Cascaded H-bridge inverter(CHBI) with supercapacitors(SCs) and dc-dc stage shows significant promise for medium to high voltage energy storage applications. This paper investigates the voltage balance of capacitors wi...Cascaded H-bridge inverter(CHBI) with supercapacitors(SCs) and dc-dc stage shows significant promise for medium to high voltage energy storage applications. This paper investigates the voltage balance of capacitors within the CHBI, including both the dc-link capacitors and SCs. Balance control over the dc-link capacitor voltages is realized by the dcdc stage in each submodule(SM), while a hybrid modulation strategy(HMS) is implemented in the H-bridge to balance the SC voltages among the SMs. Meanwhile, the dc-link voltage fluctuations are analyzed under the HMS. A virtual voltage variable is introduced to coordinate the balancing of dc-link capacitor voltages and SC voltages. Compared to the balancing method that solely considers the SC voltages, the presented method reduces the dc-link voltage fluctuations without affecting the voltage balance of SCs. Finally, both simulation and experimental results verify the effectiveness of the presented method.展开更多
We designed an improved direct-current capacitor voltage balancing control model predictive control(MPC)for single-phase cascaded H-bridge multilevel photovoltaic(PV)inverters.Compared with conventional voltage balanc...We designed an improved direct-current capacitor voltage balancing control model predictive control(MPC)for single-phase cascaded H-bridge multilevel photovoltaic(PV)inverters.Compared with conventional voltage balanc-ing control methods,the method proposed could make the PV strings of each submodule operate at their maximum power point by independent capacitor voltage control.Besides,the predicted and reference value of the grid-connected current was obtained according to the maximum power output of the maximum power point tracking.A cost function was con-structed to achieve the high-precision grid-connected control of the CHB inverter.Finally,the effectiveness of the proposed control method was verified through a semi-physical simulation platform with three submodules.展开更多
With the high penetration of renewable energy,new challenges,such as power fluctuation suppression and inertial support capability,have arisen in the power sector.Battery energy storage systems play an essential role ...With the high penetration of renewable energy,new challenges,such as power fluctuation suppression and inertial support capability,have arisen in the power sector.Battery energy storage systems play an essential role in renewable energy integration.In this paper,a distributed virtual synchronous generator(VSG)control method for a battery energy storage system(BESS)with a cascaded H-bridge converter in a grid-connected mode is proposed.The VSG is developed without communication dependence,and state-of-charge(SOC)balancing control is achieved using the distributed average algorithm.Owing to the low varying speed of SOC,the bandwidth of the distributed communication networks is extremely slow,which decreases the cost.Therefore,the proposed method can simultaneously provide inertial support and accurate SOC balancing.The stability is also proved using root locus analysis.Finally,simulations under different conditions are carried out to verify the effectiveness of the proposed method.展开更多
In recent days, the multilevel inverter technology is widely applied to domestic and industrial applications for medium voltage conversion. But, the power quality issues of the multilevel inverter limit the usage of m...In recent days, the multilevel inverter technology is widely applied to domestic and industrial applications for medium voltage conversion. But, the power quality issues of the multilevel inverter limit the usage of much sensitive equipment like medical instruments. The lower distortion level of the output voltage and current can generate a quality sinusoidal output voltage in inverters and they can be used for many applications. The harmonics can cause major problems in equipments due to the nonlinear loads connected with the power system. So, it is necessary to minimize the losses to raise its overall efficiency. In this paper, a new topology of seven level asymmetrical cascaded H-bridge multilevel inverter with a Fuzzy logic controller had been implemented to reduce the Total Harmonic Distortion (THD) and to improve the overall performance of the inverter. The proposed model is well suited for use with a solar PV application. In this topology, only six IGBT switches are used with three different voltage ratings of PV modules (1:2:4). The lower number of semiconductor switches leads to minimizing overall di/dt ratings and voltage stress on each switches and switching losses. The gate pulses generated by Sinusoidal Pulse Width Modulation (SPWM) technique with a Fuzzy logic controller are also introduced. A buck-boost converter is used to maintain the constant PV voltage level integrated by an MPPT technique followed by Perturb and Observer algorithm is also implemented. The MPPT is used to harness the maximum power of solar radiations under its various climatic conditions. The new topology is evaluated by a Matlab/Simulink model and compared with a hardware model. The results proved that the THD achieved by this topology is 1.66% and realized that it meets the IEEE harmonic standards.展开更多
