Cascaded multilevel converters built with integrated modules have many advantages such as increased power density,flexible distributed control,multi-functionality,increased reliability and short design cycles.However,...Cascaded multilevel converters built with integrated modules have many advantages such as increased power density,flexible distributed control,multi-functionality,increased reliability and short design cycles.However,the system performance will be affected due to the synchronization errors among each integrated modules.This paper analyzes the impact of the three kinds of synchronization errors on the whole system performance,as well as detailed synchronization implementation.Some valuable conclusions are derived from the theoretical analysis,simulations and experimental results.展开更多
With the high penetration of renewable energy,new challenges,such as power fluctuation suppression and inertial support capability,have arisen in the power sector.Battery energy storage systems play an essential role ...With the high penetration of renewable energy,new challenges,such as power fluctuation suppression and inertial support capability,have arisen in the power sector.Battery energy storage systems play an essential role in renewable energy integration.In this paper,a distributed virtual synchronous generator(VSG)control method for a battery energy storage system(BESS)with a cascaded H-bridge converter in a grid-connected mode is proposed.The VSG is developed without communication dependence,and state-of-charge(SOC)balancing control is achieved using the distributed average algorithm.Owing to the low varying speed of SOC,the bandwidth of the distributed communication networks is extremely slow,which decreases the cost.Therefore,the proposed method can simultaneously provide inertial support and accurate SOC balancing.The stability is also proved using root locus analysis.Finally,simulations under different conditions are carried out to verify the effectiveness of the proposed method.展开更多
In recent days, the multilevel inverter technology is widely applied to domestic and industrial applications for medium voltage conversion. But, the power quality issues of the multilevel inverter limit the usage of m...In recent days, the multilevel inverter technology is widely applied to domestic and industrial applications for medium voltage conversion. But, the power quality issues of the multilevel inverter limit the usage of much sensitive equipment like medical instruments. The lower distortion level of the output voltage and current can generate a quality sinusoidal output voltage in inverters and they can be used for many applications. The harmonics can cause major problems in equipments due to the nonlinear loads connected with the power system. So, it is necessary to minimize the losses to raise its overall efficiency. In this paper, a new topology of seven level asymmetrical cascaded H-bridge multilevel inverter with a Fuzzy logic controller had been implemented to reduce the Total Harmonic Distortion (THD) and to improve the overall performance of the inverter. The proposed model is well suited for use with a solar PV application. In this topology, only six IGBT switches are used with three different voltage ratings of PV modules (1:2:4). The lower number of semiconductor switches leads to minimizing overall di/dt ratings and voltage stress on each switches and switching losses. The gate pulses generated by Sinusoidal Pulse Width Modulation (SPWM) technique with a Fuzzy logic controller are also introduced. A buck-boost converter is used to maintain the constant PV voltage level integrated by an MPPT technique followed by Perturb and Observer algorithm is also implemented. The MPPT is used to harness the maximum power of solar radiations under its various climatic conditions. The new topology is evaluated by a Matlab/Simulink model and compared with a hardware model. The results proved that the THD achieved by this topology is 1.66% and realized that it meets the IEEE harmonic standards.展开更多
Forhigh power applications,multilevel converters have many advantages in comparison with other circuit topologies with output transformers. Cascaded inverters are one type of multilevel converters,they are easy to imp...Forhigh power applications,multilevel converters have many advantages in comparison with other circuit topologies with output transformers. Cascaded inverters are one type of multilevel converters,they are easy to implement,very suitable for modularized layout and packaging.Their manufacturing cost is low.A multilevel PWM technique,called as General Technique of Selected Harmonics Elimination (GTSHE) ,is proposed in the paper. A general harmonic elimination equation for N cells,M pulses per half cycle,nth harmonic is derived,and verified by simulation results.展开更多
