Spectral efficiency and energy efficiency are two important performance indicators of satellite systems. The Quasi-Constant Envelope Orthogonal Frequency Division Multiplexing(QCE-OFDM) technique can achieve both high...Spectral efficiency and energy efficiency are two important performance indicators of satellite systems. The Quasi-Constant Envelope Orthogonal Frequency Division Multiplexing(QCE-OFDM) technique can achieve both high spectral efficiency and low peak-to-average power ratio(PAPR). Therefore, the QCE-OFDM technique is considered as a promising candidate multi-carrier technique for satellite systems. However, the Doppler effect will cause the carrier frequency offset(CFO), and the non-ideal oscillator will cause the carrier phase offset(CPO) in satellite systems. The CFO and CPO will further result in the bit-error-rate(BER) performance degradation. Hence, it is important to estimate and compensate the CFO and CPO. This paper analyzes the effects of both CFO and CPO in QCE-OFDM satellite systems. Furthermore, we propose a joint CFO and CPO estimation method based on the pilot symbols in the frequency domain. In addition, the optimal pilot symbol structure with different pilot overheads is designed according to the minimum Cramer-Rao bound(CRB) criterion. Simulation results show that the estimation accuracy of the proposed method is close to the CRB.展开更多
The problem of estimating the carrier frequency offsets in Multiple-Input Multiple-Output (MIMO) systems with distributed transmit antennas is addressed. It is supposed that the transmit antennas are distributed while...The problem of estimating the carrier frequency offsets in Multiple-Input Multiple-Output (MIMO) systems with distributed transmit antennas is addressed. It is supposed that the transmit antennas are distributed while the receive antennas are still centralized, and the general case where both the time delays and the frequency offsets are possibly different for each transmit antenna is considered. The channel is supposed to be frequency flat, and the macroscopic fading is also taken into consideration. A carrier frequency offset estimator based on Maximum Likelihood (ML) is proposed, which can separately estimate the frequency offset for each transmit antenna and exploit the spatial diversity. The Cramer-Rao Bound (CRB) for synchronous MIMO (i.e., the time delays for each transmit antenna are all equal) is also derived. Simulation results are given to illustrate the per- formance of the estimator and compare it with the CRB. It is shown that the estimator can provide satisfactory frequency offset estimates and its performance is close to the CRB for the Signal-to-Noise Ratio (SNR) below 20dB.展开更多
In this letter,the sensitivity of an uplink Multi-Tone Code-Division Multiple Access (MT-CDMA) system to the Carrier Frequency Offset (CFO) is investigated. The analytical expression for the Bit Error Rate (BER) of up...In this letter,the sensitivity of an uplink Multi-Tone Code-Division Multiple Access (MT-CDMA) system to the Carrier Frequency Offset (CFO) is investigated. The analytical expression for the Bit Error Rate (BER) of uplink MT-CDMA in the presence of CFO is derived in a multipath Rayleigh fading channel which is verified through simulations. Both Maximal Ratio Combining (MRC) and Equal Gain Combining (EGC) are considered in combining multipath signals in the analysis. It is found that the BER performance can be improved with the number of multipath increasing in the presence of CFO.展开更多
This paper investigates Carrier Frequency Offset (CFO) estimation in the uplink of the Orthogonal Frequency-Division Multiple Access (OFDMA) systems with the interleaved subcarrier assignment. CFOs between the transmi...This paper investigates Carrier Frequency Offset (CFO) estimation in the uplink of the Orthogonal Frequency-Division Multiple Access (OFDMA) systems with the interleaved subcarrier assignment. CFOs between the transmitters and the uplink receiver will destroy orthogonality among different subcarriers, hence resulting in inter-carrier interference and multiuser interference. A two-stage frequency offset estimation algorithm based on subspace processing is proposed. The main advantage of the proposed method is that it can obtain the CFOs of all users simultaneously using only one OFDMA block. Compared with the previously known methods, it not only has a relatively low implementation complexity but is also suitable for random subchannel assignment.展开更多
