Signal structure design is an important part of satellite navigation system research,which directly affects navigation performance.Signal performance parameters are analyzed and performances of BPSK modulated signals ...Signal structure design is an important part of satellite navigation system research,which directly affects navigation performance.Signal performance parameters are analyzed and performances of BPSK modulated signals and BOC modulated signals are compared.Aiming at requirements of high navigation precision and high anti-jamming ability,a new navigation signal structure based on complex carrier modulation is proposed and performances of the signal are researched with different parameters.A synchronization algorithm is put forward according to the signal characteristics,and the synchronization performance is qualitatively analyzed.Next,the applications of the complex carrier modulated signal are discussed,which include anti-jamming,navigation enhancement,power combing and so on.Simulations and analysis show that the proposed navigation signal structure based on complex carrier modulation has good navigation capabilities and anti-jamming abilities,which deserves further study.展开更多
As one of the core parts of two-terminal(2 T) monolithic tandem photovoltaics, the interconnecting layers(ICLs) play a critical role in modulating the carrier transport and recombination between the sub-cells,and thus...As one of the core parts of two-terminal(2 T) monolithic tandem photovoltaics, the interconnecting layers(ICLs) play a critical role in modulating the carrier transport and recombination between the sub-cells,and thus influencing the tandem device performance. Here, for the first time, the relationship between ICLs architecture and 2 T monolithic perovskite/organic tandem device performance has been studied by investigating the change of ICLs composition layer thickness on the ICLs optical and electrical properties, sub-cells EQE properties, and tandem device J-V properties. It is revealed that the ability of ICLs on modulating the sub-cells carrier balance properties is strongly associated with its composited layers thickness, and the tandem device carrier balance properties can be reflected by the relative EQE intensity between the sub-cells. Finally, with a deep understanding of the mechanisms, rational design of ICLs can be made to benefit the tandem device development. Based on the optimized ICL a high PCE of 20.03% is achieved.展开更多
AgCrSe2-based compounds have attracted much attention as an environmentally friendly thermoelectric material in recent years due to the intriguing liquid-like properties.However,the ultra-low carrier concentration and...AgCrSe2-based compounds have attracted much attention as an environmentally friendly thermoelectric material in recent years due to the intriguing liquid-like properties.However,the ultra-low carrier concentration and the high Ag_(Cr)deep-level defects limit the overall thermoelectric performance.Here,we successfully introduced Pb into Ag-deficient Ag_(0.97)CrSe_(2) alloys to tune the carrier concentration across a broad temperature range.The Pb^(2+) as an acceptor dopant preferentially occupies Cr sites,boosting the hole carrier concentration to 1.77×10^(19) cm^(-3) at room temperature.Furthermore,the Pb strongly inhibits the creation of intrinsic Ag_(Cr) defects,weakens the increased thermal excited ionization with the increasing temperature and slowed the rising trend of the carrier concentration.The designed carrier concentration matches the theoretically predicted optimized one over the entire temperature range,leading to a remarkable enhancement in power factor,especially the maximum power factor of ~500 μW·m^(-1)·K^(-2) at 750 K is superior to most previous results.Additionally,the abundant point defects promote phonon scattering,thus reducing the lattice thermal conductivity.As a result,the maximum figure of merit zT(~0.51 at 750 K) is achieved in Ag_(0.97)Cr_(0.995)Pb_(0.005)Se_(2).This work confirms the feasibility of manipulating deep-level defects to achieve temperature-dependent optimal carrier concentration and provides a valuable guidance for other thermoelectric materials.展开更多