In the cascaded H-bridge inverter(CHBI)with supercapacitor and dc-dc stage,inherent second-order harmonic power flows through each submodule(SM),causing fluctuations in both the dc-link voltage and the dc-dc current.T...In the cascaded H-bridge inverter(CHBI)with supercapacitor and dc-dc stage,inherent second-order harmonic power flows through each submodule(SM),causing fluctuations in both the dc-link voltage and the dc-dc current.There exist limitations in handling these fluctuations at variable output frequencies when employing proportional-integral(PI)control to the dc-dc stage.This paper aims to coordinately control these second-order harmonic voltage and current fluctuations in the CHBI.The presented method configures a specific second-order harmonic voltage reference,equipped with a maximum voltage fluctuation constraint and a suitable phase,for the dc-dc stage.A PI-resonant controller is used to track the configured reference.This allows for regulating the second-order harmonic fluctuation in the average dc-link voltage among the SMs within a certain value.Importantly,the second-order harmonic fluctuation in the dc-dc current can also be reduced.Simulation and experimental results demonstrate the effectiveness of the presented method.展开更多
The cluster DC voltage balancing control adopting zero-sequence voltage injection is appropriate for the starconnected cascaded H-bridge STATCOM because no zerosequence currents are generated in the three-phase three-...The cluster DC voltage balancing control adopting zero-sequence voltage injection is appropriate for the starconnected cascaded H-bridge STATCOM because no zerosequence currents are generated in the three-phase three-wire system.However,as the zero-sequence voltage is expressed in trigonometric form,traditional control methods involve many complicated operations,such as the square-root,trigonometric operations,and inverse tangent operations.To simplify cluster voltage balancing control,this paper converts the zero-sequence voltage to the dq frame in a DC representation by introducing a virtually orthogonal variable,and the DC components of the zero-sequence voltage in the dq frame are regulated linearly by proportional integral regulators,rather than being calculated from uneven active powers in traditional controls.This removes all complicated operations.Finally,this paper presents simulation and experimental results for a 400 V±7.5 kvar star-connected STATCOM,in balanced and unbalanced scenarios,thereby verifying the effectiveness of the proposed control.展开更多
A study is conducted to evaluate 1.2 kV silicon-carbide(SiC)MOSFETs in a cascaded H-bridge(CHB)three-phase inverter for medium-voltage applications.The main purpose of this topology is to remove the need for a bulky 6...A study is conducted to evaluate 1.2 kV silicon-carbide(SiC)MOSFETs in a cascaded H-bridge(CHB)three-phase inverter for medium-voltage applications.The main purpose of this topology is to remove the need for a bulky 60 Hz transformer normally used to step up the output signal of a voltage source inverter to a medium-voltage level.Using SiC devices(1.2-6.5 kV SiC MOSFETs)which have a high breakdown voltage,enables the system to meet and withstand the medium-voltage stress using only a minimal number of cascaded modules.The SiC-based power electronics when used in the presented topology considerably reduce the complexity usually encountered when Si devices are used to meet the medium-voltage level and power scalability.Simulation and preliminary experimental results on a low-voltage prototype verifies the nine-level CHB topology presented in this study.展开更多
To explore the clustered voltage balancing mechanism of the cascaded H-bridge static synchronous compensator(STATCOM),this paper analyzes the causes of unbalanced clustered voltage.The negative-sequence current caused...To explore the clustered voltage balancing mechanism of the cascaded H-bridge static synchronous compensator(STATCOM),this paper analyzes the causes of unbalanced clustered voltage.The negative-sequence current caused by the compensation of unbalanced reactive power or detection and control errors and the zero-sequence voltage caused by voltage drift of the STATCOM neutral point contribute to unbalanced clustered voltage.On this basis,this paper proposes a control strategy to inject negative-sequence current and zero-sequence voltage simultaneously.The injection of negative-sequence current may cause current asymmetry in the grid,and the zerosequence injection has a relatively limited balancing ability in the clustered voltages.The proposed control strategy can not only generate a faster balancing response than the traditional zero-sequence voltage injection method,but also lower the extent of current asymmetry compared with the traditional negative-sequence current injection method.Then,the negative-sequence current and zero-sequence voltage injection are further transformed into the dq frame to establish a unified frame.The effectiveness of the proposed control strategy is verified by the simulation and experimental results.展开更多
Cascaded H-Bridge inverter has been researched for the past two decades, but there are no explicit guidelines on how one can realize a cascaded NPC (neutral-point-clamped)/H-Bridge inverter. Past research has also c...Cascaded H-Bridge inverter has been researched for the past two decades, but there are no explicit guidelines on how one can realize a cascaded NPC (neutral-point-clamped)/H-Bridge inverter. Past research has also concentrated on realizing a five-level NPC/H-Bridge inverter. This fails to address the principle of realizing a general cascaded N-level NPC/H-Bridge PWM inverter. This paper proposes an improved topology for achieving a nine-level cascaded NPC (neutral-point-clamped) H-Bridge inverter with reduced harmonic content. This new proposed topology requires a lesser number of separate dc sources as compared to conventional cascaded H-Bridge inverter. The whole system is considered as having four three level legs having two positive and two negative legs. By properly phase shifting the modulating wave and carriers, a nine-level output is achieved. A theoretical harmonic analysis of the proposed inverter is carried out based on double Fourier principle. The theoretical results are verified through MATLAB simulation.展开更多
Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been c...Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been considered as one of the powerful tools in promoting the fields of imaging processing and object recognition.However,the existing optical system architecture cannot be reconstructed to the realization of multi-functional artificial intelligence systems simultaneously.To push the development of this issue,we propose the pluggable diffractive neural networks(P-DNN),a general paradigm resorting to the cascaded metasurfaces,which can be applied to recognize various tasks by switching internal plug-ins.As the proof-of-principle,the recognition functions of six types of handwritten digits and six types of fashions are numerical simulated and experimental demonstrated at near-infrared regimes.Encouragingly,the proposed paradigm not only improves the flexibility of the optical neural networks but paves the new route for achieving high-speed,low-power and versatile artificial intelligence systems.展开更多
Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since...Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since the amount of available information channels is limited.Herein,we propose and demonstrate an optical secret sharing framework based on the multi-dimensional multiplexing liquid crystal(LC)holograms.The LC holograms are used as spatially separated shares to carry secret images.The polarization of the incident light and the distance between different shares are served as secret keys,which can significantly improve the information security and capacity.Besides,the decryption condition is also restricted by the applied external voltage due to the variant diffraction efficiency,which further increases the information security.In implementation,an artificial neural network(ANN)model is developed to carefully design the phase distribution of each LC hologram.With the advantage of high security,high capacity and simple configuration,our optical secret sharing framework has great potentials in optical encryption and dynamic holographic display.展开更多
The photovoltaic system is experiencing great growth in the production of electrical energy these days.It plays a vital role in the production of electrical energy in isolated towns.It is generally either stand-alone ...The photovoltaic system is experiencing great growth in the production of electrical energy these days.It plays a vital role in the production of electrical energy in isolated towns.It is generally either stand-alone or connected to a network.The energy produced by the photovoltaic generator is in continuous form;the conversion from its continuous form to the alternating form requires a converter:the inverter.In order to improve the quality of the waveform,we moved from the classic solar inverter to multilevel inverters.These multilevel inverters are equipped with power switches which are required to withstand strong fluctuations in the voltage produced by the GPV(photovoltaic generator).It is obvious that the degradation of the inverter leads to a distortion of the wave quality.This article presents the simulation of the GPV-Chopper Boost-Inverter chain in fault-tolerant cascaded H-bridges in order to overcome the difficulties of voltage constraints experienced by power switches(IGBT:insulated gate bipolar transistor).The results of simulations carried out in Matlab/Simulink show good performance of the designed inverter model.展开更多
A modular system of cascaded converters based on model predictive control(MPC)is proposed to meet the application requirements ofmultiple voltage levels and electrical isolation in renewable energy generation systems....A modular system of cascaded converters based on model predictive control(MPC)is proposed to meet the application requirements ofmultiple voltage levels and electrical isolation in renewable energy generation systems.The system consists of a Buck/Boost+CLLLC cascaded converter as a submodule,which is combined in series and parallel on the input and output sides to achieve direct-current(DC)voltage transformation,bidirectional energy flow,and electrical isolation.The CLLLC converter operates in DC transformer mode in the submodule,while the Buck/Boost converter participates in voltage regulation.This article establishes a suitable mathematical model for the proposed system topology,and uses MPC to control the system based on this mathematical model.Module parameters are designed and calculated,and simulation is built in MATLAB/Simulink to complete the simulation comparison experiment between MPC and traditional proportional integral(PI)control.Finally,a physical experimental platform is built to complete the physical comparison experiment.The simulation and physical experimental results prove that the control accuracy and response speed ofMPC are better than traditional PI control strategy.展开更多
