory, there is neither the largest infinity and infinitesimal, nor the smallest infinity and infinitesimal. Hilbert’s first problem was caused by the immaturity of the infinity theory.展开更多
This paper deals with Hilbert's 16th problem and its generalizations. The configurations of all closed branches of an algebraic curve of degree n are discussed. The maximum number of sheets for an algebraic eq...This paper deals with Hilbert's 16th problem and its generalizations. The configurations of all closed branches of an algebraic curve of degree n are discussed. The maximum number of sheets for an algebraic equation of degree n and the maximum number of limit cycles for a planar algebraic autonomous system are achieved. The author also considers different generalizations and some related problems.展开更多
文摘Up to now, the study on the cardinal number of fuzzy sets has advanced at on pace since it is very hard to give it an appropriate definition. Althrough for it in [1], it is with some harsh terms and is not reasonable as we point out in this paper. In the paper, we give a general definition of fuzzy cardinal numbers. Based on this definition, we not only obtain a large part of results with re spect to cardinal numbers, but also give a few of new properties of fuzzy cardinal numbers.
文摘In this paper,the pointwise characterizations of fuzzy mappings are given. Based of this definition,we give a few of new properties of fuzzy cardinal numbers.
文摘A simple recursive algorithm to generate the set of natural numbers, based on Mersenne numbers: M<sub>N</sub> = 2<sup>N</sup> – 1, is used to count the number of prime numbers within the precise Mersenne natural number intervals: [0;M<sub>N</sub>]. This permits the formulation of an extended twin prime conjecture. Moreover, it is found that the prime numbers subsets contained in Mersenne intervals have cardinalities strongly correlated with the corresponding Mersenne numbers.
文摘In the 19th century, Cantor created the infinite cardinal number theory based on the “1-1 correspondence” principle. The continuum hypothesis is proposed under this theoretical framework. In 1900, Hilbert made it the first problem in his famous speech on mathematical problems, which shows the importance of this question. We know that the infinitesimal problem triggered the second mathematical crisis in the 17-18th centuries. The Infinity problem is no less important than the infinitesimal problem. In the 21st century, Sergeyev introduced the Grossone method from the principle of “whole is greater than part”, and created another ruler for measuring infinite sets. The discussion in this paper shows that, compared with the cardinal number method, the Grossone method enables infinity calculation to achieve a leap from qualitative calculation to quantitative calculation. According to Grossone theory, there is neither the largest infinity and infinitesimal, nor the smallest infinity and infinitesimal. Hilbert’s first problem was caused by the immaturity of the infinity theory.
文摘This paper deals with Hilbert's 16th problem and its generalizations. The configurations of all closed branches of an algebraic curve of degree n are discussed. The maximum number of sheets for an algebraic equation of degree n and the maximum number of limit cycles for a planar algebraic autonomous system are achieved. The author also considers different generalizations and some related problems.