Most of the blind Orthogonal Frequency Division Multiplexing (OFDM) Carrier Frequency Offset (CFO) estimators necessitate large number of samples to ensure the estimation accuracy. However, the number of samples can n...Most of the blind Orthogonal Frequency Division Multiplexing (OFDM) Carrier Frequency Offset (CFO) estimators necessitate large number of samples to ensure the estimation accuracy. However, the number of samples can not be selected too large because of the carrier offset drift. In this letter, a new closed form algorithm for blind OFDM CFO estimation in frequency-selective channel is proposed. This method utilizes the propagator obtained from data matrix and the diagonal loading technique, thus it has better performance even only using one or two OFDM blocks. Furthermore, the range of the CFO estimation which can be handled is overall transmission spectral. Simulation results confirm its effectiveness.展开更多
This paper develops a Cyclic Prefix(CP)based joint Maximum-Likelihood(ML)estima-tion algorithm of Carrier Frequency Offset(CFO)and Power Delay Profile(PDP)for Multi-InputMulti-Output Orthogonal Frequency Division Mult...This paper develops a Cyclic Prefix(CP)based joint Maximum-Likelihood(ML)estima-tion algorithm of Carrier Frequency Offset(CFO)and Power Delay Profile(PDP)for Multi-InputMulti-Output Orthogonal Frequency Division Multiplexing(MIMO-OFDM)systems.However,theexact solution of the joint ML estimation is very complex since it needs a search over amulti-dimensional domain.Thus a simplified method is proposed to estimate the CFO and the PDPiteratively via the alternating-projection method which could induce the multidimensional searchproblem to a sequence of simple one-dimensional searches.Simulations show that the proposed algo-rithm is more accurate and robust than the existing algorithms.展开更多
This paper presents an algorithm that aims to reduce the peak-to-average power ratio(PAPR) of orthogonal frequency division multiplexing(OFDM) communication systems while maintaining frequency tracking.The algorit...This paper presents an algorithm that aims to reduce the peak-to-average power ratio(PAPR) of orthogonal frequency division multiplexing(OFDM) communication systems while maintaining frequency tracking.The algorithm achieves PAPR reduction by applying the complex conjugates of the data symbol obtained from the frequency domain to cancel the phase of the data symbol.A likelihood estimator is used to obtain the sub-carrier phase error due to the residual carrier frequency offset(RCFO) using the same complex conjugates as a pilot signal.Furthermore,a joint time and frequency domain multicarrier phase locked loop(MPLL) is developed to compensate additional frequency offset.Simulation results show that this algorithm is capable of reducing PAPR without impacting the frequency tracking performance.展开更多
An efficient scheme of integer frequency offset estimate for orthogonal frequency division multiplexing (OFDM) systems is proposed based on a training symbol with several identicalparts. In this scheme, the received...An efficient scheme of integer frequency offset estimate for orthogonal frequency division multiplexing (OFDM) systems is proposed based on a training symbol with several identicalparts. In this scheme, the received training symbol is first reshaped into several sub-symbols.It shows that the reshaping process in-troduees time diversity multiplexing.After a special fast Fourier transform (FFT) algorithm is applied to the sub-symbol,the integer frequency is estimated by finding the maximum magnitude of the resulting fre-quency domain signal.To improve the estimate performance,diversity combining methods are presented to makefull use of the multiple frequency domain sub-symbols.Compared to the traditional scheme, theproposed one has an improved estimate performance demonstrated by the computation simulation, while maintaining a very low complexity.展开更多
Constant envelope orthogonal frequency division multiplexing(CE-OFDM) is a waveform that can achieve 0d B peak-to-average power ratio and avoid the signal distortion caused by the nonlinear power amplifi er. However, ...Constant envelope orthogonal frequency division multiplexing(CE-OFDM) is a waveform that can achieve 0d B peak-to-average power ratio and avoid the signal distortion caused by the nonlinear power amplifi er. However, the carrier frequency offset(CFO) in CE-OFDM systems can cause errors at phase unwrapper module. In this paper, a CFO estimation scheme is proposed for CEOFDM in satellite communication system. As the null subcarrier is inherent in the conjugate symmetric symbol structure at the transmitter, the proposed scheme uses the null subcarrier as prior information to estimate the CFO at the receiver. The ideal estimation range of normalized CFO is obtained by mathematical analysis. Simulation results show that the proposed scheme can estimate the CFO accurately under additive white Gaussian noise(AWGN) channel and multipath fading channel, especially for moderate and high signal-to-noise ratio(SNR).展开更多