This paper presents a combined control and modulation technique to enhance the power quality(PQ)and power reliability(PR)of a hybrid energy system(HES)through a single-phase 11-level cascaded H-bridge inverter(11-CHBI...This paper presents a combined control and modulation technique to enhance the power quality(PQ)and power reliability(PR)of a hybrid energy system(HES)through a single-phase 11-level cascaded H-bridge inverter(11-CHBI).The controller and inverter specifically regulate the HES and meet the load demand.To track optimum power,a Modified Perturb and Observe(MP&O)technique is used for HES.Ultra-capacitor(UCAP)based energy storage device and a novel current control strategy are proposed to provide additional active power support during both voltage sag and swell conditions.For an improved PQ and PR,a two-way current control strategy such as the main controller(MC)and auxiliary controller(AC)is suggested for the 11-CHBI operation.MC is used to regulate the active current component through the fuzzy controller(FC),and AC is used to regulate the dc-link voltage of CHBI through a neural network-based PI controller(ANN-PI).By tracking the reference signals fromMC and AC,a novel hybrid pulse widthmodulation(HPWM)technique is proposed for the 11-CHBI operation.To justify and analyze the MATLAB/Simulink software-based designed model,the robust controller performance is tested through numerous steady-state and dynamic state case studies.展开更多
This work presents an implementation of an innovative single phase multilevel inverter using capacitors with reduced switches. The proposed Capacitor pattern H-bridge Multilevel Inverter (CPHMLI) topology consists of ...This work presents an implementation of an innovative single phase multilevel inverter using capacitors with reduced switches. The proposed Capacitor pattern H-bridge Multilevel Inverter (CPHMLI) topology consists of a proper number of Capacitor connected with switches and power sources. The advanced switching control supplied by Pulse Width Modulation (PDPWM) to attain mixed staircase switching state. The charging and discharging mode are achieved by calculating the voltage error at the load. Furthermore, to accomplish the higher voltage levels at the output with less number of semiconductors switches and simple commutation designed using CPHMLI topology. To prove the performance and effectiveness of the proposed approach, a set of experiments performed under various load conditions using MATLAB tool.展开更多
Tunable coherent emission is generated in a single-pass, cascaded wavelength conversion process from mode-locked laser-pumped monolithic periodically poled lithium niobate(PPLN). Three ranges of wavelength, includin...Tunable coherent emission is generated in a single-pass, cascaded wavelength conversion process from mode-locked laser-pumped monolithic periodically poled lithium niobate(PPLN). Three ranges of wavelength, including visible output from 628 nm to 639 nm, near-infrared output from 797 nm to 816 nm, and mid-infrared output from 3167 nm to 3459 nm,were obtained from the monolithic PPLN, which consists of a 10-mm section for 532-nm-pumped optical parametric generation(OPG) and a 7-mm section for 1064-nm-pumped sum frequency generation(SFG). A pump-to-signal conversion efficiency of 23.4% for OPG at 50°C and a quantum efficiency of 26.2% for SFG at 200°C were obtained.展开更多
A single cathode with a cascaded bias voltage arc plasma source has been developed with a new quartz cathode chamber,instead of the previous copper chambers,to provide better diagnostic observation and access to the p...A single cathode with a cascaded bias voltage arc plasma source has been developed with a new quartz cathode chamber,instead of the previous copper chambers,to provide better diagnostic observation and access to the plasma optical emission.The cathode chamber cooling scheme is also modified to be naturally cooled only by light emission without cooling water to improve the optical thin performance in the optical path.A single-parameter physical model has been developed to describe the power dissipated in the cascaded bias voltage arc discharge argon plasmas,which have been investigated by utilizing optical emission spectroscopy(OES) and Langmuir probe.In the experiments,discharge currents from 50 A to 100 A,argon flow rates from 800 sccm to 2000 sccm and magnetic fields of 0.1 T and 0.2 T were chosen.The results show:(a) the relationship between the averaged resistivity and the averaged current density exhibits an empirical scaling law as η∝ j^(-0.63369) and the power dissipated in the arc has a strong relation with the filling factor;(b) through the quartz,the argon ions optical emission lines have been easily observed and are dominating with wavelengths between 340 nm and 520 nm,which are the emissions of Ar^+-434.81 nm and Ar^+-442.60 nm line,and theintensities are increasing with the arc current and decreasing with the inlet argon flow rate;and(c) the electron density and temperature can reach 2.0 × 10^19 m^-3 and 0.48 eV,respectively,under the conditions of an arc current of 90 A and a magnetic field of 0.2 T.The half-width of the ne radial profile is approximatively equal to a few Larmor radii of electrons and can be regarded as the diameter of the plasma jet in the experiments.展开更多
基金supported in part by the CAS Project for Young Scientists in Basic Research under Grant No. YSBR-045the Youth Innovation Promotion Association CAS under Grant 2022137the Institute of Electrical Engineering CAS under Grant E155320101。
文摘Cascaded H-bridge inverter(CHBI) with supercapacitors(SCs) and dc-dc stage shows significant promise for medium to high voltage energy storage applications. This paper investigates the voltage balance of capacitors within the CHBI, including both the dc-link capacitors and SCs. Balance control over the dc-link capacitor voltages is realized by the dcdc stage in each submodule(SM), while a hybrid modulation strategy(HMS) is implemented in the H-bridge to balance the SC voltages among the SMs. Meanwhile, the dc-link voltage fluctuations are analyzed under the HMS. A virtual voltage variable is introduced to coordinate the balancing of dc-link capacitor voltages and SC voltages. Compared to the balancing method that solely considers the SC voltages, the presented method reduces the dc-link voltage fluctuations without affecting the voltage balance of SCs. Finally, both simulation and experimental results verify the effectiveness of the presented method.
