期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Dual human iPSC-derived cardiac lineage cell-seeding extracellular matrix patches promote regeneration and long-term repair of infarcted hearts 被引量:1
1
作者 Yun Jiang Ling-Ling Zhang +10 位作者 Fan Zhang Wei Bi Peng Zhang Xiu-Jian Yu Sen-Le Rao Shi-Hui Wang Qiang Li Chen Ding Ying Jin Zhong-Min Liu Huang-Tian Yang 《Bioactive Materials》 SCIE CSCD 2023年第10期206-226,共21页
Human pluripotent stem cell-derived cardiovascular progenitor cells (hCVPCs) and cardiomyocytes (hCMs) possess therapeutic potential for infarcted hearts;however, their efficacy needs to be enhanced. Here we tested th... Human pluripotent stem cell-derived cardiovascular progenitor cells (hCVPCs) and cardiomyocytes (hCMs) possess therapeutic potential for infarcted hearts;however, their efficacy needs to be enhanced. Here we tested the hypotheses that the combination of decellularized porcine small intestinal submucosal extracellular matrix (SIS-ECM) with hCVPCs, hCMs, or dual of them (Mix, 1:1) could provide better therapeutic effects than the SIS alone, and dual hCVPCs with hCMs would exert synergic effects in cardiac repair. The data showed that the SIS patch well supported the growth of hCVPCs and hCMs. Epicardially implanted SIS-hCVPC, SIS-hCM, or SIS-Mix patches at 7-day post-myocardial infarction significantly ameliorated functional worsening, ventricular dilation and scar formation at 28- and 90-day post-implantation in C57/B6 mice, whereas the SIS only mildly improved function at 90-day post-implantation. Moreover, the SIS and SIS-cell patches improved vascularization and suppressed MI-induced cardiomyocyte hypertrophy and expression of Col1 and Col3, but only the SIS-hCM and the SIS-Mix patches increased the ratio of collagen III/I fibers in the infarcted hearts. Further, the SIS-cell patches stimulated cardiomyocyte proliferation via paracrine action. Notably, the SIS-Mix had better improvements in cardiac function and structure, engraftments, and cardiomyocyte proliferation. Proteomic analysis showed distinct biological functions of exclusive proteins secreted from hCVPCs and hCMs, and more exclusive proteins secreted from co-cultivated hCVPCs and hCMs than mono-cells involving in various functional processes essential for infarct repair. These findings are the first to demonstrate the efficacy and mechanisms of mono- and dual-hCVPC- and hCM-seeding SIS-ECM for repair of infarcted hearts based on the side-by-side comparison. 展开更多
关键词 Induced human pluripotent stem cells Cardiac lineage cells Extracellular matrix patch Cardiomyocyte regeneration Infarcted heart repair
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部