This work presents an implementation of an innovative single phase multilevel inverter using capacitors with reduced switches. The proposed Capacitor pattern H-bridge Multilevel Inverter (CPHMLI) topology consists of ...This work presents an implementation of an innovative single phase multilevel inverter using capacitors with reduced switches. The proposed Capacitor pattern H-bridge Multilevel Inverter (CPHMLI) topology consists of a proper number of Capacitor connected with switches and power sources. The advanced switching control supplied by Pulse Width Modulation (PDPWM) to attain mixed staircase switching state. The charging and discharging mode are achieved by calculating the voltage error at the load. Furthermore, to accomplish the higher voltage levels at the output with less number of semiconductors switches and simple commutation designed using CPHMLI topology. To prove the performance and effectiveness of the proposed approach, a set of experiments performed under various load conditions using MATLAB tool.展开更多
This paper presents a novel inter-cluster direct current(DC)capacitor voltage balancing control scheme for the single-star configured modular multilevel cascaded converter(MMCC)-based static synchronous compensator(ST...This paper presents a novel inter-cluster direct current(DC)capacitor voltage balancing control scheme for the single-star configured modular multilevel cascaded converter(MMCC)-based static synchronous compensator(STATCOM)under unbalanced grid voltage.The negative-sequence component of grid voltage at the point of common connection(PCC)causes unbalanced active power flow in the phase limbs of converter.This leads to the imbalance of DC voltages of the sub-module capacitors across the MMCC phases,and consequently,the malfunction of converter.The proposed solution is to inject both negative-sequence current(NSC)and zero-sequence voltage(ZSV)into the phase limbs of MMCC.A quantification factor Qf is used to achieve the sharing of inter-cluster active pow-er between the NSC and ZSV injection methods.Accurate determination of the quantification factor has been presented.In addition to maintaining the DC voltages of sub-module capacitor across the MMCC phases balanced,it also prevents the overcurrent and overvoltage of converter by injecting NSC and ZSV with the right proportion.The control scheme is validated on a 3.54 kV 1.2 MVA power system using MMCC-based STATCOM with 3-level bridge cells as sub-modules.The results show that the proposed scheme provides superior effectiveness in eliminating the voltage imbalance of DC capacitor in the phase limb while maintaining low voltage and current ratings.展开更多
This article presents a finite-time robust control(FTRC)of a transformerless STATCOM based on a cascaded multilevel H-bridge converter(CMHC)with star configuration.The FTRC is first proposed for the current loop contr...This article presents a finite-time robust control(FTRC)of a transformerless STATCOM based on a cascaded multilevel H-bridge converter(CMHC)with star configuration.The FTRC is first proposed for the current loop control of a CMHC-based transformerless STATCOM by using the finite time robust control theory.Taking the parameters,perturbations and external disturbances into account and using coordinate transformation method,the nonlinear dynamic model of the CMHC-based transformerless STATCOM is transformed into a standard nonlinear port-controlled dissipative Hamiltonian(PCDH)structure.Based on the PCDH structure,an FTRC is designed for the CMHC-based transformerless STATCOM to improve the transient stability and oscillation damping of power system.Finally,the simulation results demonstrate that the FTRC has better dynamic performance and strong robustness in comparison with the passivity-based control of the CMHC-based transformerless STATCOM.展开更多
储能技术是构建以新能源为主体的新型电力系统的关键技术和维持微网可靠稳定运行的重要保证。国内外现有理论研究及示范工程主要集中于单级式链式储能系统,功率模块与电池系统之间无源连接,结构简单但控制自由度不高。同时,针对基于链...储能技术是构建以新能源为主体的新型电力系统的关键技术和维持微网可靠稳定运行的重要保证。国内外现有理论研究及示范工程主要集中于单级式链式储能系统,功率模块与电池系统之间无源连接,结构简单但控制自由度不高。同时,针对基于链式储能的电池荷电状态(state of charge,SOC)不均衡问题,现有的相内SOC均衡控制策略存在不同负载率适应性不足、极度不均衡时可能过调制等缺点,为此,文中基于两级式链式储能系统,研究其总体控制策略,对相间、相内SOC均衡策略进行分析,并提出一种自适应的相内SOC均衡策略,详细说明均衡控制参数的设计原则。该策略能有效地改善链式储能系统在轻载、重载等不同工况下的适应性和均衡效果。最终通过仿真验证了所提控制策略的可行性和有效性,从而为工程实施提供理论储备和技术支撑。展开更多
Because of the broad application of multilevel converters in the high-power area,a cascaded multilevel voltage-source inverter with phase-shifted SPWM(PS-SPWM)switching scheme is proposed as a static syn-chronous comp...Because of the broad application of multilevel converters in the high-power area,a cascaded multilevel voltage-source inverter with phase-shifted SPWM(PS-SPWM)switching scheme is proposed as a static syn-chronous compensator(STATCOM).This can eliminate the bulky and weighty transformers and reduce power loss.In addition,the equivalent carrier frequency can be doubled and the output harmonics will be reduced compared with the STATCOM being put into operation.The operating principle and control methods are analyzed in detail and the feasibility is validated by simulation with MATLAB.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 50277035)the Natural Science Foundation of Zheji-ang Province (No. Z104441),China
文摘Cascaded multilevel converters built with integrated modules have many advantages such as increased power density,flexible distributed control,multi-functionality,increased reliability and short design cycles.However,the system performance will be affected due to the synchronization errors among each integrated modules.This paper analyzes the impact of the three kinds of synchronization errors on the whole system performance,as well as detailed synchronization implementation.Some valuable conclusions are derived from the theoretical analysis,simulations and experimental results.