基金Research on Control Methods and Fault Tolerance of Multilevel Electronic Transformers for PV Access(Project number:042300034204)Research on Open-Circuit Fault Diagnosis and Seamless Fault-Tolerant Control of Multiple Devices in Modular Multilevel Digital Power Amplifiers(Project number:202203021212210)Research on Key Technologies and Demonstrations of Low-Voltage DC Power Electronic Converters Based on SiC Devices Access(Project number:202102060301012)。
文摘We designed an improved direct-current capacitor voltage balancing control model predictive control(MPC)for single-phase cascaded H-bridge multilevel photovoltaic(PV)inverters.Compared with conventional voltage balanc-ing control methods,the method proposed could make the PV strings of each submodule operate at their maximum power point by independent capacitor voltage control.Besides,the predicted and reference value of the grid-connected current was obtained according to the maximum power output of the maximum power point tracking.A cost function was con-structed to achieve the high-precision grid-connected control of the CHB inverter.Finally,the effectiveness of the proposed control method was verified through a semi-physical simulation platform with three submodules.
基金This work was supported by National Natural Science Foundation of China under Grant U1909201,Distributed active learning theory and method for operational situation awareness of active distribution network.
文摘With the high penetration of renewable energy,new challenges,such as power fluctuation suppression and inertial support capability,have arisen in the power sector.Battery energy storage systems play an essential role in renewable energy integration.In this paper,a distributed virtual synchronous generator(VSG)control method for a battery energy storage system(BESS)with a cascaded H-bridge converter in a grid-connected mode is proposed.The VSG is developed without communication dependence,and state-of-charge(SOC)balancing control is achieved using the distributed average algorithm.Owing to the low varying speed of SOC,the bandwidth of the distributed communication networks is extremely slow,which decreases the cost.Therefore,the proposed method can simultaneously provide inertial support and accurate SOC balancing.The stability is also proved using root locus analysis.Finally,simulations under different conditions are carried out to verify the effectiveness of the proposed method.
文摘In recent days, the multilevel inverter technology is widely applied to domestic and industrial applications for medium voltage conversion. But, the power quality issues of the multilevel inverter limit the usage of much sensitive equipment like medical instruments. The lower distortion level of the output voltage and current can generate a quality sinusoidal output voltage in inverters and they can be used for many applications. The harmonics can cause major problems in equipments due to the nonlinear loads connected with the power system. So, it is necessary to minimize the losses to raise its overall efficiency. In this paper, a new topology of seven level asymmetrical cascaded H-bridge multilevel inverter with a Fuzzy logic controller had been implemented to reduce the Total Harmonic Distortion (THD) and to improve the overall performance of the inverter. The proposed model is well suited for use with a solar PV application. In this topology, only six IGBT switches are used with three different voltage ratings of PV modules (1:2:4). The lower number of semiconductor switches leads to minimizing overall di/dt ratings and voltage stress on each switches and switching losses. The gate pulses generated by Sinusoidal Pulse Width Modulation (SPWM) technique with a Fuzzy logic controller are also introduced. A buck-boost converter is used to maintain the constant PV voltage level integrated by an MPPT technique followed by Perturb and Observer algorithm is also implemented. The MPPT is used to harness the maximum power of solar radiations under its various climatic conditions. The new topology is evaluated by a Matlab/Simulink model and compared with a hardware model. The results proved that the THD achieved by this topology is 1.66% and realized that it meets the IEEE harmonic standards.
