In this paper, the ring-type ingot of hypereutectic high Cr cast iron was obtained by slope cooling bodycentrifugal casting method (SC-CCM), and its microstructure and impact toughness were investigated, respectivel...In this paper, the ring-type ingot of hypereutectic high Cr cast iron was obtained by slope cooling bodycentrifugal casting method (SC-CCM), and its microstructure and impact toughness were investigated, respectively. The results indicated that, first, the primary carbides in the microstructure are prominently finer than those in the hypereutectic high Cr cast iron prepared by conventional casting method. Second, in the ring-type ingot, the primary carbides near radial outer field are finer than those near radial inner field; furthermore, there is dividing field in the microstructure. Finally, the impact toughness values of the specimens impacted on the radial outer face and on the radial inner face are improved respectively about 36% and 138% more than that of the hypereutectic high Cr one prepared by conventional casting method.展开更多
A method combining theoretical analysis with experiment is adopted and the flowing process of Ti-48A1-2Cr-2Nb alloy melt poured in a permanent mould during the centrifugal casting process has been analyzed. A mathemat...A method combining theoretical analysis with experiment is adopted and the flowing process of Ti-48A1-2Cr-2Nb alloy melt poured in a permanent mould during the centrifugal casting process has been analyzed. A mathematical model of the filling process is established and the forming mechanism of internal gaseous defect is summarized. The results of calculation show that the melt fills the mould with varying cross-section area and inclined angle. The filling speed of the cross-section is a function of filling time. The cross-section area is directly proportional to the filling speed and the inclined angle is inversely proportional to the filling speed at a given rotating speed of the platform. Both of them changes more obvious near the mould entrance. The gaseous defect can be formed in several ways and the centrifugal field has an important influence on the formation of the defect. In addition, the filling process in centrifugal field has been verified by wax experiments and the theoretical analysis are consistent with experimental results.展开更多
Affordable non-precious metal(NPM) catalysts played a vital role in the wide application of polymer electrolyte membrane fuel cells(PEMFC). In current work, a facile vacuum casting reacting method based on vacuum ...Affordable non-precious metal(NPM) catalysts played a vital role in the wide application of polymer electrolyte membrane fuel cells(PEMFC). In current work, a facile vacuum casting reacting method based on vacuum casting was introduced to prepare Fe-N_x-C oxygen reduction reaction(ORR) catalysts with high efficient in acid medium. The catalysts were prepared with ammonium ferrous sulfate hexahydrate(AFS) and 1,10-phenanthroline monohydrate utilizing homemade mesoporous silica template. The heat treatment and its influence on structure and performance were systematically evaluated to achieve superior ORR performance and some clues were found. And 850 ℃ was found to be the best temperature for the first and second pyrolysis. The linear sweep voltammetry(LSV) results showed that there were only 18 mV slightly negative shifts of half-wave potential(E_(1/2)) of the optimal catalyst(749 mV) compared with the commercial Pt/C(20 μg·Pt·cm^-2). Besides, I850 R also showed better electrochemical stability and methanol-tolerance than that of Pt/C. All evidences proved that our vacuum casting reacting strategy and heat treatment process were prospective for the future R&D of high performance Fe-N_x-C ORR catalysts.展开更多
Pipelines are an important part of urban infrastructure development.As part of a virtual globe(VG),the high-efficiency and high-quality visualization of 3D large-scale and high-density urban pipelines is of great impo...Pipelines are an important part of urban infrastructure development.As part of a virtual globe(VG),the high-efficiency and high-quality visualization of 3D large-scale and high-density urban pipelines is of great importance.This paper proposes a GPU-based pipeline ray casting method for the visualization of urban-scale pipelines in the framework of a VG.The method involves the initial partitioning of the pipeline data into tiles,based on the relationship between the pipeline layer scale and the discrete global grid system(DGGSs).The pipeline centerline in each tile is then segmented and encoded,and a coarser pipeline bounding volume is subsequently constructed using a geometry shader.Finally,the fine 3D pipeline is rendered using a pixel shader.The results of the experimental implementation of the proposed method show that it satisfies the requirements for the multiscale visualization of pipelines in a VG.Moreover,compared with the traditional polygon-based method,the method facilitates a 20%increase in rendering frame rate for the same pixel level accuracy display effect.It also enables the visualization of the thickness of the 3D pipeline without any obvious effect on the rendering efficiency。展开更多