基金This work was supported by National Natural Science Foundation of China under Grant U1909201,Distributed active learning theory and method for operational situation awareness of active distribution network.
文摘With the high penetration of renewable energy,new challenges,such as power fluctuation suppression and inertial support capability,have arisen in the power sector.Battery energy storage systems play an essential role in renewable energy integration.In this paper,a distributed virtual synchronous generator(VSG)control method for a battery energy storage system(BESS)with a cascaded H-bridge converter in a grid-connected mode is proposed.The VSG is developed without communication dependence,and state-of-charge(SOC)balancing control is achieved using the distributed average algorithm.Owing to the low varying speed of SOC,the bandwidth of the distributed communication networks is extremely slow,which decreases the cost.Therefore,the proposed method can simultaneously provide inertial support and accurate SOC balancing.The stability is also proved using root locus analysis.Finally,simulations under different conditions are carried out to verify the effectiveness of the proposed method.
文摘In recent days, the multilevel inverter technology is widely applied to domestic and industrial applications for medium voltage conversion. But, the power quality issues of the multilevel inverter limit the usage of much sensitive equipment like medical instruments. The lower distortion level of the output voltage and current can generate a quality sinusoidal output voltage in inverters and they can be used for many applications. The harmonics can cause major problems in equipments due to the nonlinear loads connected with the power system. So, it is necessary to minimize the losses to raise its overall efficiency. In this paper, a new topology of seven level asymmetrical cascaded H-bridge multilevel inverter with a Fuzzy logic controller had been implemented to reduce the Total Harmonic Distortion (THD) and to improve the overall performance of the inverter. The proposed model is well suited for use with a solar PV application. In this topology, only six IGBT switches are used with three different voltage ratings of PV modules (1:2:4). The lower number of semiconductor switches leads to minimizing overall di/dt ratings and voltage stress on each switches and switching losses. The gate pulses generated by Sinusoidal Pulse Width Modulation (SPWM) technique with a Fuzzy logic controller are also introduced. A buck-boost converter is used to maintain the constant PV voltage level integrated by an MPPT technique followed by Perturb and Observer algorithm is also implemented. The MPPT is used to harness the maximum power of solar radiations under its various climatic conditions. The new topology is evaluated by a Matlab/Simulink model and compared with a hardware model. The results proved that the THD achieved by this topology is 1.66% and realized that it meets the IEEE harmonic standards.
文摘Forhigh power applications,multilevel converters have many advantages in comparison with other circuit topologies with output transformers. Cascaded inverters are one type of multilevel converters,they are easy to implement,very suitable for modularized layout and packaging.Their manufacturing cost is low.A multilevel PWM technique,called as General Technique of Selected Harmonics Elimination (GTSHE) ,is proposed in the paper. A general harmonic elimination equation for N cells,M pulses per half cycle,nth harmonic is derived,and verified by simulation results.
文摘This work presents an implementation of an innovative single phase multilevel inverter using capacitors with reduced switches. The proposed Capacitor pattern H-bridge Multilevel Inverter (CPHMLI) topology consists of a proper number of Capacitor connected with switches and power sources. The advanced switching control supplied by Pulse Width Modulation (PDPWM) to attain mixed staircase switching state. The charging and discharging mode are achieved by calculating the voltage error at the load. Furthermore, to accomplish the higher voltage levels at the output with less number of semiconductors switches and simple commutation designed using CPHMLI topology. To prove the performance and effectiveness of the proposed approach, a set of experiments performed under various load conditions using MATLAB tool.
