Although some authors suggest that there is mitotic division in the heart,most cardiomyocytes do not have the capacity to regenerate after myocardial infarction and when this occurs there is a deterioration of contrac...Although some authors suggest that there is mitotic division in the heart,most cardiomyocytes do not have the capacity to regenerate after myocardial infarction and when this occurs there is a deterioration of contractile function,and if the area of infarction is extensive ventricular remodeling may occur,leading to the development of heart failure.Cell transplantation into the myocardium with the goal of recovery of cardiac function has been extensively studied in recent years. The effects of cell therapy are based directly on the cell type used and the type of cardiac pathology.For myocardial ischemia in the hibernating myocardium, bone marrow cells have functional benefits,however these results in transmural fibrosis are not evident. In these cases there is a benefit of implantation with skeletal myoblasts,for treating the underlying cause of disease,the loss of cell contractility.展开更多
Non-ischemic cardiomyopathies include a wide spectrum of disease states afflicting the heart, whether a primary process or secondary to a systemic condition. Cardiac magnetic resonance imaging(CMR) has established its...Non-ischemic cardiomyopathies include a wide spectrum of disease states afflicting the heart, whether a primary process or secondary to a systemic condition. Cardiac magnetic resonance imaging(CMR) has established itself as an important imaging modality in the evaluation of non-ischemic cardiomyopathies. CMR is useful in the diagnosis of cardiomyopathy, quantification of ventricular function, establishing etiology, determining prognosis and risk stratification. Technical advances and extensive research over the last decade have resulted in the accumulation of a tremendous amount of data with regards to the utility of CMR in these cardiomyopathies. In this article, we review CMR findings of various non-ischemic cardiomyopathies and focus on current literature investigating the clinical impact of CMR on risk stratification, treatment, and prognosis.展开更多
Cardiomyopathies represent the most common clinical and genetic heterogeneous group of diseases that affect the heart function.Though progress has been made to elucidate the process,molecular mechanisms of different c...Cardiomyopathies represent the most common clinical and genetic heterogeneous group of diseases that affect the heart function.Though progress has been made to elucidate the process,molecular mechanisms of different classes of cardiomyopathies remain elusive.This paper aims to describe the similarities and differences in molecular features of dilated cardiomyopathy(DCM)and ischemic cardiomyopathy(ICM).We firstly detected the co-expressed modules using the weighted gene co-expression network analysis(WGCNA).Significant modules associated with DCM/ICM were identified by the Pearson correlation coefficient(PCC)between the modules and the phenotype of DCM/ICM.The differentially expressed genes in the modules were selected to perform functional enrichment.The potential transcription factors(TFs)prediction was conducted for transcription regulation of hub genes.Apoptosis and cardiac conduction were perturbed in DCM and ICM,respectively.TFs demonstrated that the biomarkers and the transcription regulations in DCM and ICM were different,which helps make more accurate discrimination between them at molecular levels.In conclusion,comprehensive analyses of the molecular features may advance our understanding of DCM and ICM causes and progression.Thus,this understanding may promote the development of innovative diagnoses and treatments.展开更多
Cardiomyopathies represent a diverse group of heart muscle diseases with varying etiologies,presenting a diagnostic challenge due to their heterogeneous manifestations.Regular evaluation using cardiac imaging techniqu...Cardiomyopathies represent a diverse group of heart muscle diseases with varying etiologies,presenting a diagnostic challenge due to their heterogeneous manifestations.Regular evaluation using cardiac imaging techniques is impera-tive as symptoms can evolve over time.These imaging approaches are pivotal for accurate diagnosis,treatment planning,and optimizing prognostic outcomes.Among these,cardiovascular magnetic resonance(CMR)stands out for its ability to provide precise anatomical and functional assessments.This manuscript ex-plores the significant contributions of CMR in the diagnosis and management of patients with cardiomyopathies,with special attention to risk stratification.CMR’s high spatial resolution and tissue characterization capabilities enable early detec-tion and differentiation of various cardiomyopathy subtypes.Additionally,it