The infiltration casting method is widely employed for the preparation of ex-situ composite materials.However,the production of composite materials using this method must necessitates a comprehensive understanding of ...The infiltration casting method is widely employed for the preparation of ex-situ composite materials.However,the production of composite materials using this method must necessitates a comprehensive understanding of the wettability and interface characteristics between the reinforcing phase and the bulk metallic glasses(BMGs).This work optimized the composition of Zr-based BMGs through microalloying methods,resulting in a new set of Zr-based BMGs with excellent glass-forming ability.Wetting experiments between the Zr-based BMGs melts and W substrates were conducted using the traditional sessile drop method,and the interfaces were characterized utilizing a scanning electron microscope(SEM)equipped with energy dispersive X-ray spectroscopy(EDS).The work demonstrates that the microalloying method substantially enhances the wettability of the Zr-based BMGs melt.Additionally,the incorporation of Nb element impedes the formation of W-Zr phases,but the introduction of Nb element does not alter the extent of interdiffusion between the constituent elements of the amorphous matrix and W element,indicating that the influence of Nb element on the diffusion of individual elements is minute.展开更多
In this work,flexible photothermal PVA/Ti_(2)O_(3) composite films with different amount(0 wt%,5 wt%,10 wt%,15 wt%)of Ti_(2)O_(3) particles modified by steric acid were prepared by a simple solution casting method.The...In this work,flexible photothermal PVA/Ti_(2)O_(3) composite films with different amount(0 wt%,5 wt%,10 wt%,15 wt%)of Ti_(2)O_(3) particles modified by steric acid were prepared by a simple solution casting method.The microstructures,XRD patterns,FTIR spectra,UV-Vis-NIR spectra thermo-conductivity,thermo-stability and photothermal effects of these composite films were all characterized.These results indicated that Ti_(2)O_(3) particles were well dispersed throughout the polyvinyl alcohol(PVA)matrix in the PVA/Ti_(2)O_(3) composite films.And Ti_(2)O_(3) particles could also effectively improve the photothermal properties of the composite films which exhibited high light absorption and generated a high temperature(about 57.4℃for film with 15 wt%Ti_(2)O_(3) amount)on the surface when it was irradiated by a simulated sunlight source(1 kW/m^(2)).展开更多
Rechargeable aqueous Zn-ion batteries(AZIBs)are one of the most promising energy storage devices for large-scale energy storage owing to their high specific capacity,eco-friendliness,low cost and high safety.Neverthel...Rechargeable aqueous Zn-ion batteries(AZIBs)are one of the most promising energy storage devices for large-scale energy storage owing to their high specific capacity,eco-friendliness,low cost and high safety.Nevertheless,zinc metal anodes suffer from severe dendrite growth and side reactions,resulting in the inferior electrochemical performance of AZIBs.To address these problems,surface modification of zinc metal anodes is a facile and effective method to regulate the interaction between the zinc anode and an electrolyte.In this review,the current challenges and strategies for zinc metal anodes are presented.Furthermore,recent advances in surface modification strategies to improve their electrochemical performance are concluded and discussed.Finally,challenges and prospects for future development of zinc metal anodes are proposed.We hope this review will be useful for designing and fabricating highperformance AZIBs and boosting their practical applications.展开更多
The AZ31 alloy ingot with diameter of 110 mm and length of 3500 mm was fabricated successfully. The compositions and microstructure morphologies of the ingot at different locations were performed, which indicated that...The AZ31 alloy ingot with diameter of 110 mm and length of 3500 mm was fabricated successfully. The compositions and microstructure morphologies of the ingot at different locations were performed, which indicated that the chemical composition distributed homogeneously through the whole alloy ingot and the average grain size increased from the surface to the center. The results of the EDS and element face-scanning illustrated that the eutectic compounds mainly consisted of fl-Mg17Al12 and a small amount of fl-Mgl7(AlZn)12. Furthermore, slight improvements of the strength and ductility were observed from the center to the surface along the axial direction of the alloy ingot, while both the strength and elongation to failure of the samples along the radial direction are higher than that along the axial direction. The fine grain strengthening was the main contributors to the strength of the as-casted AZ31 alloy.展开更多