基金supported by the National Key Research and Development Program of China under Grant 2023YFB2407400。
文摘In the cascaded H-bridge inverter(CHBI)with supercapacitor and dc-dc stage,inherent second-order harmonic power flows through each submodule(SM),causing fluctuations in both the dc-link voltage and the dc-dc current.There exist limitations in handling these fluctuations at variable output frequencies when employing proportional-integral(PI)control to the dc-dc stage.This paper aims to coordinately control these second-order harmonic voltage and current fluctuations in the CHBI.The presented method configures a specific second-order harmonic voltage reference,equipped with a maximum voltage fluctuation constraint and a suitable phase,for the dc-dc stage.A PI-resonant controller is used to track the configured reference.This allows for regulating the second-order harmonic fluctuation in the average dc-link voltage among the SMs within a certain value.Importantly,the second-order harmonic fluctuation in the dc-dc current can also be reduced.Simulation and experimental results demonstrate the effectiveness of the presented method.
基金supported by National Key R&D Program of China(No.2021YFB2401100)the Science and Technology Project of State Grid Corporation of China(No.5211DS22002C).
文摘The cluster DC voltage balancing control adopting zero-sequence voltage injection is appropriate for the starconnected cascaded H-bridge STATCOM because no zerosequence currents are generated in the three-phase three-wire system.However,as the zero-sequence voltage is expressed in trigonometric form,traditional control methods involve many complicated operations,such as the square-root,trigonometric operations,and inverse tangent operations.To simplify cluster voltage balancing control,this paper converts the zero-sequence voltage to the dq frame in a DC representation by introducing a virtually orthogonal variable,and the DC components of the zero-sequence voltage in the dq frame are regulated linearly by proportional integral regulators,rather than being calculated from uneven active powers in traditional controls.This removes all complicated operations.Finally,this paper presents simulation and experimental results for a 400 V±7.5 kvar star-connected STATCOM,in balanced and unbalanced scenarios,thereby verifying the effectiveness of the proposed control.
文摘A study is conducted to evaluate 1.2 kV silicon-carbide(SiC)MOSFETs in a cascaded H-bridge(CHB)three-phase inverter for medium-voltage applications.The main purpose of this topology is to remove the need for a bulky 60 Hz transformer normally used to step up the output signal of a voltage source inverter to a medium-voltage level.Using SiC devices(1.2-6.5 kV SiC MOSFETs)which have a high breakdown voltage,enables the system to meet and withstand the medium-voltage stress using only a minimal number of cascaded modules.The SiC-based power electronics when used in the presented topology considerably reduce the complexity usually encountered when Si devices are used to meet the medium-voltage level and power scalability.Simulation and preliminary experimental results on a low-voltage prototype verifies the nine-level CHB topology presented in this study.
文摘To explore the clustered voltage balancing mechanism of the cascaded H-bridge static synchronous compensator(STATCOM),this paper analyzes the causes of unbalanced clustered voltage.The negative-sequence current caused by the compensation of unbalanced reactive power or detection and control errors and the zero-sequence voltage caused by voltage drift of the STATCOM neutral point contribute to unbalanced clustered voltage.On this basis,this paper proposes a control strategy to inject negative-sequence current and zero-sequence voltage simultaneously.The injection of negative-sequence current may cause current asymmetry in the grid,and the zerosequence injection has a relatively limited balancing ability in the clustered voltages.The proposed control strategy can not only generate a faster balancing response than the traditional zero-sequence voltage injection method,but also lower the extent of current asymmetry compared with the traditional negative-sequence current injection method.Then,the negative-sequence current and zero-sequence voltage injection are further transformed into the dq frame to establish a unified frame.The effectiveness of the proposed control strategy is verified by the simulation and experimental results.
文摘Cascaded H-Bridge inverter has been researched for the past two decades, but there are no explicit guidelines on how one can realize a cascaded NPC (neutral-point-clamped)/H-Bridge inverter. Past research has also concentrated on realizing a five-level NPC/H-Bridge inverter. This fails to address the principle of realizing a general cascaded N-level NPC/H-Bridge PWM inverter. This paper proposes an improved topology for achieving a nine-level cascaded NPC (neutral-point-clamped) H-Bridge inverter with reduced harmonic content. This new proposed topology requires a lesser number of separate dc sources as compared to conventional cascaded H-Bridge inverter. The whole system is considered as having four three level legs having two positive and two negative legs. By properly phase shifting the modulating wave and carriers, a nine-level output is achieved. A theoretical harmonic analysis of the proposed inverter is carried out based on double Fourier principle. The theoretical results are verified through MATLAB simulation.