offers valuable insights into myocardial fibrosis,tissue viability,and left ven-tricular function,crucial parameters for risk stratification and predicting adverse cardiac events.By integrating CMR into clinical practice,clinicians can tailor patient-specific treatment plans,implement timely interventions,and optimize long-term prognosis.The non-invasive nature of CMR reduces the need for invasive procedures,minimizing patient discomfort.This review highlights the vital role of CMR in monitoring disease progression,guiding treatment decisions,and identifying potential complications in patients with cardiomyopathies.The utilization of CMR has significantly advanced our understanding and management of these complex cardiac conditions,leading to improved patient outcomes and a more personalized approach to care.展开更多
Recent advances in cardiovascular genetics have transformed genetic testing into a valuable part of management of families with inherited cardiomyopathies.As novel mutations have been identified,understanding when to ...Recent advances in cardiovascular genetics have transformed genetic testing into a valuable part of management of families with inherited cardiomyopathies.As novel mutations have been identified,understanding when to consider genetic testing has emerged as an important consideration in the management of these cases.Specific genetic testing has a paramount importance in the risk stratification of family members,in the prognosis of probands at higher risk of a serious phenotype expression,and finally in the identification of new mutations,all of which are discussed in this review.The indications for each type of cardiomyopathy are described,along with the limitations of genetic testing.Finally,the importance of public sharing of variants in large data sets is emphasized.The ultimate aim of this review is to present key messages about the genetic testing process in order to minimize potential harms and provide suggestions to specialized clinicians who act as a part of a multidisciplinary team in order to offer the best care to families with inherited cardiomyopathies.展开更多
Cardiomyopathies are defined as diseases of the myocardium with associated structural and functional abnormalities. Knowledge of these pathologies for a long period was not clear in clinical practice due to uncertaint...Cardiomyopathies are defined as diseases of the myocardium with associated structural and functional abnormalities. Knowledge of these pathologies for a long period was not clear in clinical practice due to uncertainties regarding definition,classification and clinical diagnosis. In recent decades,major advances have been made in the understanding of the molecular and genetic issues,pathophysiology,and clinical and radiological assessment of the diseases. Progress has been made also in management of several types of cardiomyopathy. Advances in the understanding of these diseases show that cardiomyopathies represent complex entities. Here,special attention is given to evolution of classification of cardiomyopathies,with the aim of assisting clinicians to look beyond schematic diagnostic labels in order to achieve more specific diagnosis. Knowledge of the genotype of cardiomyopathies has changed the pathophysiological understanding of their etiology and clinical course,and has become more important in clinical practice for diagnosis and prevention of cardiomyopathies. New approaches for clinical and prognostic assessment are provided based on contemporary molecular mechanisms of contribution in the pathogenesis of cardiomyopathies. The genotype-phe-notype complex approach for assessment improves the clinical evaluation and management strategies of these pathologies. The review covers also the important role of imaging methods,particularly echocardiography,and cardiac magnetic resonance imaging in the evaluation of different types of cardiomyopathies. In summary,this review provides complex presentation of current state of cardiomyopathies from genetics to management aspects for cardiovascular specialists.展开更多
Left ventricular twist is an essential part of left ventricular function. Nevertheless, knowledge is limited in "the cardiology community" as it comes to twist mechanics. Fortunately the development of speck...Left ventricular twist is an essential part of left ventricular function. Nevertheless, knowledge is limited in "the cardiology community" as it comes to twist mechanics. Fortunately the development of speckle tracking echocardiography, allowing accurate, reproducible and rapid bedside assessment of left ventricular twist, has boosted the interest in this important mechanical aspect of left ventricular deformation. Although the fundamental physiological role of left ventricular twist is undisputable, the clinical relevance of assessment