The study of marine data visualization is of great value. Marine data, due to its large scale, random variation and multiresolution in nature, are hard to be visualized and analyzed. Nowadays, constructing an ocean mo...The study of marine data visualization is of great value. Marine data, due to its large scale, random variation and multiresolution in nature, are hard to be visualized and analyzed. Nowadays, constructing an ocean model and visualizing model results have become some of the most important research topics of ‘Digital Ocean'. In this paper, a spherical ray casting method is developed to improve the traditional ray-casting algorithm and to make efficient use of GPUs. Aiming at the ocean current data, a 3D view-dependent line integral convolution method is used, in which the spatial frequency is adapted according to the distance from a camera. The study is based on a 3D virtual reality and visualization engine, namely the VV-Ocean. Some interactive operations are also provided to highlight the interesting structures and the characteristics of volumetric data. Finally, the marine data gathered in the East China Sea are displayed and analyzed. The results show that the method meets the requirements of real-time and interactive rendering.展开更多
The effect of non-isothermal aging treatment on microstructure and mechanical properties of in-situ AA2024−Al_(3)NiCu composite fabricated by the stir casting process was examined.The Al_(3)NiCu intermetallic was crea...The effect of non-isothermal aging treatment on microstructure and mechanical properties of in-situ AA2024−Al_(3)NiCu composite fabricated by the stir casting process was examined.The Al_(3)NiCu intermetallic was created by adding 3 wt.%nickel powder during stir casting and homogenization treatment at 500℃ for 24 h after casting.The microstructural results obtained using optical and scanning electron microscope indicate that,after non-isothermal aging treatment,the S-Al_(2)CuMg precipitates become finer,forming a poor zone of this precipitate in the area between the dendrites.Also,adding nickel during stir casting reduces the precipitation rate and the contribution of S-Al_(2)CuMg precipitates in strengthening composite during non-isothermal aging.The maximum hardness,ultimate tensile strength,and toughness achieved in the 3 wt.%nickel-containing sample after non-isothermal aging at 250℃ are(121.30±4.21)HV,(221.67±8.31)MPa,and(1.67±0.08)MJ/m^(3),respectively.The maximum hardness and ultimate tensile strength of AA2024−Al_(3)NiCu composite are decreased by 6%and 4%,respectively,compared to those of nickel-free AA2024 aluminum alloy.展开更多
Peripheral nerve injury(PNI)seriously affects the health and life of patients,and is an urgent clinical problem that needs to be resolved.Nerve implants prepared from various biomaterials have played a positive role i...Peripheral nerve injury(PNI)seriously affects the health and life of patients,and is an urgent clinical problem that needs to be resolved.Nerve implants prepared from various biomaterials have played a positive role in PNI,but the effect should be further improved and thus new biomaterials is urgently needed.Ovalbumin(OVA)contains a variety of bioactive components,low immunogenicity,tolerance,antimicrobial activity,non-toxicity and biodegradability,and has the ability to promote wound healing,cell growth and antimicrobial properties.However,there are few studies on the application of OVA in neural tissue engineering.In this study,OVA implants with different spatial structures(membrane,fiber,and lyophilized scaffolds)were constructed by casting,electrospinning,and freeze-drying methods,respectively.The results showed that the OVA implants had excellent physicochemical properties and were biocompatible without significant toxicity,and can promote vascularization,show good histocompatibility,without excessive inflammatory response and immunogenicity.The in vitro results showed that OVA implants could promote the proliferation and migration of Schwann cells,while the in vivo results confirmed that OVA implants(the E5/70%and 20 kV 20μL/min groups)could effectively regulate the growth of blood vessels,reduce the inflammatory response and promote the repair of subcutaneous nerve injury.Further on,the high-throughput sequencing results showed that the OVA implants up-regulated differential expression of genes related to biological processes such as tumor necrosis factor-α(TNF-α),phosphatidylinositide 3-kinases/protein kinase B(PI3K-Akt)signaling pathway,axon guidance,cellular adhesion junctions,and nerve regeneration in Schwann cells.The present study is expected to provide new design concepts and theoretical accumulation for the development of a new generation of nerve regeneration implantable biomaterials.展开更多
基金This work was supported by the National Natural Science Foundation of China under grant No.50571079.
