In deep space exploration,many engineering and scientific requirements require the accuracy of the measured Doppler frequency to be as high as possible.In our paper,we analyze the possible frequency measurement points...In deep space exploration,many engineering and scientific requirements require the accuracy of the measured Doppler frequency to be as high as possible.In our paper,we analyze the possible frequency measurement points of the third-order phase-locked loop(PLL)and find a new Doppler measurement strategy.Based on this finding,a Doppler frequency measurement algorithm with significantly higher measurement accuracy is obtained.In the actual data processing,compared with the existing engineering software,the accuracy of frequency of 1 second integration is about 5.5 times higher when using the new algorithm.The improved algorithm is simple and easy to implement.This improvement can be easily combined with other improvement methods of PLL,so that the performance of PLL can be further improved.展开更多
The envelope of a hypersonic vehicle is affected by severe fluctuating pressure, which causes the airborne antenna to vibrate slightly. This vibration mixes with the transmitted signals and thus introduces additional ...The envelope of a hypersonic vehicle is affected by severe fluctuating pressure, which causes the airborne antenna to vibrate slightly. This vibration mixes with the transmitted signals and thus introduces additional multiplicative phase noise. Antenna vibration and signal coupling effects as well as their influence on the lock threshold of the hypersonic vehicle carrier tracking system of the Ka band are investigated in this study. A vibration model is initially established to obtain phase noise in consideration of the inherent relationship between vibration displacement and electromagnetic wavelength. An analytical model of the Phase-Locked Loop(PLL), which is widely used in carrier tracking systems, is established. The coupling effects on carrier tracking performance are investigated and quantitatively analyzed by imposing the multiplicative phase noise on the PLL model. Simulation results show that the phase noise presents a Gaussian distribution and is similar to vibration displacement variation. A large standard deviation in vibration displacement exerts a significant effect on the lock threshold. A critical standard deviation is observed in the PLL of Binary Phase Shift Keying(BPSK) and Quadrature Phase Shift Keying(QPSK) signals. The effect on QPSK signals is more severe than that on BPSK signals. The maximum tolerable standard deviations normalized by the wavelength of the carrier are 0.04 and 0.02 for BPSK and QPSK signals,respectively. With these critical standard deviations, lock thresholds are increased from à12 andà4 d B to 3 and à2 d B, respectively.展开更多
In deep space exploration,it is necessary to improve the accuracy of frequency measurement to meet the requirements of precise orbit determination and various scientific studies.A phase detector is one of the key modu...In deep space exploration,it is necessary to improve the accuracy of frequency measurement to meet the requirements of precise orbit determination and various scientific studies.A phase detector is one of the key modules that restricts the tracking performance of phase-locked loop(PLL).Based on the phase relationship between adjacent signals in the time domain,a novel phase detector is presented to replace the arctangent phase detector.The new PLL,which is a closed loop signal correlation algorithm,shows good performance in tracking signals with high precision and the tracking accuracy of frequency of1 second integration is close to Cramer-Rao lower bound(CRLB)when setting proper parameters.Actual data processing results further illustrate the excellent performance of the novel PLL.展开更多
在现有的高动态微弱信号的载波跟踪算法中,针对锁频环(FLL)辅助锁相环(PLL)载波跟踪算法,环路调整不连续,易出现跟踪失锁的问题,给出了FLL与PLL的更优组合算法,并确定了组合环路状态转换的过程以及环路状态转换的门限值,从而优化环路性...在现有的高动态微弱信号的载波跟踪算法中,针对锁频环(FLL)辅助锁相环(PLL)载波跟踪算法,环路调整不连续,易出现跟踪失锁的问题,给出了FLL与PLL的更优组合算法,并确定了组合环路状态转换的过程以及环路状态转换的门限值,从而优化环路性能;针对带宽调整不准确影响环路跟踪性能的问题,分析得出最优带宽值,确定了试探法带宽调整策略,对环路带宽进行实时调整,最终在信噪比为3 d B,且存在加加速度分量时,环路的跟踪误差达到3 Hz左右.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11773060,11973074,U1831137 and 11703070)National Key Basic Research and Development Program(2018YFA0404702)+1 种基金Shanghai Key Laboratory of Space Navigation and Positioning(3912DZ227330001)the Key Laboratory for Radio Astronomy of CAS。
文摘In deep space exploration,many engineering and scientific requirements require the accuracy of the measured Doppler frequency to be as high as possible.In our paper,we analyze the possible frequency measurement points of the third-order phase-locked loop(PLL)and find a new Doppler measurement strategy.Based on this finding,a Doppler frequency measurement algorithm with significantly higher measurement accuracy is obtained.In the actual data processing,compared with the existing engineering software,the accuracy of frequency of 1 second integration is about 5.5 times higher when using the new algorithm.The improved algorithm is simple and easy to implement.This improvement can be easily combined with other improvement methods of PLL,so that the performance of PLL can be further improved.