of left ventricular twist in cardiomyopathies still needs to be established. The fact remains; analysis of left ventricular twist mechanics has already provided substantial pathophysiological understanding on a comprehensive variety of cardiomyopathies. It has become clear that increased left ventricular twist in for example hypertrophic cardiomyopathy may be an early sign of subendocardial(microvascular) dysfunction. Furthermore, decreased left ventricular twist may be caused by left ventricular dilatation or an extensive myocardial scar. Finally, the detection of left ventricular rigid body rotation in noncompaction cardiomyopathy may provide an indispensible method to objectively confirm this difficult diagnosis. All this endorses the value of left ventricular twist in the field of cardiomyopathies and may further encourage the implementation of left ventricular twist parameters in the "diagnostic toolbox" for cardiomyopathies.展开更多
The recent development of cardiac magnetic resonance(CMR)techniques has allowed detailed analyses of cardiac function and tissue characterization with high spatial resolution.We review characteristic CMR features in i...The recent development of cardiac magnetic resonance(CMR)techniques has allowed detailed analyses of cardiac function and tissue characterization with high spatial resolution.We review characteristic CMR features in ischemic and non-ischemic cardiomyopathies(ICM and NICM),especially in terms of the location and distribution of late gadolinium enhancement(LGE).CMR in ICM shows segmental wall motion abnormalities or wall thinning in a particular coronary arterial territory,and the subendocardial or transmural LGE.LGE in NICM generally does not correspond to any particular coronary artery distribution and is located mostly in the mid-wall to subepicardial layer.The analysis of LGE distribution is valuable to differentiate NICM with diffusely impaired systolic function,including dilated cardiomyopathy,end-stage hypertrophic cardiomyopathy(HCM),cardiac sarcoidosis,and myocarditis,and those with diffuse left ventricular(LV)hypertrophy including HCM,cardiac amyloidosis and Anderson-Fabry disease.A transient low signal intensity LGE in regions of severe LV dysfunction is a particular feature of stress cardiomyopathy.In arrhythmogenic right ventricular cardiomyopathy/dysplasia,an enhancement of right ventricular(RV)wall with functional and morphological changes of RV becomes apparent.Finally,the analyses of LGE distribution have potentials to predict cardiac outcomes and response to treatments.展开更多
Recent nationwide clinico-epidemiological surveys in Japan showed that the occurrence of cardiomyopathies was most frequently seen in the age of sixties, and that cardiomyopathies are important causes of heart failure...Recent nationwide clinico-epidemiological surveys in Japan showed that the occurrence of cardiomyopathies was most frequently seen in the age of sixties, and that cardiomyopathies are important causes of heart failure in the elderly. Viral infection was conventionally considered to cause myocarditis, which resulted in the development of dilated cardiomyopathy. Recent studies suggest that hepatitis C virus (HCV) is involved in the development of dilated cardiomyopathy, hypertrophic cardiomyopathy and arrhythmogenic right ventricular cardiomyopathy in addition to myocarditis. Furthermore, left ventricular aneurysm represents the same morbid state not only after myocardial infarction but also after myocarditis. There were wide variations in the frequency of detection of HCV genomes in cardiomyopathy in different regions and in different populations. Major histocompatibility complex class Ⅱ genes may play a role in the susceptibility to HCV infection, and may influence the development of different phenotypes of cardiomyopathy. If in fact the myocardial damage is caused by HCV, it might be expected that interferon (IFN) administration would be useful for its treatment. Hepatitis patients receiving IFN treatment for hepatitis were screened by thallium myocardial scintigraphy, and an abnormality was discovered in half of the patients. Treatment with IFN resulted in a disappearance of the image abnormality. It has thus been suggested that mild myocarditis and myocardial damage may be cured with IFN. We have recently found that high concentrations of circulating cardiac troponin T are a specific marker of cardiac involvement in HCV infection. By measuring cardiac troponin T in patients with HCV infection, the prevalence of cardiac involvement in HCV infection will be clarified. We are proposing a collaborative work on a global network on myocarditis/cardiomyopathies due to HCV infection. (J Geriatr Cardiol 2004;1(2):83-89. )展开更多