文摘In this paper, the ring-type ingot of hypereutectic high Cr cast iron was obtained by slope cooling bodycentrifugal casting method (SC-CCM), and its microstructure and impact toughness were investigated, respectively. The results indicated that, first, the primary carbides in the microstructure are prominently finer than those in the hypereutectic high Cr cast iron prepared by conventional casting method. Second, in the ring-type ingot, the primary carbides near radial outer field are finer than those near radial inner field; furthermore, there is dividing field in the microstructure. Finally, the impact toughness values of the specimens impacted on the radial outer face and on the radial inner face are improved respectively about 36% and 138% more than that of the hypereutectic high Cr one prepared by conventional casting method.
文摘A method combining theoretical analysis with experiment is adopted and the flowing process of Ti-48A1-2Cr-2Nb alloy melt poured in a permanent mould during the centrifugal casting process has been analyzed. A mathematical model of the filling process is established and the forming mechanism of internal gaseous defect is summarized. The results of calculation show that the melt fills the mould with varying cross-section area and inclined angle. The filling speed of the cross-section is a function of filling time. The cross-section area is directly proportional to the filling speed and the inclined angle is inversely proportional to the filling speed at a given rotating speed of the platform. Both of them changes more obvious near the mould entrance. The gaseous defect can be formed in several ways and the centrifugal field has an important influence on the formation of the defect. In addition, the filling process in centrifugal field has been verified by wax experiments and the theoretical analysis are consistent with experimental results.
基金the financial support of the 100-Talent Program of Chinese Academy of Sciences
文摘Affordable non-precious metal(NPM) catalysts played a vital role in the wide application of polymer electrolyte membrane fuel cells(PEMFC). In current work, a facile vacuum casting reacting method based on vacuum casting was introduced to prepare Fe-N_x-C oxygen reduction reaction(ORR) catalysts with high efficient in acid medium. The catalysts were prepared with ammonium ferrous sulfate hexahydrate(AFS) and 1,10-phenanthroline monohydrate utilizing homemade mesoporous silica template. The heat treatment and its influence on structure and performance were systematically evaluated to achieve superior ORR performance and some clues were found. And 850 ℃ was found to be the best temperature for the first and second pyrolysis. The linear sweep voltammetry(LSV) results showed that there were only 18 mV slightly negative shifts of half-wave potential(E_(1/2)) of the optimal catalyst(749 mV) compared with the commercial Pt/C(20 μg·Pt·cm^-2). Besides, I850 R also showed better electrochemical stability and methanol-tolerance than that of Pt/C. All evidences proved that our vacuum casting reacting strategy and heat treatment process were prospective for the future R&D of high performance Fe-N_x-C ORR catalysts.
文摘Pipelines are an important part of urban infrastructure development.As part of a virtual globe(VG),the high-efficiency and high-quality visualization of 3D large-scale and high-density urban pipelines is of great importance.This paper proposes a GPU-based pipeline ray casting method for the visualization of urban-scale pipelines in the framework of a VG.The method involves the initial partitioning of the pipeline data into tiles,based on the relationship between the pipeline layer scale and the discrete global grid system(DGGSs).The pipeline centerline in each tile is then segmented and encoded,and a coarser pipeline bounding volume is subsequently constructed using a geometry shader.Finally,the fine 3D pipeline is rendered using a pixel shader.The results of the experimental implementation of the proposed method show that it satisfies the requirements for the multiscale visualization of pipelines in a VG.Moreover,compared with the traditional polygon-based method,the method facilitates a 20%increase in rendering frame rate for the same pixel level accuracy display effect.It also enables the visualization of the thickness of the 3D pipeline without any obvious effect on the rendering efficiency。
基金the support of the China Manned Space Engineering(YYMT1201-EXP08)。
文摘The infiltration casting method is widely employed for the preparation of ex-situ composite materials.However,the production of composite materials using this method must necessitates a comprehensive understanding of the wettability and interface characteristics between the reinforcing phase and the bulk metallic glasses(BMGs).This work optimized the composition of Zr-based BMGs through microalloying methods,resulting in a new set of Zr-based BMGs with excellent glass-forming ability.Wetting experiments between the Zr-based BMGs melts and W substrates were conducted using the traditional sessile drop method,and the interfaces were characterized utilizing a scanning electron microscope(SEM)equipped with energy dispersive X-ray spectroscopy(EDS).The work demonstrates that the microalloying method substantially enhances the wettability of the Zr-based BMGs melt.Additionally,the incorporation of Nb element impedes the formation of W-Zr phases,but the introduction of Nb element does not alter the extent of interdiffusion between the constituent elements of the amorphous matrix and W element,indicating that the influence of Nb element on the diffusion of individual elements is minute.
