期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
CRISPR/Cas9 technology and its application in horticultural crops 被引量:2
1
作者 Yang Liu Chunling Zhang +2 位作者 Xiaofei Wang Xiuming Li Chunxiang You 《Horticultural Plant Journal》 SCIE CAS CSCD 2022年第4期395-407,共13页
Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated 9(CRISPR/Cas9)system has recently become one popular technology due to its efficiency,precision,and simplicity compared with other genome edi... Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated 9(CRISPR/Cas9)system has recently become one popular technology due to its efficiency,precision,and simplicity compared with other genome editing tools such as Zinc Finger Nucleases(ZFNs)and Transcription Activator Like Effector Nucleases(TALENs).Horticultural crops provide energy and health-keeping nutrients to humankind.Genome-editing technology has become widely adopted in horticultural breeding with the increasing demand for high yield and better-quality horticultural crops.Here,we describe the CRISPR/Cas9 system construction,its optimization,including sgRNA promoter,sgRNA design,Cas9 protein promoter,SpCas9 variants and orthologs,and vector delivery methods.We also summarized the application of this technology in horticultural plants for stress responses enhancement,fruit quality improvement,and cultivation traits modification.This detailed review was compiled to help establish comprehensive understanding of the CRISPR/Cas9 systems and provide a reference for further developing this technology to manipulate horticultural plant traits effectively. 展开更多
关键词 Gene editing CRISPR/cas9 technology Horticultural plant
下载PDF
Addressing challenges in the clinical applications associated with CRISPR/Cas9 technology and ethical questions to prevent its misuse 被引量:3
2
作者 Xiang Jin Kang Chiong Isabella Noelle Caparas +1 位作者 Boon Seng Soh Yong Fan 《Protein & Cell》 SCIE CAS CSCD 2017年第11期791-795,共5页
The recently developed RNA-guided clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated 9 (Cas9) nuclease system has progressed to be an invaluable technology for genome manipulation ... The recently developed RNA-guided clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated 9 (Cas9) nuclease system has progressed to be an invaluable technology for genome manipulation in somatic cell types and germline model organisms. While the unprecedented advance in human embryo gene editing research has great potential in next-generation therapeutics, it raises various ethical concerns that need to be addressed before being translated for clinical use. Here, we discuss the current and potential applications of CRISPR/Cas9 technology and its limitations in clinical applications, as well as ethical and legal considerations in the treatment, disease prevention or disability in somatic cells or human embryo via gene editing. 展开更多
关键词 Addressing challenges clinical applications associated CRISPR/cas9 technology ethical questions prevent its misuse
原文传递
Using a novel cellular platform to optimize CRISPR/CAS9 technology for the gene therapy of AIDS 被引量:2
3
作者 Jingjin He Thanutra Zhang Xuemei Fu 《Protein & Cell》 SCIE CAS CSCD 2017年第11期848-852,共5页
Dear Editor,Despite tremendous effort devoted to the development of antiretroviral therapies to combat HIV over the past decades, AIDS remains one of the most important global infectious diseases. According to UNAIDS ... Dear Editor,Despite tremendous effort devoted to the development of antiretroviral therapies to combat HIV over the past decades, AIDS remains one of the most important global infectious diseases. According to UNAIDS report on the global AIDS epidemic in 2016, the estimated number of people living with HIV rose from 7.5 million in 2010 to 36.7 million in 2015. Furthermore, drug-resistance HIV strains have recently been reported (Wensing et al., 2017). Therefore, it is important to develop new therapies to eliminate HIV in the patients. Immortalized cell lines representing the major targets of HIV in human are important for HIV research and therapeutic development. 展开更多
关键词 novel cellular platform optimize CRISPR/cas9 technology the gene therapy of AIDS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部