Transient stress-induced cardiomyopathies have been increasingly recognized and while rare,they tend to affect elderly women more than other demographic groups.One type,often called tako-tsubo cardiomyopathy (TTC),i...Transient stress-induced cardiomyopathies have been increasingly recognized and while rare,they tend to affect elderly women more than other demographic groups.One type,often called tako-tsubo cardiomyopathy (TTC),is typically triggered by significant emotional or physical stress and is associated with chest pain,electrocardiogram (ECG) changes and abnormal cardiac enzymes.Significant left ventricular regional wall motion abnormalities usually include an akinetic "ballooning" apex with normal or hyperdynamic function of the base.A second type,often called neurogenic stunned myocardium,typically associated with subarachnoid hemorrhage,also usually presents with ECG changes and positive enzymes,but the typical wall motion abnormalities seen include normal basal and apical left ventricular contraction with akinesis of the mid-cavity in a circumferential fashion.The pathophysiology,clinical care and typical courses,are reviewed.展开更多
BACKGROUND Diabetic cardiomyopathy(DCM),which is a complication of diabetes,poses a great threat to public health.Recent studies have confirmed the role of NLRP3(NOD-like receptor protein 3)activation in DCM developme...BACKGROUND Diabetic cardiomyopathy(DCM),which is a complication of diabetes,poses a great threat to public health.Recent studies have confirmed the role of NLRP3(NOD-like receptor protein 3)activation in DCM development through the inflammatory response.Teneligliptin is an oral hypoglycemic dipeptidyl peptidase-IV inhibitor used to treat diabetes.Teneligliptin has recently been reported to have anti-inflammatory and protective effects on myocardial cells.AIM To examine the therapeutic effects of teneligliptin on DCM in diabetic mice.METHODS Streptozotocin was administered to induce diabetes in mice,followed by treatment with 30 mg/kg teneligliptin.RESULTS Marked increases in cardiomyocyte area and cardiac hypertrophy indicator heart weight/tibia length reductions in fractional shortening,ejection fraction,and heart rate;increases in creatine kinase-MB(CK-MB),aspartate transaminase(AST),and lactate dehydrogenase(LDH)levels;and upregulated NADPH oxidase 4 were observed in diabetic mice,all of which were significantly reversed by teneligliptin.Moreover,NLRP3 inflammasome activation and increased release of interleukin-1βin diabetic mice were inhibited by teneligliptin.Primary mouse cardiomyocytes were treated with high glucose(30 mmol/L)with or without teneligliptin(2.5 or 5μM)for 24 h.NLRP3 inflammasome activation.Increases in CKMB,AST,and LDH levels in glucose-stimulated cardiomyocytes were markedly inhibited by teneligliptin,and AMP(p-adenosine 5‘-monophosphate)-p-AMPK(activated protein kinase)levels were increased.Furthermore,the beneficial effects of teneligliptin on hyperglycaemia-induced cardiomyocytes were abolished by the AMPK signaling inhibitor compound C.CONCLUSION Overall,teneligliptin mitigated DCM by mitigating activation of the NLRP3 inflammasome.展开更多
文摘Although some authors suggest that there is mitotic division in the heart,most cardiomyocytes do not have the capacity to regenerate after myocardial infarction and when this occurs there is a deterioration of contractile function,and if the area of infarction is extensive ventricular remodeling may occur,leading to the development of heart failure.Cell transplantation into the myocardium with the goal of recovery of cardiac function has been extensively studied in recent years. The effects of cell therapy are based directly on the cell type used and the type of cardiac pathology.For myocardial ischemia in the hibernating myocardium, bone marrow cells have functional benefits,however these results in transmural fibrosis are not evident. In these cases there is a benefit of implantation with skeletal myoblasts,for treating the underlying cause of disease,the loss of cell contractility.
文摘Non-ischemic cardiomyopathies include a wide spectrum of disease states afflicting the heart, whether a primary process or secondary to a systemic condition. Cardiac magnetic resonance imaging(CMR) has established itself as an important imaging modality in the evaluation of non-ischemic cardiomyopathies. CMR is useful in the diagnosis of cardiomyopathy, quantification of ventricular function, establishing etiology, determining prognosis and risk stratification. Technical advances and extensive research over the last decade have resulted in the accumulation of a tremendous amount of data with regards to the utility of CMR in these cardiomyopathies. In this article, we review CMR findings of various non-ischemic cardiomyopathies and focus on current literature investigating the clinical impact of CMR on risk stratification, treatment, and prognosis.