Recent advancements in power electronics technology evolves inverter fed electric motors.Speed signals and rotor position are essential for controlling an electric motor accurately.In this paper,the sensorless speed c...Recent advancements in power electronics technology evolves inverter fed electric motors.Speed signals and rotor position are essential for controlling an electric motor accurately.In this paper,the sensorless speed control of surface-mounted permanent magnet synchronous motor(SPMSM)has been attempted.SPMSM wants a digital inverter for its precise working.Hence,this study incor-poratesfifteen level inverter to the SPMSM.A sliding mode observer(SMO)based sensorless speed control scheme is projected to determine rotor spot and speed of the multilevel inverter(MLI)fed SPMSM.MLI has been operated using a multi carrier pulse width modulation(MCPWM)strategy for generation offif-teen level voltages.The simulation works are executed with MATLAB/SIMU-LINK software.The steadiness and the heftiness of the projected model have been investigated under no loaded and loaded situations of SPMSM.Furthermore,the projected method can be adapted for electric vehicles.展开更多
An approach to generate high-speed and wideband frequency shift keying(FSK)signals based on carrier phase-shifted double sideband(CPS-DSB)modulation is proposed and experimentally validated.The core part of the scheme...An approach to generate high-speed and wideband frequency shift keying(FSK)signals based on carrier phase-shifted double sideband(CPS-DSB)modulation is proposed and experimentally validated.The core part of the scheme is a pair of cascaded polarization-sensitive LiNbO_(3) Mach–Zehnder modulators and phase modulators,whose polarization directions of the principal axes are mutually orthogonal to each other.A proof-of-concept experiment is carried out,where a 0.5 Gb/s FSK signal with the carrier frequencies of 4 and 8 GHz and a 1 Gb/s FSK signal with the carrier frequencies of 8 and 16 GHz are generated successfully.展开更多
BiSe with intrinsic low thermal conductivity has considered as a promising thermoelectric(TE)material at nearly room temperature.To improve its low thermoelectric figure of merit(zT),in this work,Sb and Te isovalent c...BiSe with intrinsic low thermal conductivity has considered as a promising thermoelectric(TE)material at nearly room temperature.To improve its low thermoelectric figure of merit(zT),in this work,Sb and Te isovalent co-alloying was performed and significantly optimized its TE property with weakly anisotropic characteristic.After substituting Sb on Bi sites,the carrier concentration is suppressed by introduction of Sbsingle bond Se site defects,which contributes to the increased absolute value of Seebeck coefficient(|S|).Further co-alloying Te on Se of the optimized composition Bi_(0.7)Sb_(0.3)Se,the carrier concentration increased without affecting the|S|due to the enhanced effective mass,which leads to a highest power factor of 12.8μW/(cm·K^(2))at 423 K.As a result,a maximum zT of∼0.54 is achieved for Bi_(0.7)Sb_(0.3)Se_(0.7)Te_(0.3) along the pressing direction and the average zT(zTave)(from 300 K to 623 K)are drastically improved from 0.24 for pristine BiSe sample to 0.45.Moreover,an energy conversion efficiency∼4.0%is achieved for a single leg TE device of Bi_(0.7)Sb_(0.3)Se_(0.7)Te_(0.3)when applied the temperature difference of 339 K,indicating the potential TE application.展开更多
In silicon photonics, the carrier depletion scheme has been the most commonly used mechanism for demonstrat- ing high-speed electro-optic modulation. However, in terms of phase modulation efficiency, carrier- accumnla...In silicon photonics, the carrier depletion scheme has been the most commonly used mechanism for demonstrat- ing high-speed electro-optic modulation. However, in terms of phase modulation efficiency, carrier- accumnlation-based devices potentially offer almost an order of carrier depletion. Previously reported accumulation modulator magnitude improvement over those based on designs only considered vertical metal-oxide- semiconductor (MOS) capacitors, which imposes serious restrictions on the design flexibility and integratability with other photonic components. In this work, for the first time to our knowledge, we report experimental demonstration of an all-silicon accumulation phase modulator based on a lateral MOS capacitor. Using a Mach-Zehnder interferometer modulator with a 500-μm-long phase shifter, we demonstrate high-speed modulation up to 25 Gbit/s with a modulation efficiency (V πLπ) of 1.53 V·cm.展开更多
A novel monolithic digitalized random carrier frequency modulation spread-spectrum clock generator (RCF-SSCG) is proposed.In this design,the output frequency of the proposed RCF-SSCG changes with the intensity of th...A novel monolithic digitalized random carrier frequency modulation spread-spectrum clock generator (RCF-SSCG) is proposed.In this design,the output frequency of the proposed RCF-SSCG changes with the intensity of the capacitive charge and discharge current.Its analytical model is induced and the effect of the modulation parameters on the spread spectrum is numerically simulated and discussed.Compared with other works,this design has the advantages of small size,low power consumption and good robustness.The circuit has been fabricated in a 0.5μm CMOS process and applied to a class D amplifier in which the proposed RCF-SSCG occupies an area of 0.112 mm^2 and consumes 9 mW.The experimental results confirm the theoretical analyses.展开更多