基金Funded by the Youth Backbone Teacher Training Plan in University of Henan Province(No.21220028)Science and Technology Research Project of Henan Province(No.242102321066)+2 种基金Natural Science Foundation of Henan Province(No.232300420312)Henan University of Technology Young Backbone Teacher Training Plan(No.21421260)the Innovation Training Program for College Students in Henan Province(No.202310463046)。
文摘In this work,flexible photothermal PVA/Ti_(2)O_(3) composite films with different amount(0 wt%,5 wt%,10 wt%,15 wt%)of Ti_(2)O_(3) particles modified by steric acid were prepared by a simple solution casting method.The microstructures,XRD patterns,FTIR spectra,UV-Vis-NIR spectra thermo-conductivity,thermo-stability and photothermal effects of these composite films were all characterized.These results indicated that Ti_(2)O_(3) particles were well dispersed throughout the polyvinyl alcohol(PVA)matrix in the PVA/Ti_(2)O_(3) composite films.And Ti_(2)O_(3) particles could also effectively improve the photothermal properties of the composite films which exhibited high light absorption and generated a high temperature(about 57.4℃for film with 15 wt%Ti_(2)O_(3) amount)on the surface when it was irradiated by a simulated sunlight source(1 kW/m^(2)).
基金supported by the National Key Research and Development Program of China(2020YFB1713500)the Chinese 02 Special Fund(2017ZX02408003)+2 种基金the Open Fund of National Joint Engineering Research Center for abrasion control and molding of metal materials(HKDNM201807)the Student Research Training Plan of Henan University of Science and Technology(2020026)the National Undergraduate Innovation and Entrepreneurship Training Program(202010464031,202110464005)。
文摘Rechargeable aqueous Zn-ion batteries(AZIBs)are one of the most promising energy storage devices for large-scale energy storage owing to their high specific capacity,eco-friendliness,low cost and high safety.Nevertheless,zinc metal anodes suffer from severe dendrite growth and side reactions,resulting in the inferior electrochemical performance of AZIBs.To address these problems,surface modification of zinc metal anodes is a facile and effective method to regulate the interaction between the zinc anode and an electrolyte.In this review,the current challenges and strategies for zinc metal anodes are presented.Furthermore,recent advances in surface modification strategies to improve their electrochemical performance are concluded and discussed.Finally,challenges and prospects for future development of zinc metal anodes are proposed.We hope this review will be useful for designing and fabricating highperformance AZIBs and boosting their practical applications.
基金Project(2010A090200078)supported by the Special Foundation Project of Industry,University and Research Institute Collaboration of Guangdong Provincial Government and the Ministry of Education,ChinaProject(2010B090500010)supported by the Special Commissioners’ Workstation Construction Project of Guangdong Provincial Government,China
文摘The AZ31 alloy ingot with diameter of 110 mm and length of 3500 mm was fabricated successfully. The compositions and microstructure morphologies of the ingot at different locations were performed, which indicated that the chemical composition distributed homogeneously through the whole alloy ingot and the average grain size increased from the surface to the center. The results of the EDS and element face-scanning illustrated that the eutectic compounds mainly consisted of fl-Mg17Al12 and a small amount of fl-Mgl7(AlZn)12. Furthermore, slight improvements of the strength and ductility were observed from the center to the surface along the axial direction of the alloy ingot, while both the strength and elongation to failure of the samples along the radial direction are higher than that along the axial direction. The fine grain strengthening was the main contributors to the strength of the as-casted AZ31 alloy.