基金supported by the National Natural Science Foundation of China under Grants No.61720106004 and No.61872405the Key R&D Project of Sichuan Province,China under Grants No.20ZDYF2772 and No.2020YFS0243.
文摘Cardiomyopathies represent the most common clinical and genetic heterogeneous group of diseases that affect the heart function.Though progress has been made to elucidate the process,molecular mechanisms of different classes of cardiomyopathies remain elusive.This paper aims to describe the similarities and differences in molecular features of dilated cardiomyopathy(DCM)and ischemic cardiomyopathy(ICM).We firstly detected the co-expressed modules using the weighted gene co-expression network analysis(WGCNA).Significant modules associated with DCM/ICM were identified by the Pearson correlation coefficient(PCC)between the modules and the phenotype of DCM/ICM.The differentially expressed genes in the modules were selected to perform functional enrichment.The potential transcription factors(TFs)prediction was conducted for transcription regulation of hub genes.Apoptosis and cardiac conduction were perturbed in DCM and ICM,respectively.TFs demonstrated that the biomarkers and the transcription regulations in DCM and ICM were different,which helps make more accurate discrimination between them at molecular levels.In conclusion,comprehensive analyses of the molecular features may advance our understanding of DCM and ICM causes and progression.Thus,this understanding may promote the development of innovative diagnoses and treatments.
文摘Cardiomyopathies represent a diverse group of heart muscle diseases with varying etiologies,presenting a diagnostic challenge due to their heterogeneous manifestations.Regular evaluation using cardiac imaging techniques is impera-tive as symptoms can evolve over time.These imaging approaches are pivotal for accurate diagnosis,treatment planning,and optimizing prognostic outcomes.Among these,cardiovascular magnetic resonance(CMR)stands out for its ability to provide precise anatomical and functional assessments.This manuscript ex-plores the significant contributions of CMR in the diagnosis and management of patients with cardiomyopathies,with special attention to risk stratification.CMR’s high spatial resolution and tissue characterization capabilities enable early detec-tion and differentiation of various cardiomyopathy subtypes.Additionally,it offers valuable insights into myocardial fibrosis,tissue viability,and left ven-tricular function,crucial parameters for risk stratification and predicting adverse cardiac events.By integrating CMR into clinical practice,clinicians can tailor patient-specific treatment plans,implement timely interventions,and optimize long-term prognosis.The non-invasive nature of CMR reduces the need for invasive procedures,minimizing patient discomfort.This review highlights the vital role of CMR in monitoring disease progression,guiding treatment decisions,and identifying potential complications in patients with cardiomyopathies.The utilization of CMR has significantly advanced our understanding and management of these complex cardiac conditions,leading to improved patient outcomes and a more personalized approach to care.
文摘Recent advances in cardiovascular genetics have transformed genetic testing into a valuable part of management of families with inherited cardiomyopathies.As novel mutations have been identified,understanding when to consider genetic testing has emerged as an important consideration in the management of these cases.Specific genetic testing has a paramount importance in the risk stratification of family members,in the prognosis of probands at higher risk of a serious phenotype expression,and finally in the identification of new mutations,all of which are discussed in this review.The indications for each type of cardiomyopathy are described,along with the limitations of genetic testing.Finally,the importance of public sharing of variants in large data sets is emphasized.The ultimate aim of this review is to present key messages about the genetic testing process in order to minimize potential harms and provide suggestions to specialized clinicians who act as a part of a multidisciplinary team in order to offer the best care to families with inherited cardiomyopathies.