The operating frequency accuracy of the local oscillators is critical for the overall system performance in the communication systems.However,the high-precision oscillators could be too expensive for civil application...The operating frequency accuracy of the local oscillators is critical for the overall system performance in the communication systems.However,the high-precision oscillators could be too expensive for civil applications.In this paper,we propose a model-free adaptive frequency calibration framework for a voltage-controlled crystal oscillator(VCO)equipped with a time to digital converter(TDC),which can significantly improve the frequency accuracy of the VCO thus calibrated.The idea is to utilize a high-precision TDC to directly measure the VCO period which is then passed to a model-free method for working frequency calibration.One advantage of this method is that the working frequency calibration employs the system history of input/output(I/O)data,instead of establishing an accurate VCO voltagecontrolled oscillator model.Another advantage is the lightweight calibration method with low complexity such that it can be implemented on an MCU with limited computation capabilities.Experimental results show that the proposed calibration method can improve the frequency accuracy of a VCO from±20 ppm to±10 ppb,which indicates the promise of the modelfree adaptive frequency calibrator for VCOs.展开更多
Frame and frequency synchronization are essential for orthogonal frequency division multiplexing (OFDM) systems. The frame offset owing to incorrect start point position of the fast Fourier transform (FFT) window,...Frame and frequency synchronization are essential for orthogonal frequency division multiplexing (OFDM) systems. The frame offset owing to incorrect start point position of the fast Fourier transform (FFT) window, and the carrier frequency offset (CFO) due to Doppler frequency shift or the frequency mismatch between the transmitter and receiver oscil ators, can bring severe inter-symbol interference (ISI) and inter-carrier interference (ICI) for the OFDM system. Relying on the relatively good correlation charac-teristic of the pseudo-noise (PN) sequence, a joint frame offset and normalized CFO estimation algorithm based on PN preamble in time domain is developed to realize the frame and frequency synchronization in the OFDM system. By comparison, the perfor-mances of the traditional algorithm and the improved algorithm are simulated under different conditions. The results indicate that the PN preamble based algorithm both in frame offset estimation and CFO estimation is more accurate, resource-saving and robust even under poor channel condition, such as low signal-to-noise ratio (SNR) and large normalized CFO.展开更多
This paper discusses the blind carrier frequency offset (CFO) estimation for orthogonal frequency division multiplexing (OFDM) systems by utilizing trilinear decomposition and genera- lized preceding. Firstly, the...This paper discusses the blind carrier frequency offset (CFO) estimation for orthogonal frequency division multiplexing (OFDM) systems by utilizing trilinear decomposition and genera- lized preceding. Firstly, the generalized precoding is employed to obtain multiple covariance matrices which are requisite for the trilinear model, and then a novel CFO estimation algorithm is proposed for the OFDM system. Compared with both the joint diagonalizer and estimation of signal parameters via rotational invariant technique (ESPRIT), the proposed algorithm enjoys a better CFO estimation performance. Furthermore, the proposed algorithm can work well without virtual carriers. Simulation results illustrate the performance of this algorithm,展开更多
基金supported by the National Natural Science Foundation of China(No.91438114,No.61372111 and No.61601045)
文摘Spectral efficiency and energy efficiency are two important performance indicators of satellite systems. The Quasi-Constant Envelope Orthogonal Frequency Division Multiplexing(QCE-OFDM) technique can achieve both high spectral efficiency and low peak-to-average power ratio(PAPR). Therefore, the QCE-OFDM technique is considered as a promising candidate multi-carrier technique for satellite systems. However, the Doppler effect will cause the carrier frequency offset(CFO), and the non-ideal oscillator will cause the carrier phase offset(CPO) in satellite systems. The CFO and CPO will further result in the bit-error-rate(BER) performance degradation. Hence, it is important to estimate and compensate the CFO and CPO. This paper analyzes the effects of both CFO and CPO in QCE-OFDM satellite systems. Furthermore, we propose a joint CFO and CPO estimation method based on the pilot symbols in the frequency domain. In addition, the optimal pilot symbol structure with different pilot overheads is designed according to the minimum Cramer-Rao bound(CRB) criterion. Simulation results show that the estimation accuracy of the proposed method is close to the CRB.
基金the National Natural Science Foundation of China (No. 60272009, No. 60572090, No. 60472045, No. 60496313 and No. 60602009).