基金supported by the Natural Science Foundation of China under Project 41076115the Global Change Research Program of China under project 2012CB955603the Public Science and Technology Research Funds of the Ocean under project 201005019
文摘The study of marine data visualization is of great value. Marine data, due to its large scale, random variation and multiresolution in nature, are hard to be visualized and analyzed. Nowadays, constructing an ocean model and visualizing model results have become some of the most important research topics of ‘Digital Ocean'. In this paper, a spherical ray casting method is developed to improve the traditional ray-casting algorithm and to make efficient use of GPUs. Aiming at the ocean current data, a 3D view-dependent line integral convolution method is used, in which the spatial frequency is adapted according to the distance from a camera. The study is based on a 3D virtual reality and visualization engine, namely the VV-Ocean. Some interactive operations are also provided to highlight the interesting structures and the characteristics of volumetric data. Finally, the marine data gathered in the East China Sea are displayed and analyzed. The results show that the method meets the requirements of real-time and interactive rendering.
文摘The effect of non-isothermal aging treatment on microstructure and mechanical properties of in-situ AA2024−Al_(3)NiCu composite fabricated by the stir casting process was examined.The Al_(3)NiCu intermetallic was created by adding 3 wt.%nickel powder during stir casting and homogenization treatment at 500℃ for 24 h after casting.The microstructural results obtained using optical and scanning electron microscope indicate that,after non-isothermal aging treatment,the S-Al_(2)CuMg precipitates become finer,forming a poor zone of this precipitate in the area between the dendrites.Also,adding nickel during stir casting reduces the precipitation rate and the contribution of S-Al_(2)CuMg precipitates in strengthening composite during non-isothermal aging.The maximum hardness,ultimate tensile strength,and toughness achieved in the 3 wt.%nickel-containing sample after non-isothermal aging at 250℃ are(121.30±4.21)HV,(221.67±8.31)MPa,and(1.67±0.08)MJ/m^(3),respectively.The maximum hardness and ultimate tensile strength of AA2024−Al_(3)NiCu composite are decreased by 6%and 4%,respectively,compared to those of nickel-free AA2024 aluminum alloy.
基金the financial support of the National Natural Science Foundation of China(32171352)Special Funds for Provincial Science and Technology Programs(Key R&D Program for Social Development)of Jiangsu Province(BE2023743)+3 种基金Open Research Fund of State Key Laboratory of Advance Technology for Materials Synthesis and Processing(Wuhan University of Technology,2023-KF-18)Open Research Fund of State Key Laboratory of Bioelectronics,Southeast University(2023-K05)Opening Project of State Key Laboratory of Polymer Materials Engineering(Sichuan University,Sklpme2022-4-01)226 High-level Talent Training Project(2nd level,2022 II-276).
文摘Peripheral nerve injury(PNI)seriously affects the health and life of patients,and is an urgent clinical problem that needs to be resolved.Nerve implants prepared from various biomaterials have played a positive role in PNI,but the effect should be further improved and thus new biomaterials is urgently needed.Ovalbumin(OVA)contains a variety of bioactive components,low immunogenicity,tolerance,antimicrobial activity,non-toxicity and biodegradability,and has the ability to promote wound healing,cell growth and antimicrobial properties.However,there are few studies on the application of OVA in neural tissue engineering.In this study,OVA implants with different spatial structures(membrane,fiber,and lyophilized scaffolds)were constructed by casting,electrospinning,and freeze-drying methods,respectively.The results showed that the OVA implants had excellent physicochemical properties and were biocompatible without significant toxicity,and can promote vascularization,show good histocompatibility,without excessive inflammatory response and immunogenicity.The in vitro results showed that OVA implants could promote the proliferation and migration of Schwann cells,while the in vivo results confirmed that OVA implants(the E5/70%and 20 kV 20μL/min groups)could effectively regulate the growth of blood vessels,reduce the inflammatory response and promote the repair of subcutaneous nerve injury.Further on,the high-throughput sequencing results showed that the OVA implants up-regulated differential expression of genes related to biological processes such as tumor necrosis factor-α(TNF-α),phosphatidylinositide 3-kinases/protein kinase B(PI3K-Akt)signaling pathway,axon guidance,cellular adhesion junctions,and nerve regeneration in Schwann cells.The present study is expected to provide new design concepts and theoretical accumulation for the development of a new generation of nerve regeneration implantable biomaterials.