文摘Cardiomyopathies are defined as diseases of the myocardium with associated structural and functional abnormalities. Knowledge of these pathologies for a long period was not clear in clinical practice due to uncertainties regarding definition,classification and clinical diagnosis. In recent decades,major advances have been made in the understanding of the molecular and genetic issues,pathophysiology,and clinical and radiological assessment of the diseases. Progress has been made also in management of several types of cardiomyopathy. Advances in the understanding of these diseases show that cardiomyopathies represent complex entities. Here,special attention is given to evolution of classification of cardiomyopathies,with the aim of assisting clinicians to look beyond schematic diagnostic labels in order to achieve more specific diagnosis. Knowledge of the genotype of cardiomyopathies has changed the pathophysiological understanding of their etiology and clinical course,and has become more important in clinical practice for diagnosis and prevention of cardiomyopathies. New approaches for clinical and prognostic assessment are provided based on contemporary molecular mechanisms of contribution in the pathogenesis of cardiomyopathies. The genotype-phe-notype complex approach for assessment improves the clinical evaluation and management strategies of these pathologies. The review covers also the important role of imaging methods,particularly echocardiography,and cardiac magnetic resonance imaging in the evaluation of different types of cardiomyopathies. In summary,this review provides complex presentation of current state of cardiomyopathies from genetics to management aspects for cardiovascular specialists.
文摘Left ventricular twist is an essential part of left ventricular function. Nevertheless, knowledge is limited in "the cardiology community" as it comes to twist mechanics. Fortunately the development of speckle tracking echocardiography, allowing accurate, reproducible and rapid bedside assessment of left ventricular twist, has boosted the interest in this important mechanical aspect of left ventricular deformation. Although the fundamental physiological role of left ventricular twist is undisputable, the clinical relevance of assessment of left ventricular twist in cardiomyopathies still needs to be established. The fact remains; analysis of left ventricular twist mechanics has already provided substantial pathophysiological understanding on a comprehensive variety of cardiomyopathies. It has become clear that increased left ventricular twist in for example hypertrophic cardiomyopathy may be an early sign of subendocardial(microvascular) dysfunction. Furthermore, decreased left ventricular twist may be caused by left ventricular dilatation or an extensive myocardial scar. Finally, the detection of left ventricular rigid body rotation in noncompaction cardiomyopathy may provide an indispensible method to objectively confirm this difficult diagnosis. All this endorses the value of left ventricular twist in the field of cardiomyopathies and may further encourage the implementation of left ventricular twist parameters in the "diagnostic toolbox" for cardiomyopathies.
文摘The recent development of cardiac magnetic resonance(CMR)techniques has allowed detailed analyses of cardiac function and tissue characterization with high spatial resolution.We review characteristic CMR features in ischemic and non-ischemic cardiomyopathies(ICM and NICM),especially in terms of the location and distribution of late gadolinium enhancement(LGE).CMR in ICM shows segmental wall motion abnormalities or wall thinning in a particular coronary arterial territory,and the subendocardial or transmural LGE.LGE in NICM generally does not correspond to any particular coronary artery distribution and is located mostly in the mid-wall to subepicardial layer.The analysis of LGE distribution is valuable to differentiate NICM with diffusely impaired systolic function,including dilated cardiomyopathy,end-stage hypertrophic cardiomyopathy(HCM),cardiac sarcoidosis,and myocarditis,and those with diffuse left ventricular(LV)hypertrophy including HCM,cardiac amyloidosis and Anderson-Fabry disease.A transient low signal intensity LGE in regions of severe LV dysfunction is a particular feature of stress cardiomyopathy.In arrhythmogenic right ventricular cardiomyopathy/dysplasia,an enhancement of right ventricular(RV)wall with functional and morphological changes of RV becomes apparent.Finally,the analyses of LGE distribution have potentials to predict cardiac outcomes and response to treatments.
