The effects of cast iron pipe corrosion onwater quality risk and microbial ecology in drinking water distribution systems(DWDSs)were investigated.It was found that trihalomethane(THMs)concentration and antibiotic resi...The effects of cast iron pipe corrosion onwater quality risk and microbial ecology in drinking water distribution systems(DWDSs)were investigated.It was found that trihalomethane(THMs)concentration and antibiotic resistance genes(ARGs)increased sharply in the old DWDSs.Under the same residual chlorine concentration conditions,the adenosine triphos-phate concentration in the effluent of old DWDSs(Eff-old)was significantly higher than that in the effluent of newDWDSs.Moreover,stronger bioflocculation ability andweaker hy-drophobicity coexisted in the extracellular polymeric substances of Eff-old,meanwhile,iron particles could be well inserted into the structure of the biofilms to enhance the mechanical strength and stability of the biofilms,hence enhancing the formation of THMs.Old DWDSs significantly influenced the microbial community of bulk water and triggered stronger mi-crobial antioxidant systems response,resulting in higher ARGs abundance.Corroded cast iron pipes induced a unique interaction system of biofilms,chlorine,and corrosion prod-ucts.Therefore,as the age of cast iron pipes increases,the fluctuation of water quality and microbial ecology should be paid more attention to maintain the safety of tap water.展开更多
Corrosion in drinking water distribution systems(DWDSs)may lead to pipe failures and water quality deterioration;biocorrosion is the most common type.Chlorine disinfectants are widely used in DWDSs to inhibit microorg...Corrosion in drinking water distribution systems(DWDSs)may lead to pipe failures and water quality deterioration;biocorrosion is the most common type.Chlorine disinfectants are widely used in DWDSs to inhibit microorganism growth,but these also promote electrochemical corrosion to a certain extent.This study explored the independent and synergistic effects of chlorine and microorganisms on pipeline corrosion.Sodium hypochlorite(NaOCl)at different concentrations(0,0.25,0.50,and 0.75 mg/L)and iron-oxidizing bacteria(IOB)were added to the reaction system,and a biofilm annular reactor(BAR)was employed to simulate operational water supply pipes and explain the composite effects.The degree of corrosion became severe with increasing NaOCl dosage.IOB accelerated the corrosion rate at an early stage,after which the reaction system gradually stabilized.When NaOCl and IOB existed together in the BAR,both synergistic and antagonistic effects occurred during the corrosion process.The AOC content increased due to the addition of NaOCl,which is conducive to bacterial regrowth.However,biofilm on cast iron coupons was greatly influenced by the disinfectant,leading to a decrease in microbial biomass over time.More research is needed to provide guidelines for pipeline corrosion control.展开更多
The filling and solidification of a malleable iron pipe casting manufactured by DISA casting mold line with different design parameters were calculated by using software MAGMASOFT. Then the shrinkage porosity was pred...The filling and solidification of a malleable iron pipe casting manufactured by DISA casting mold line with different design parameters were calculated by using software MAGMASOFT. Then the shrinkage porosity was predicted by thermal criterion. Based on the simulation results, the influences of the runner ratio and feeder position on the porosity were discussed. The results show that synchronization of injection can be significantly influenced by the size of downsprue section, and an de-sign structure of DISA gating system was used to solve the problem of flow imbalance in the filling procegs. At the same time, the riser was designed on the hotspot for feeding shrinkage. At last, the optimizated gating system and feeding system were ac-complished to eliminate shrinkage porosity.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52000043,and 51838005)the intro-duced innovative R&D team project under the“The Pearl River Talent Recruitment Program”of Guangdong Province(No.2019ZT08L387)+2 种基金the Guangdong Natural Science Foundation(No.2023A1515011509)the Science and Technology Research Project of Guangzhou(Nos.202201020177,202102020986 and 202102021044)the special fund from Key Laboratory of Drinking Water Science and Technology,Research Center for Eco-Environmental Sciences,Chinese Academy of Sciences(No.20K01KLDWST).
文摘The effects of cast iron pipe corrosion onwater quality risk and microbial ecology in drinking water distribution systems(DWDSs)were investigated.It was found that trihalomethane(THMs)concentration and antibiotic resistance genes(ARGs)increased sharply in the old DWDSs.Under the same residual chlorine concentration conditions,the adenosine triphos-phate concentration in the effluent of old DWDSs(Eff-old)was significantly higher than that in the effluent of newDWDSs.Moreover,stronger bioflocculation ability andweaker hy-drophobicity coexisted in the extracellular polymeric substances of Eff-old,meanwhile,iron particles could be well inserted into the structure of the biofilms to enhance the mechanical strength and stability of the biofilms,hence enhancing the formation of THMs.Old DWDSs significantly influenced the microbial community of bulk water and triggered stronger mi-crobial antioxidant systems response,resulting in higher ARGs abundance.Corroded cast iron pipes induced a unique interaction system of biofilms,chlorine,and corrosion prod-ucts.Therefore,as the age of cast iron pipes increases,the fluctuation of water quality and microbial ecology should be paid more attention to maintain the safety of tap water.
基金grateful for primary support from the National Natural Science Foundation of China(Grant No.51979194).
文摘Corrosion in drinking water distribution systems(DWDSs)may lead to pipe failures and water quality deterioration;biocorrosion is the most common type.Chlorine disinfectants are widely used in DWDSs to inhibit microorganism growth,but these also promote electrochemical corrosion to a certain extent.This study explored the independent and synergistic effects of chlorine and microorganisms on pipeline corrosion.Sodium hypochlorite(NaOCl)at different concentrations(0,0.25,0.50,and 0.75 mg/L)and iron-oxidizing bacteria(IOB)were added to the reaction system,and a biofilm annular reactor(BAR)was employed to simulate operational water supply pipes and explain the composite effects.The degree of corrosion became severe with increasing NaOCl dosage.IOB accelerated the corrosion rate at an early stage,after which the reaction system gradually stabilized.When NaOCl and IOB existed together in the BAR,both synergistic and antagonistic effects occurred during the corrosion process.The AOC content increased due to the addition of NaOCl,which is conducive to bacterial regrowth.However,biofilm on cast iron coupons was greatly influenced by the disinfectant,leading to a decrease in microbial biomass over time.More research is needed to provide guidelines for pipeline corrosion control.
文摘The filling and solidification of a malleable iron pipe casting manufactured by DISA casting mold line with different design parameters were calculated by using software MAGMASOFT. Then the shrinkage porosity was predicted by thermal criterion. Based on the simulation results, the influences of the runner ratio and feeder position on the porosity were discussed. The results show that synchronization of injection can be significantly influenced by the size of downsprue section, and an de-sign structure of DISA gating system was used to solve the problem of flow imbalance in the filling procegs. At the same time, the riser was designed on the hotspot for feeding shrinkage. At last, the optimizated gating system and feeding system were ac-complished to eliminate shrinkage porosity.