基金The authors acknowledge the funding provided by the National Key R&D Program of China(2021YFA1401200)Beijing Outstanding Young Scientist Program(BJJWZYJH01201910007022)+2 种基金National Natural Science Foundation of China(No.U21A20140,No.92050117,No.62005017)programBeijing Municipal Science&Technology Commission,Administrative Commission of Zhongguancun Science Park(No.Z211100004821009)This work was supported by the Synergetic Extreme Condition User Facility(SECUF).
文摘Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been considered as one of the powerful tools in promoting the fields of imaging processing and object recognition.However,the existing optical system architecture cannot be reconstructed to the realization of multi-functional artificial intelligence systems simultaneously.To push the development of this issue,we propose the pluggable diffractive neural networks(P-DNN),a general paradigm resorting to the cascaded metasurfaces,which can be applied to recognize various tasks by switching internal plug-ins.As the proof-of-principle,the recognition functions of six types of handwritten digits and six types of fashions are numerical simulated and experimental demonstrated at near-infrared regimes.Encouragingly,the proposed paradigm not only improves the flexibility of the optical neural networks but paves the new route for achieving high-speed,low-power and versatile artificial intelligence systems.
基金support from the National Natural Science Foundation of China (No.62005164,62222507,62175101,and 62005166)the Shanghai Natural Science Foundation (23ZR1443700)+3 种基金Shuguang Program of Shanghai Education Development Foundation and Shanghai Municipal Education Commission (23SG41)the Young Elite Scientist Sponsorship Program by CAST (No.20220042)Science and Technology Commission of Shanghai Municipality (Grant No.21DZ1100500)the Shanghai Municipal Science and Technology Major Project,and the Shanghai Frontiers Science Center Program (2021-2025 No.20).
文摘Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since the amount of available information channels is limited.Herein,we propose and demonstrate an optical secret sharing framework based on the multi-dimensional multiplexing liquid crystal(LC)holograms.The LC holograms are used as spatially separated shares to carry secret images.The polarization of the incident light and the distance between different shares are served as secret keys,which can significantly improve the information security and capacity.Besides,the decryption condition is also restricted by the applied external voltage due to the variant diffraction efficiency,which further increases the information security.In implementation,an artificial neural network(ANN)model is developed to carefully design the phase distribution of each LC hologram.With the advantage of high security,high capacity and simple configuration,our optical secret sharing framework has great potentials in optical encryption and dynamic holographic display.
文摘The photovoltaic system is experiencing great growth in the production of electrical energy these days.It plays a vital role in the production of electrical energy in isolated towns.It is generally either stand-alone or connected to a network.The energy produced by the photovoltaic generator is in continuous form;the conversion from its continuous form to the alternating form requires a converter:the inverter.In order to improve the quality of the waveform,we moved from the classic solar inverter to multilevel inverters.These multilevel inverters are equipped with power switches which are required to withstand strong fluctuations in the voltage produced by the GPV(photovoltaic generator).It is obvious that the degradation of the inverter leads to a distortion of the wave quality.This article presents the simulation of the GPV-Chopper Boost-Inverter chain in fault-tolerant cascaded H-bridges in order to overcome the difficulties of voltage constraints experienced by power switches(IGBT:insulated gate bipolar transistor).The results of simulations carried out in Matlab/Simulink show good performance of the designed inverter model.
基金supported by the National Key Research and Development Plan,Grant/Award Number:2018YFB1503005.
文摘A modular system of cascaded converters based on model predictive control(MPC)is proposed to meet the application requirements ofmultiple voltage levels and electrical isolation in renewable energy generation systems.The system consists of a Buck/Boost+CLLLC cascaded converter as a submodule,which is combined in series and parallel on the input and output sides to achieve direct-current(DC)voltage transformation,bidirectional energy flow,and electrical isolation.The CLLLC converter operates in DC transformer mode in the submodule,while the Buck/Boost converter participates in voltage regulation.This article establishes a suitable mathematical model for the proposed system topology,and uses MPC to control the system based on this mathematical model.Module parameters are designed and calculated,and simulation is built in MATLAB/Simulink to complete the simulation comparison experiment between MPC and traditional proportional integral(PI)control.Finally,a physical experimental platform is built to complete the physical comparison experiment.The simulation and physical experimental results prove that the control accuracy and response speed ofMPC are better than traditional PI control strategy.