文摘Recent nationwide clinico-epidemiological surveys in Japan showed that the occurrence of cardiomyopathies was most frequently seen in the age of sixties, and that cardiomyopathies are important causes of heart failure in the elderly. Viral infection was conventionally considered to cause myocarditis, which resulted in the development of dilated cardiomyopathy. Recent studies suggest that hepatitis C virus (HCV) is involved in the development of dilated cardiomyopathy, hypertrophic cardiomyopathy and arrhythmogenic right ventricular cardiomyopathy in addition to myocarditis. Furthermore, left ventricular aneurysm represents the same morbid state not only after myocardial infarction but also after myocarditis. There were wide variations in the frequency of detection of HCV genomes in cardiomyopathy in different regions and in different populations. Major histocompatibility complex class Ⅱ genes may play a role in the susceptibility to HCV infection, and may influence the development of different phenotypes of cardiomyopathy. If in fact the myocardial damage is caused by HCV, it might be expected that interferon (IFN) administration would be useful for its treatment. Hepatitis patients receiving IFN treatment for hepatitis were screened by thallium myocardial scintigraphy, and an abnormality was discovered in half of the patients. Treatment with IFN resulted in a disappearance of the image abnormality. It has thus been suggested that mild myocarditis and myocardial damage may be cured with IFN. We have recently found that high concentrations of circulating cardiac troponin T are a specific marker of cardiac involvement in HCV infection. By measuring cardiac troponin T in patients with HCV infection, the prevalence of cardiac involvement in HCV infection will be clarified. We are proposing a collaborative work on a global network on myocarditis/cardiomyopathies due to HCV infection. (J Geriatr Cardiol 2004;1(2):83-89. )
文摘Transient stress-induced cardiomyopathies have been increasingly recognized and while rare,they tend to affect elderly women more than other demographic groups.One type,often called tako-tsubo cardiomyopathy (TTC),is typically triggered by significant emotional or physical stress and is associated with chest pain,electrocardiogram (ECG) changes and abnormal cardiac enzymes.Significant left ventricular regional wall motion abnormalities usually include an akinetic "ballooning" apex with normal or hyperdynamic function of the base.A second type,often called neurogenic stunned myocardium,typically associated with subarachnoid hemorrhage,also usually presents with ECG changes and positive enzymes,but the typical wall motion abnormalities seen include normal basal and apical left ventricular contraction with akinesis of the mid-cavity in a circumferential fashion.The pathophysiology,clinical care and typical courses,are reviewed.
基金Supported by National Natural Science Foundation of China,No.82000276the Science and Technology Project of Jiangxi Provincial Health Commission,No.202310005.
文摘BACKGROUND Diabetic cardiomyopathy(DCM),which is a complication of diabetes,poses a great threat to public health.Recent studies have confirmed the role of NLRP3(NOD-like receptor protein 3)activation in DCM development through the inflammatory response.Teneligliptin is an oral hypoglycemic dipeptidyl peptidase-IV inhibitor used to treat diabetes.Teneligliptin has recently been reported to have anti-inflammatory and protective effects on myocardial cells.AIM To examine the therapeutic effects of teneligliptin on DCM in diabetic mice.METHODS Streptozotocin was administered to induce diabetes in mice,followed by treatment with 30 mg/kg teneligliptin.RESULTS Marked increases in cardiomyocyte area and cardiac hypertrophy indicator heart weight/tibia length reductions in fractional shortening,ejection fraction,and heart rate;increases in creatine kinase-MB(CK-MB),aspartate transaminase(AST),and lactate dehydrogenase(LDH)levels;and upregulated NADPH oxidase 4 were observed in diabetic mice,all of which were significantly reversed by teneligliptin.Moreover,NLRP3 inflammasome activation and increased release of interleukin-1βin diabetic mice were inhibited by teneligliptin.Primary mouse cardiomyocytes were treated with high glucose(30 mmol/L)with or without teneligliptin(2.5 or 5μM)for 24 h.NLRP3 inflammasome activation.Increases in CKMB,AST,and LDH levels in glucose-stimulated cardiomyocytes were markedly inhibited by teneligliptin,and AMP(p-adenosine 5‘-monophosphate)-p-AMPK(activated protein kinase)levels were increased.Furthermore,the beneficial effects of teneligliptin on hyperglycaemia-induced cardiomyocytes were abolished by the AMPK signaling inhibitor compound C.CONCLUSION Overall,teneligliptin mitigated DCM by mitigating activation of the NLRP3 inflammasome.