With the rapid development and wide deployment of wireless technology, Wi-Fi signals have no longer been confined to the Internet as a communication medium. Wi-Fi signals will be modulated again by human actions when ...With the rapid development and wide deployment of wireless technology, Wi-Fi signals have no longer been confined to the Internet as a communication medium. Wi-Fi signals will be modulated again by human actions when propagating indoors, carrying rich human body state information. Therefore, a novel wireless sensing technology is gradually emerging that can realize gesture recognition, human daily activity detection, identification,indoor localization and human body tracking, vital signs detection, imaging, and emotional recognition by extracting effective feature information about human actions from Wi-Fi signals. Researchers mainly use channel state information or frequency modulated carrier wave in their current implementation schemes of wireless sensing technology, called "Walls have eyes", and these schemes cover radio-frequency technology, signal processing technology, and machine learning. These available wireless sensing systems can be used in many applications such as smart home, medical health care, search-and-rescue, security, and with the high precision and passively device-free through-wall detection function. This paper elaborates the research actuality and summarizes each system structure and the basic principles of various wireless sensing applications in detail. Meanwhile, two popular implementation schemes are analyzed. In addition, the future diversely application prospects of wireless sensing systems are presented.展开更多
Rapid improvement in the efficiency of GaN-based LEDs not only speed up its applications for general illumination, but offer the possibilities for data transmission. This review is to provide an overview of current pr...Rapid improvement in the efficiency of GaN-based LEDs not only speed up its applications for general illumination, but offer the possibilities for data transmission. This review is to provide an overview of current progresses of GaN-based LEDs for light communications. The modulation bandwidth of GaN-based LEDs has been first improved by optimizing the LED epilayer structures and the modulation bandwidth of 73 MHz was achieved at the driving current density of 40 A/cm2 by changing the multi-quantum well structures. After that, in order to increase the current density tolerance, different parallel flip-chip micro-LED arrays were fabricated. With a high injected current density of ~7900 A/cm2, a maximum modulation bandwidth of ~227 MHz was obtained with optical power greater than 30 mW. Besides the increase of carrier concentrations, the radiative recombination coefficient B was also enhanced by modifying the photon surrounding environment based on some novel nanostructures such as resonant cavity, surface plasmon, and photonic crystals. The optical 3 dB modulation bandwidth of GaN-based nanostructure LEDs with Ag nanoparticles was enhanced by 2 times compared with GaN-based nanostructure LEDs without Ag nanoparticles.Our results demonstrate that using the QW-SP coupling can effectively help to enhance the carrier spontaneous emission rate and also increase the modulation bandwidth for LEDs, especially for LEDs with high intrinsic IQE. In addition, we discuss the progress of the faster color conversion stimulated by GaN-based LEDs.展开更多
文摘Signal structure design is an important part of satellite navigation system research,which directly affects navigation performance.Signal performance parameters are analyzed and performances of BPSK modulated signals and BOC modulated signals are compared.Aiming at requirements of high navigation precision and high anti-jamming ability,a new navigation signal structure based on complex carrier modulation is proposed and performances of the signal are researched with different parameters.A synchronization algorithm is put forward according to the signal characteristics,and the synchronization performance is qualitatively analyzed.Next,the applications of the complex carrier modulated signal are discussed,which include anti-jamming,navigation enhancement,power combing and so on.Simulations and analysis show that the proposed navigation signal structure based on complex carrier modulation has good navigation capabilities and anti-jamming abilities,which deserves further study.