基金co-supported by the National Basic Research Program of China (No. 2014CB340205)the Natural Science Foundation of Shaanxi Provincial Department of Education (No. 2016JM6016)the National Natural Science Foundation of China (No. 61473228)
文摘The envelope of a hypersonic vehicle is affected by severe fluctuating pressure, which causes the airborne antenna to vibrate slightly. This vibration mixes with the transmitted signals and thus introduces additional multiplicative phase noise. Antenna vibration and signal coupling effects as well as their influence on the lock threshold of the hypersonic vehicle carrier tracking system of the Ka band are investigated in this study. A vibration model is initially established to obtain phase noise in consideration of the inherent relationship between vibration displacement and electromagnetic wavelength. An analytical model of the Phase-Locked Loop(PLL), which is widely used in carrier tracking systems, is established. The coupling effects on carrier tracking performance are investigated and quantitatively analyzed by imposing the multiplicative phase noise on the PLL model. Simulation results show that the phase noise presents a Gaussian distribution and is similar to vibration displacement variation. A large standard deviation in vibration displacement exerts a significant effect on the lock threshold. A critical standard deviation is observed in the PLL of Binary Phase Shift Keying(BPSK) and Quadrature Phase Shift Keying(QPSK) signals. The effect on QPSK signals is more severe than that on BPSK signals. The maximum tolerable standard deviations normalized by the wavelength of the carrier are 0.04 and 0.02 for BPSK and QPSK signals,respectively. With these critical standard deviations, lock thresholds are increased from à12 andà4 d B to 3 and à2 d B, respectively.
基金supported by the National Natural Science Foundation of China(11773060,11973074,U1831137,11703070 and 11803069)the National Key Basic Research and Development Program(2018YFA0404702)+1 种基金Shanghai Key Laboratory of Space Navigation and Positioning(3912DZ227330001)the Key Laboratory for Radio Astronomy of CAS。
文摘In deep space exploration,it is necessary to improve the accuracy of frequency measurement to meet the requirements of precise orbit determination and various scientific studies.A phase detector is one of the key modules that restricts the tracking performance of phase-locked loop(PLL).Based on the phase relationship between adjacent signals in the time domain,a novel phase detector is presented to replace the arctangent phase detector.The new PLL,which is a closed loop signal correlation algorithm,shows good performance in tracking signals with high precision and the tracking accuracy of frequency of1 second integration is close to Cramer-Rao lower bound(CRLB)when setting proper parameters.Actual data processing results further illustrate the excellent performance of the novel PLL.
文摘在现有的高动态微弱信号的载波跟踪算法中,针对锁频环(FLL)辅助锁相环(PLL)载波跟踪算法,环路调整不连续,易出现跟踪失锁的问题,给出了FLL与PLL的更优组合算法,并确定了组合环路状态转换的过程以及环路状态转换的门限值,从而优化环路性能;针对带宽调整不准确影响环路跟踪性能的问题,分析得出最优带宽值,确定了试探法带宽调整策略,对环路带宽进行实时调整,最终在信噪比为3 d B,且存在加加速度分量时,环路的跟踪误差达到3 Hz左右.