文摘The problem of estimating the carrier frequency offsets in Multiple-Input Multiple-Output (MIMO) systems with distributed transmit antennas is addressed. It is supposed that the transmit antennas are distributed while the receive antennas are still centralized, and the general case where both the time delays and the frequency offsets are possibly different for each transmit antenna is considered. The channel is supposed to be frequency flat, and the macroscopic fading is also taken into consideration. A carrier frequency offset estimator based on Maximum Likelihood (ML) is proposed, which can separately estimate the frequency offset for each transmit antenna and exploit the spatial diversity. The Cramer-Rao Bound (CRB) for synchronous MIMO (i.e., the time delays for each transmit antenna are all equal) is also derived. Simulation results are given to illustrate the per- formance of the estimator and compare it with the CRB. It is shown that the estimator can provide satisfactory frequency offset estimates and its performance is close to the CRB for the Signal-to-Noise Ratio (SNR) below 20dB.
基金Supported by the National Natural Science Foundation of China (No.60572036).
文摘In this letter,the sensitivity of an uplink Multi-Tone Code-Division Multiple Access (MT-CDMA) system to the Carrier Frequency Offset (CFO) is investigated. The analytical expression for the Bit Error Rate (BER) of uplink MT-CDMA in the presence of CFO is derived in a multipath Rayleigh fading channel which is verified through simulations. Both Maximal Ratio Combining (MRC) and Equal Gain Combining (EGC) are considered in combining multipath signals in the analysis. It is found that the BER performance can be improved with the number of multipath increasing in the presence of CFO.
基金the Specialized Research Fund for the Doctoral Program of Higher Education, China Ministry of Education (No.20030003039).
文摘This paper investigates Carrier Frequency Offset (CFO) estimation in the uplink of the Orthogonal Frequency-Division Multiple Access (OFDMA) systems with the interleaved subcarrier assignment. CFOs between the transmitters and the uplink receiver will destroy orthogonality among different subcarriers, hence resulting in inter-carrier interference and multiuser interference. A two-stage frequency offset estimation algorithm based on subspace processing is proposed. The main advantage of the proposed method is that it can obtain the CFOs of all users simultaneously using only one OFDMA block. Compared with the previously known methods, it not only has a relatively low implementation complexity but is also suitable for random subchannel assignment.
基金Supported by National Natural Science Foundation of China (No. 60172028)
文摘Most of the blind Orthogonal Frequency Division Multiplexing (OFDM) Carrier Frequency Offset (CFO) estimators necessitate large number of samples to ensure the estimation accuracy. However, the number of samples can not be selected too large because of the carrier offset drift. In this letter, a new closed form algorithm for blind OFDM CFO estimation in frequency-selective channel is proposed. This method utilizes the propagator obtained from data matrix and the diagonal loading technique, thus it has better performance even only using one or two OFDM blocks. Furthermore, the range of the CFO estimation which can be handled is overall transmission spectral. Simulation results confirm its effectiveness.
基金the National Natural Science Foundation of China(No.60496311).
文摘This paper develops a Cyclic Prefix(CP)based joint Maximum-Likelihood(ML)estima-tion algorithm of Carrier Frequency Offset(CFO)and Power Delay Profile(PDP)for Multi-InputMulti-Output Orthogonal Frequency Division Multiplexing(MIMO-OFDM)systems.However,theexact solution of the joint ML estimation is very complex since it needs a search over amulti-dimensional domain.Thus a simplified method is proposed to estimate the CFO and the PDPiteratively via the alternating-projection method which could induce the multidimensional searchproblem to a sequence of simple one-dimensional searches.Simulations show that the proposed algo-rithm is more accurate and robust than the existing algorithms.
基金supported by the National Natural Science Foundation of China(60872026)the Natural Science Foundation of Tianjin(09JCZDJC16900)
文摘This paper presents an algorithm that aims to reduce the peak-to-average power ratio(PAPR) of orthogonal frequency division multiplexing(OFDM) communication systems while maintaining frequency tracking.The algorithm achieves PAPR reduction by applying the complex conjugates of the data symbol obtained from the frequency domain to cancel the phase of the data symbol.A likelihood estimator is used to obtain the sub-carrier phase error due to the residual carrier frequency offset(RCFO) using the same complex conjugates as a pilot signal.Furthermore,a joint time and frequency domain multicarrier phase locked loop(MPLL) is developed to compensate additional frequency offset.Simulation results show that this algorithm is capable of reducing PAPR without impacting the frequency tracking performance.