文摘This paper presents a novel inter-cluster direct current(DC)capacitor voltage balancing control scheme for the single-star configured modular multilevel cascaded converter(MMCC)-based static synchronous compensator(STATCOM)under unbalanced grid voltage.The negative-sequence component of grid voltage at the point of common connection(PCC)causes unbalanced active power flow in the phase limbs of converter.This leads to the imbalance of DC voltages of the sub-module capacitors across the MMCC phases,and consequently,the malfunction of converter.The proposed solution is to inject both negative-sequence current(NSC)and zero-sequence voltage(ZSV)into the phase limbs of MMCC.A quantification factor Qf is used to achieve the sharing of inter-cluster active pow-er between the NSC and ZSV injection methods.Accurate determination of the quantification factor has been presented.In addition to maintaining the DC voltages of sub-module capacitor across the MMCC phases balanced,it also prevents the overcurrent and overvoltage of converter by injecting NSC and ZSV with the right proportion.The control scheme is validated on a 3.54 kV 1.2 MVA power system using MMCC-based STATCOM with 3-level bridge cells as sub-modules.The results show that the proposed scheme provides superior effectiveness in eliminating the voltage imbalance of DC capacitor in the phase limb while maintaining low voltage and current ratings.
基金supported by Guizhou Provincial Science and Technology Foundation(No.QiankeheJzi[2015]2070,Qiankehejichu[2016]1064,Qiankehejichu[2017]1074,Qiankehejichu[2018]1068,Qiankehezhicheng[2018]2164)the Chinese National Natural Science Foundation under Grant No.61563011the Ph.D research fund of Guizhou Normal University under Grant No.11904-0514170High level talent research project of Guizhou Institute of Technology(No.XJGC20150405).
文摘This article presents a finite-time robust control(FTRC)of a transformerless STATCOM based on a cascaded multilevel H-bridge converter(CMHC)with star configuration.The FTRC is first proposed for the current loop control of a CMHC-based transformerless STATCOM by using the finite time robust control theory.Taking the parameters,perturbations and external disturbances into account and using coordinate transformation method,the nonlinear dynamic model of the CMHC-based transformerless STATCOM is transformed into a standard nonlinear port-controlled dissipative Hamiltonian(PCDH)structure.Based on the PCDH structure,an FTRC is designed for the CMHC-based transformerless STATCOM to improve the transient stability and oscillation damping of power system.Finally,the simulation results demonstrate that the FTRC has better dynamic performance and strong robustness in comparison with the passivity-based control of the CMHC-based transformerless STATCOM.
文摘储能技术是构建以新能源为主体的新型电力系统的关键技术和维持微网可靠稳定运行的重要保证。国内外现有理论研究及示范工程主要集中于单级式链式储能系统,功率模块与电池系统之间无源连接,结构简单但控制自由度不高。同时,针对基于链式储能的电池荷电状态(state of charge,SOC)不均衡问题,现有的相内SOC均衡控制策略存在不同负载率适应性不足、极度不均衡时可能过调制等缺点,为此,文中基于两级式链式储能系统,研究其总体控制策略,对相间、相内SOC均衡策略进行分析,并提出一种自适应的相内SOC均衡策略,详细说明均衡控制参数的设计原则。该策略能有效地改善链式储能系统在轻载、重载等不同工况下的适应性和均衡效果。最终通过仿真验证了所提控制策略的可行性和有效性,从而为工程实施提供理论储备和技术支撑。
文摘Because of the broad application of multilevel converters in the high-power area,a cascaded multilevel voltage-source inverter with phase-shifted SPWM(PS-SPWM)switching scheme is proposed as a static syn-chronous compensator(STATCOM).This can eliminate the bulky and weighty transformers and reduce power loss.In addition,the equivalent carrier frequency can be doubled and the output harmonics will be reduced compared with the STATCOM being put into operation.The operating principle and control methods are analyzed in detail and the feasibility is validated by simulation with MATLAB.