基金Assistance provided by Council of scientific and industrial research(CSIR),Government of India,under the acknowledgment number 143460/2K19/1(File:09/969(0013)/2020-EMR-I)and Siksha O Anusandhan(Deemed to be University).
文摘This paper presents a combined control and modulation technique to enhance the power quality(PQ)and power reliability(PR)of a hybrid energy system(HES)through a single-phase 11-level cascaded H-bridge inverter(11-CHBI).The controller and inverter specifically regulate the HES and meet the load demand.To track optimum power,a Modified Perturb and Observe(MP&O)technique is used for HES.Ultra-capacitor(UCAP)based energy storage device and a novel current control strategy are proposed to provide additional active power support during both voltage sag and swell conditions.For an improved PQ and PR,a two-way current control strategy such as the main controller(MC)and auxiliary controller(AC)is suggested for the 11-CHBI operation.MC is used to regulate the active current component through the fuzzy controller(FC),and AC is used to regulate the dc-link voltage of CHBI through a neural network-based PI controller(ANN-PI).By tracking the reference signals fromMC and AC,a novel hybrid pulse widthmodulation(HPWM)technique is proposed for the 11-CHBI operation.To justify and analyze the MATLAB/Simulink software-based designed model,the robust controller performance is tested through numerous steady-state and dynamic state case studies.
文摘This work presents an implementation of an innovative single phase multilevel inverter using capacitors with reduced switches. The proposed Capacitor pattern H-bridge Multilevel Inverter (CPHMLI) topology consists of a proper number of Capacitor connected with switches and power sources. The advanced switching control supplied by Pulse Width Modulation (PDPWM) to attain mixed staircase switching state. The charging and discharging mode are achieved by calculating the voltage error at the load. Furthermore, to accomplish the higher voltage levels at the output with less number of semiconductors switches and simple commutation designed using CPHMLI topology. To prove the performance and effectiveness of the proposed approach, a set of experiments performed under various load conditions using MATLAB tool.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB632704)
文摘Tunable coherent emission is generated in a single-pass, cascaded wavelength conversion process from mode-locked laser-pumped monolithic periodically poled lithium niobate(PPLN). Three ranges of wavelength, including visible output from 628 nm to 639 nm, near-infrared output from 797 nm to 816 nm, and mid-infrared output from 3167 nm to 3459 nm,were obtained from the monolithic PPLN, which consists of a 10-mm section for 532-nm-pumped optical parametric generation(OPG) and a 7-mm section for 1064-nm-pumped sum frequency generation(SFG). A pump-to-signal conversion efficiency of 23.4% for OPG at 50°C and a quantum efficiency of 26.2% for SFG at 200°C were obtained.
基金supported by the International Thermonuclear Experimental Reactor(ITER)Program Special of Ministry of Science and Technology(No.2013GB114003)National Natural Science Foundation of China(Nos.11275135,11475122)
文摘A single cathode with a cascaded bias voltage arc plasma source has been developed with a new quartz cathode chamber,instead of the previous copper chambers,to provide better diagnostic observation and access to the plasma optical emission.The cathode chamber cooling scheme is also modified to be naturally cooled only by light emission without cooling water to improve the optical thin performance in the optical path.A single-parameter physical model has been developed to describe the power dissipated in the cascaded bias voltage arc discharge argon plasmas,which have been investigated by utilizing optical emission spectroscopy(OES) and Langmuir probe.In the experiments,discharge currents from 50 A to 100 A,argon flow rates from 800 sccm to 2000 sccm and magnetic fields of 0.1 T and 0.2 T were chosen.The results show:(a) the relationship between the averaged resistivity and the averaged current density exhibits an empirical scaling law as η∝ j^(-0.63369) and the power dissipated in the arc has a strong relation with the filling factor;(b) through the quartz,the argon ions optical emission lines have been easily observed and are dominating with wavelengths between 340 nm and 520 nm,which are the emissions of Ar^+-434.81 nm and Ar^+-442.60 nm line,and theintensities are increasing with the arc current and decreasing with the inlet argon flow rate;and(c) the electron density and temperature can reach 2.0 × 10^19 m^-3 and 0.48 eV,respectively,under the conditions of an arc current of 90 A and a magnetic field of 0.2 T.The half-width of the ne radial profile is approximatively equal to a few Larmor radii of electrons and can be regarded as the diameter of the plasma jet in the experiments.