期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Asymmetric cast-rolling of 1050 aluminum alloy strip under multi-energy field 被引量:2
1
作者 石琛 毛大恒 扶宗礼 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第9期2815-2823,共9页
Technological parameters of asymmetric cast-rolling under multi-energy field were investigated on horizontal twin roll caster(d400 mm×500 mm), and their effects on structures and properties of 1050 strips were ... Technological parameters of asymmetric cast-rolling under multi-energy field were investigated on horizontal twin roll caster(d400 mm×500 mm), and their effects on structures and properties of 1050 strips were analyzed by comparing with traditional cast-rolling. Results show that when length of cast-rolling area is 70 mm, melt temperature of head box is 670 °C, cast rolling speed is 1.3 m/min, exciting current is 10 A, center frequency is(13±1) Hz, ultrasonic power is 200 W and ultrasonic frequency is(20±0.2) kHz, the 1050 strip with the best microstructure can be prepared successfully; its center segregated layer disappears; the average grain size is reduced by about 40%; the crystal grains are distributed evenly; micro segregation decreases obviously; the precipitated phases are distributed along the grain boundaries evenly; and the tensile strength, yield strength, elongation and micro-hardness of cast-rolled strip are improved by 22.6%, 23.66%, 38.75% and 9.90%, respectively. 展开更多
关键词 aluminum alloy 1050 asymmetric cast-rolling multi-energy field microstructure mechanical properties
下载PDF
Evolution of bonding interface in solid-liquid cast-rolling bonding of Cu/Al clad strip 被引量:11
2
作者 Hua-gui HUANG Yi-kang DONG +1 位作者 Meng YAN Feng-shan DU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第5期1019-1025,共7页
Cu/Al clad strips are prepared using solid?liquid cast-rolling bonding(SLCRB)technique with a d160mm×150mm twin-roll experimental caster.The extent of interfacial reactions,composition of the reaction products,an... Cu/Al clad strips are prepared using solid?liquid cast-rolling bonding(SLCRB)technique with a d160mm×150mm twin-roll experimental caster.The extent of interfacial reactions,composition of the reaction products,and their micro-morphology evolution in the SLCRB process are investigated with scanning electron microscope(SEM),energy dispersive spectrometer(EDS),and X-ray diffraction(XRD).In the casting pool,initial aluminized coating is first generated on the copper strip surface,with the diffusion layer mainly consisting ofα(Al)+CuAl2and growing at high temperatures,with the maximum thickness of10μm.After sequent rolling below the kiss point,the diffusion layer is broken by severe elongation,which leads to an additional crack bond process with a fresh interface of virgin base metal.The average thickness is reduced from10to5μm.The reaction products,CuAl2,CuAl,and Cu9Al4,are dispersed along the rolling direction.Peeling and bending test results indicate that the fracture occurs in the aluminum substrate,and the morphology is a dimple pattern.No crack or separation is found at the bonding interface after90°-180°bending.The presented method provides an economical way to fabricate Cu/Al clad strip directly. 展开更多
关键词 Cu/Al clad strip solid.liquid cast-rolling bonding bonding interface reaction diffusion peeling test
下载PDF
Cast-rolling force model in solid-liquid cast-rolling bonding(SLCRB) process for fabricating bimetal clad strips 被引量:7
3
作者 Jun-peng ZHANG Hua-gui HUANG +2 位作者 Ri-dong ZHAO Miao FENG Kai MENG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第3期626-635,共10页
Based on twin-roll casting, a cast-rolling force model was proposed to predict the rolling force in the bimetal solid-liquid cast-rolling bonding(SLCRB) process. The solid-liquid bonding zone was assumed to be below t... Based on twin-roll casting, a cast-rolling force model was proposed to predict the rolling force in the bimetal solid-liquid cast-rolling bonding(SLCRB) process. The solid-liquid bonding zone was assumed to be below the kiss point(KP). The deformation resistance of the liquid zone was ignored. Then, the calculation model was derived. A 2D thermal-flow coupled simulation was established to provide a basis for the parameters in the model, and then the rolling forces of the Cu/Al clad strip at different rolling speeds were calculated. Meanwhile, through measurement experiments, the accuracy of the model was verified. The influence of the rolling speed, the substrate strip thickness, and the material on the rolling force was obtained. The results indicate that the rolling force decreases with the increase of the rolling speed and increases with the increase of the thickness and thermal conductivity of the substrate strip. The rolling force is closely related to the KP height. Therefore, the formulation of reasonable process parameters to control the KP height is of great significance to the stability of cast-rolling forming. 展开更多
关键词 bimetal clad strip solid−liquid cast-rolling bonding rolling force calculation model kiss point thermal−flow coupled simulation
下载PDF
NUMERICAL STUDY ON 3-D FLUID FLOW WITHIN THE MOLTEN POOL DURING UNEQUAL DIAMETER TWIN ROLL STRIP CAST-ROLLING
4
作者 S. W Ma, J.C, He and H.S. Di 1) School of Materials and Metallurgy, Northeastern University, Shenyang 110006, China 2) The State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110006, China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第2期728-733,共6页
In this paper three-dimensional flow field in the molten pool between unequal diameter twin rolls has been studied by BFC technology and SIMPLEC numerical method. From the computed flow pattern,the characteristic of m... In this paper three-dimensional flow field in the molten pool between unequal diameter twin rolls has been studied by BFC technology and SIMPLEC numerical method. From the computed flow pattern,the characteristic of molten steel flow has been discussed. The dynamics generated by the feeding flow and the motivation of counter-rotating twin rolls produces a recirculating flow field nearby the small roll due to the larger room and less resistant here and fluid flows along the roll surface tangential nearby large roll and extends to two side dams. There is faintly flow around the dams of molten pool 展开更多
关键词 NNSCC strip cast-rolling twin rolls BFC technology fluid flow