基金financially supported by the Guangdong Major Project of Basic and Applied Basic Research(2019B030302007)the Ministry of Science and Technology(2017YFA0206600,2019YFA0705900)+6 种基金the Natural Science Foundation of China(51973063,91733302 and 51803060)Guangdong Basic and Applied Basic Research Foundation for Distinguished Young Scholar(2021B1515020028)the Fund of Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates(South China University of Technology)(2019B030301003)the Science and Technology Program of Guangzhou,China(201904010147)the funding by State Key Lab of Luminescent Materials and Devices,South China University of Technologythe Fellowship of China Postdoctoral Science Foundation(2020M682703)the National Natural Science Foundation of China(52003090)。
文摘As one of the core parts of two-terminal(2 T) monolithic tandem photovoltaics, the interconnecting layers(ICLs) play a critical role in modulating the carrier transport and recombination between the sub-cells,and thus influencing the tandem device performance. Here, for the first time, the relationship between ICLs architecture and 2 T monolithic perovskite/organic tandem device performance has been studied by investigating the change of ICLs composition layer thickness on the ICLs optical and electrical properties, sub-cells EQE properties, and tandem device J-V properties. It is revealed that the ability of ICLs on modulating the sub-cells carrier balance properties is strongly associated with its composited layers thickness, and the tandem device carrier balance properties can be reflected by the relative EQE intensity between the sub-cells. Finally, with a deep understanding of the mechanisms, rational design of ICLs can be made to benefit the tandem device development. Based on the optimized ICL a high PCE of 20.03% is achieved.
基金Project supported by the National Key Research and Development Program of China (Grant Nos. 2018YFA0702100and 2022YFB3803900)the Joint Funds of the National Natural Science Foundation of China and the Chinese Academy of Sciences (CAS)’ Large-Scale Scientific Facility (Grant No. U1932106)the Sichuan University Innovation Research Program of China (Grant No. 2020SCUNL112)。
文摘AgCrSe2-based compounds have attracted much attention as an environmentally friendly thermoelectric material in recent years due to the intriguing liquid-like properties.However,the ultra-low carrier concentration and the high Ag_(Cr)deep-level defects limit the overall thermoelectric performance.Here,we successfully introduced Pb into Ag-deficient Ag_(0.97)CrSe_(2) alloys to tune the carrier concentration across a broad temperature range.The Pb^(2+) as an acceptor dopant preferentially occupies Cr sites,boosting the hole carrier concentration to 1.77×10^(19) cm^(-3) at room temperature.Furthermore,the Pb strongly inhibits the creation of intrinsic Ag_(Cr) defects,weakens the increased thermal excited ionization with the increasing temperature and slowed the rising trend of the carrier concentration.The designed carrier concentration matches the theoretically predicted optimized one over the entire temperature range,leading to a remarkable enhancement in power factor,especially the maximum power factor of ~500 μW·m^(-1)·K^(-2) at 750 K is superior to most previous results.Additionally,the abundant point defects promote phonon scattering,thus reducing the lattice thermal conductivity.As a result,the maximum figure of merit zT(~0.51 at 750 K) is achieved in Ag_(0.97)Cr_(0.995)Pb_(0.005)Se_(2).This work confirms the feasibility of manipulating deep-level defects to achieve temperature-dependent optimal carrier concentration and provides a valuable guidance for other thermoelectric materials.