文摘An efficient scheme of integer frequency offset estimate for orthogonal frequency division multiplexing (OFDM) systems is proposed based on a training symbol with several identicalparts. In this scheme, the received training symbol is first reshaped into several sub-symbols.It shows that the reshaping process in-troduees time diversity multiplexing.After a special fast Fourier transform (FFT) algorithm is applied to the sub-symbol,the integer frequency is estimated by finding the maximum magnitude of the resulting fre-quency domain signal.To improve the estimate performance,diversity combining methods are presented to makefull use of the multiple frequency domain sub-symbols.Compared to the traditional scheme, theproposed one has an improved estimate performance demonstrated by the computation simulation, while maintaining a very low complexity.
基金supported by the National Natural Science Foundation of China(No.61601045,No.91438114 and No.61372111)
文摘Constant envelope orthogonal frequency division multiplexing(CE-OFDM) is a waveform that can achieve 0d B peak-to-average power ratio and avoid the signal distortion caused by the nonlinear power amplifi er. However, the carrier frequency offset(CFO) in CE-OFDM systems can cause errors at phase unwrapper module. In this paper, a CFO estimation scheme is proposed for CEOFDM in satellite communication system. As the null subcarrier is inherent in the conjugate symmetric symbol structure at the transmitter, the proposed scheme uses the null subcarrier as prior information to estimate the CFO at the receiver. The ideal estimation range of normalized CFO is obtained by mathematical analysis. Simulation results show that the proposed scheme can estimate the CFO accurately under additive white Gaussian noise(AWGN) channel and multipath fading channel, especially for moderate and high signal-to-noise ratio(SNR).
文摘The operating frequency accuracy of the local oscillators is critical for the overall system performance in the communication systems.However,the high-precision oscillators could be too expensive for civil applications.In this paper,we propose a model-free adaptive frequency calibration framework for a voltage-controlled crystal oscillator(VCO)equipped with a time to digital converter(TDC),which can significantly improve the frequency accuracy of the VCO thus calibrated.The idea is to utilize a high-precision TDC to directly measure the VCO period which is then passed to a model-free method for working frequency calibration.One advantage of this method is that the working frequency calibration employs the system history of input/output(I/O)data,instead of establishing an accurate VCO voltagecontrolled oscillator model.Another advantage is the lightweight calibration method with low complexity such that it can be implemented on an MCU with limited computation capabilities.Experimental results show that the proposed calibration method can improve the frequency accuracy of a VCO from±20 ppm to±10 ppb,which indicates the promise of the modelfree adaptive frequency calibrator for VCOs.
基金supported by the National Natural Science Foundation of China(6130110561102069)+2 种基金the China Postdoctoral Science Foundation Funded Project(2013M531351)the Nanjing University of Aeronautics and Astronautics Founding(NN2012022)the Open Fund of Graduate Innovated Base(Laboratory)for the Nanjing University of Aeronautics and Astronautics(KFJJ120219)
文摘Frame and frequency synchronization are essential for orthogonal frequency division multiplexing (OFDM) systems. The frame offset owing to incorrect start point position of the fast Fourier transform (FFT) window, and the carrier frequency offset (CFO) due to Doppler frequency shift or the frequency mismatch between the transmitter and receiver oscil ators, can bring severe inter-symbol interference (ISI) and inter-carrier interference (ICI) for the OFDM system. Relying on the relatively good correlation charac-teristic of the pseudo-noise (PN) sequence, a joint frame offset and normalized CFO estimation algorithm based on PN preamble in time domain is developed to realize the frame and frequency synchronization in the OFDM system. By comparison, the perfor-mances of the traditional algorithm and the improved algorithm are simulated under different conditions. The results indicate that the PN preamble based algorithm both in frame offset estimation and CFO estimation is more accurate, resource-saving and robust even under poor channel condition, such as low signal-to-noise ratio (SNR) and large normalized CFO.
基金supported by the National Natural Science Foundation of China (60801052)the Aeronautical Science Foundation of China(2009ZC52036)+1 种基金Nanjing University of Aeronautics and Astronautics Research Funding (NS2012010 NP2011036)
文摘This paper discusses the blind carrier frequency offset (CFO) estimation for orthogonal frequency division multiplexing (OFDM) systems by utilizing trilinear decomposition and genera- lized preceding. Firstly, the generalized precoding is employed to obtain multiple covariance matrices which are requisite for the trilinear model, and then a novel CFO estimation algorithm is proposed for the OFDM system. Compared with both the joint diagonalizer and estimation of signal parameters via rotational invariant technique (ESPRIT), the proposed algorithm enjoys a better CFO estimation performance. Furthermore, the proposed algorithm can work well without virtual carriers. Simulation results illustrate the performance of this algorithm,