下载PDF
Multi-scale Simulation on Bonding Mechanism of Solid-Liquid Cast-Rolling of Cu/Al Cladding Strip based on FEM and MD 被引量:2
5
作者 YAN Meng HUANG Huagui 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第4期830-839,共10页
To explore the complex thermal-mechanical-chemical behavior in the solid-liquid cast-roll bonding(SLCRB) of Cu/Al cladding strip, numerical simulations were conducted from both macro and micro scales. In macro-scale, ... To explore the complex thermal-mechanical-chemical behavior in the solid-liquid cast-roll bonding(SLCRB) of Cu/Al cladding strip, numerical simulations were conducted from both macro and micro scales. In macro-scale, with birth and death element method, a thermo-mechanical coupled finite element model(FEM) was set up to explore the temperature and contact pressure distribution at the Cu/Al bonding interface in the SLCRB process. Taking these macro-scale simulation results as boundary conditions, we simulated the atom diffusion law of the bonding interface by molecular dynamics(MD) in micro-scale. The results indicate that the temperature in Cu/Al bonding interface deceases from 700 to 320 ℃ from the entrance to the exit of caster, and the peak of contact pressure reaches up to 140 MPa. The interfacial diffusion thickness depends on temperature and rolling reduction, higher temperature results in larger thickness, and the rolling reduction below kiss point leads to significant elongation deformation of cladding strip which yields more newborn interface with fresh metal and make the diffusion layer thinner. The surface roughness of Cu strip was found to be benefit to atoms diffusion in the Cu/Al bonding interface. Meanwhile, combined with the SEM-EDS observation on the microstructure and composition in the bonding interface of the experimental samples acquired from the castrolling bite, it is revealed that the rolling reduction and severe elongation deformation in the solid-solid contact zone below kiss point guarantee the satisfactory metallurgical bonding with thin and smooth diffusion layer. The bonding mechanisms of reactive diffusion, mechanical interlocking and crack bonding are proved to coexist in the SLCRB process. 展开更多
关键词 CU/AL cladding strip SOLID-LIQUID cast-roll BONDING (SLCRB) BONDING MECHANISM finite element method (FEM) molecular dynamics (MD)
下载PDF
Cast-rolling force model of multi-roll solid–liquid cast-rolling bonding process for fabricating metal cladding materials
6
作者 Ce JI Huagui HUANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第9期346-368,共23页
Based on twin-roll casting technology and multi-roll groove rolling technology,a Multi-Roll Solid-Liquid Cast-Rolling Bonding(MRSLCRB)process was proposed to fabricate Cu/steel cladding bars,which processes the advant... Based on twin-roll casting technology and multi-roll groove rolling technology,a Multi-Roll Solid-Liquid Cast-Rolling Bonding(MRSLCRB)process was proposed to fabricate Cu/steel cladding bars,which processes the advantages of short flow and high-efficiency.However,it is a typical 3-D thermal-fluid-mechanics coupled problem,and determining cast-rolling force is difficult during the equipment design.Therefore,the geometrical evolution of the cast-rolling area was studied,laying the foundation to establish contact boundary equations and analyze mechanical schematics and metal flow.Then,a 3-D steady-state thermal-fluid coupled simulation model,including casting roll,substrate bar,and cladding metal,was established.The Kissing Point(KP)height,average outlet temperature,and process window were predicted,and simulation results of the three-roll layout indicate that the KP distribution along the circumferential direction can be considered uniform.Hence,the engineering cast-rolling force model was derived based on the differential element method and plane deformation hypothesis.The accuracy was verified by the 3-D finite element model,and the influences of process layouts and technological parameters on the castrolling force were analyzed.Through the indirect multi-field coupled analysis method,the temperature–pressure evolution and reasonable process window can be predicted,which provides a significant basis for guiding equipment design and improving product quality. 展开更多
关键词 cast-rolling force Kissing point Multi-field coupled Numerical simulation Solid-liquid cast-rolling bonding
原文传递
Interfacial pressure distribution and bonding characteristics in twin-roll casting of Cu/Al clad strip 被引量:1
7
作者 Jun-peng ZHANG Hua-gui HUANG +2 位作者 Jing-na SUN Ri-dong ZHAO Miao FENG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第9期2965-2978,共14页
The mechanical properties and product thickness specifications of bimetallic clad strip prepared by twin-roll casting are tightly related to the mechanical behavior of bonding interface interaction.The thermal−flow co... The mechanical properties and product thickness specifications of bimetallic clad strip prepared by twin-roll casting are tightly related to the mechanical behavior of bonding interface interaction.The thermal−flow coupled simulation and the interface pressure calculation models are established with the cast-rolling velocity as the variable.The results show that the interface temperature decreases,the interface pressure and the proportion of the thickness of the Al side increase with the decrease in cast-rolling velocity.The thinning of Cu strip mainly occurs in the backward slip zone.The higher pressure and longer solid/semi-solid contact time make the interface bonded fully,which provides favorable conditions for atomic diffusion.The inter-diffusion zone with a width of 4.9μm is attained at a cast-rolling velocity of 2.4 m/min,and the Cu side surface is nearly completely covered by aluminum.Therefore,the ductile fracture occurs on the Al side,which prevents the propagation of interface delamination cracks effectively.Meanwhile,shear effect becomes more significant at high interfacial pressure and large plastic strain,and the microstructure on Al side is composed of slender columnar crystals.Thus,the metallurgical bonding and refinement of grains on the Al side can result in higher bonding strength and tensile properties of the clad strip. 展开更多
关键词 Cu/Al clad strip cast-rolling velocity bonding interface twin-roll casting
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部