文摘Recent advancements in power electronics technology evolves inverter fed electric motors.Speed signals and rotor position are essential for controlling an electric motor accurately.In this paper,the sensorless speed control of surface-mounted permanent magnet synchronous motor(SPMSM)has been attempted.SPMSM wants a digital inverter for its precise working.Hence,this study incor-poratesfifteen level inverter to the SPMSM.A sliding mode observer(SMO)based sensorless speed control scheme is projected to determine rotor spot and speed of the multilevel inverter(MLI)fed SPMSM.MLI has been operated using a multi carrier pulse width modulation(MCPWM)strategy for generation offif-teen level voltages.The simulation works are executed with MATLAB/SIMU-LINK software.The steadiness and the heftiness of the projected model have been investigated under no loaded and loaded situations of SPMSM.Furthermore,the projected method can be adapted for electric vehicles.
基金supported by the National Natural Science Foundation of China(Nos.U2006217,61775015,61801017,and 61827818)。
文摘An approach to generate high-speed and wideband frequency shift keying(FSK)signals based on carrier phase-shifted double sideband(CPS-DSB)modulation is proposed and experimentally validated.The core part of the scheme is a pair of cascaded polarization-sensitive LiNbO_(3) Mach–Zehnder modulators and phase modulators,whose polarization directions of the principal axes are mutually orthogonal to each other.A proof-of-concept experiment is carried out,where a 0.5 Gb/s FSK signal with the carrier frequencies of 4 and 8 GHz and a 1 Gb/s FSK signal with the carrier frequencies of 8 and 16 GHz are generated successfully.
基金This work was supported by the National Natural Science Foundation of China(No.52372210 and No.52072248)Natural Science Foundation of Guangdong Province of China(No.2023A1515010122 and No.2021A1515012128)Technology plan project of Shenzhen(No.20220810154601001).
文摘BiSe with intrinsic low thermal conductivity has considered as a promising thermoelectric(TE)material at nearly room temperature.To improve its low thermoelectric figure of merit(zT),in this work,Sb and Te isovalent co-alloying was performed and significantly optimized its TE property with weakly anisotropic characteristic.After substituting Sb on Bi sites,the carrier concentration is suppressed by introduction of Sbsingle bond Se site defects,which contributes to the increased absolute value of Seebeck coefficient(|S|).Further co-alloying Te on Se of the optimized composition Bi_(0.7)Sb_(0.3)Se,the carrier concentration increased without affecting the|S|due to the enhanced effective mass,which leads to a highest power factor of 12.8μW/(cm·K^(2))at 423 K.As a result,a maximum zT of∼0.54 is achieved for Bi_(0.7)Sb_(0.3)Se_(0.7)Te_(0.3) along the pressing direction and the average zT(zTave)(from 300 K to 623 K)are drastically improved from 0.24 for pristine BiSe sample to 0.45.Moreover,an energy conversion efficiency∼4.0%is achieved for a single leg TE device of Bi_(0.7)Sb_(0.3)Se_(0.7)Te_(0.3)when applied the temperature difference of 339 K,indicating the potential TE application.
基金Engineering and Physical Sciences Research Council(EPSRC)(EP/M008975/1,EP/M009416/1,EP/N013247/1,EP/R003076/1)EU Seventh Framework Programme(FP7)Marie-Curie Carrier-Integration-Grant(PCIG13-GA-2013-618116)
文摘In silicon photonics, the carrier depletion scheme has been the most commonly used mechanism for demonstrat- ing high-speed electro-optic modulation. However, in terms of phase modulation efficiency, carrier- accumnlation-based devices potentially offer almost an order of carrier depletion. Previously reported accumulation modulator magnitude improvement over those based on designs only considered vertical metal-oxide- semiconductor (MOS) capacitors, which imposes serious restrictions on the design flexibility and integratability with other photonic components. In this work, for the first time to our knowledge, we report experimental demonstration of an all-silicon accumulation phase modulator based on a lateral MOS capacitor. Using a Mach-Zehnder interferometer modulator with a 500-μm-long phase shifter, we demonstrate high-speed modulation up to 25 Gbit/s with a modulation efficiency (V πLπ) of 1.53 V·cm.
基金Project supported by the National Natural Science Foundation of China(No.60436030).
文摘A novel monolithic digitalized random carrier frequency modulation spread-spectrum clock generator (RCF-SSCG) is proposed.In this design,the output frequency of the proposed RCF-SSCG changes with the intensity of the capacitive charge and discharge current.Its analytical model is induced and the effect of the modulation parameters on the spread spectrum is numerically simulated and discussed.Compared with other works,this design has the advantages of small size,low power consumption and good robustness.The circuit has been fabricated in a 0.5μm CMOS process and applied to a class D amplifier in which the proposed RCF-SSCG occupies an area of 0.112 mm^2 and consumes 9 mW.The experimental results confirm the theoretical analyses.
基金supported in part by the National Natural Science Foundation of China under Key Program of NSFC (No. 61332019)NSFC (Nos. 61572304 and 61272056)Shanghai Key Laboratory of Specialty Fiber Optics and Optical Access Networks (No. SKLSFO2014-06)
文摘With the rapid development and wide deployment of wireless technology, Wi-Fi signals have no longer been confined to the Internet as a communication medium. Wi-Fi signals will be modulated again by human actions when propagating indoors, carrying rich human body state information. Therefore, a novel wireless sensing technology is gradually emerging that can realize gesture recognition, human daily activity detection, identification,indoor localization and human body tracking, vital signs detection, imaging, and emotional recognition by extracting effective feature information about human actions from Wi-Fi signals. Researchers mainly use channel state information or frequency modulated carrier wave in their current implementation schemes of wireless sensing technology, called "Walls have eyes", and these schemes cover radio-frequency technology, signal processing technology, and machine learning. These available wireless sensing systems can be used in many applications such as smart home, medical health care, search-and-rescue, security, and with the high precision and passively device-free through-wall detection function. This paper elaborates the research actuality and summarizes each system structure and the basic principles of various wireless sensing applications in detail. Meanwhile, two popular implementation schemes are analyzed. In addition, the future diversely application prospects of wireless sensing systems are presented.
基金supported by the National Natural Science Foundation of China(Grant No.11574306)the China International Science and Technology Cooperation Program(Grant No.2014DFG62280)the National High Technology Program of China(Grant No.2015AA03A101)
文摘Rapid improvement in the efficiency of GaN-based LEDs not only speed up its applications for general illumination, but offer the possibilities for data transmission. This review is to provide an overview of current progresses of GaN-based LEDs for light communications. The modulation bandwidth of GaN-based LEDs has been first improved by optimizing the LED epilayer structures and the modulation bandwidth of 73 MHz was achieved at the driving current density of 40 A/cm2 by changing the multi-quantum well structures. After that, in order to increase the current density tolerance, different parallel flip-chip micro-LED arrays were fabricated. With a high injected current density of ~7900 A/cm2, a maximum modulation bandwidth of ~227 MHz was obtained with optical power greater than 30 mW. Besides the increase of carrier concentrations, the radiative recombination coefficient B was also enhanced by modifying the photon surrounding environment based on some novel nanostructures such as resonant cavity, surface plasmon, and photonic crystals. The optical 3 dB modulation bandwidth of GaN-based nanostructure LEDs with Ag nanoparticles was enhanced by 2 times compared with GaN-based nanostructure LEDs without Ag nanoparticles.Our results demonstrate that using the QW-SP coupling can effectively help to enhance the carrier spontaneous emission rate and also increase the modulation bandwidth for LEDs, especially for LEDs with high intrinsic IQE. In addition, we discuss the progress of the faster color conversion stimulated by GaN-based LEDs.