Considering the factors affecting the increasing rate of power consumption, the BP neural network structure and the neural network forecasting model of the increasing rate of power consumption were established. Immune...Considering the factors affecting the increasing rate of power consumption, the BP neural network structure and the neural network forecasting model of the increasing rate of power consumption were established. Immune genetic algorithm was applied to optimizing the weight from input layer to hidden layer, from hidden layer to output layer, and the threshold value of neuron nodes in hidden and output layers. Finally, training the related data of the increasing rate of power consumption from 1980 to 2000 in China, a nonlinear network model between the increasing rate of power consumption and influencing factors was obtained. The model was adopted to forecasting the increasing rate of power consumption from 2001 to 2005, and the average absolute error ratio of forecasting results is 13.521 8%. Compared with the ordinary neural network optimized by genetic algorithm, the results show that this method has better forecasting accuracy and stability for forecasting the increasing rate of power consumption.展开更多
The direct rolling process for hot strip production,where the thin slab caster is connected directly to the mill,has gained market share rapidly because of its remarkable advantages in terms of energy savings and inve...The direct rolling process for hot strip production,where the thin slab caster is connected directly to the mill,has gained market share rapidly because of its remarkable advantages in terms of energy savings and investment cost over the conventional hot strip mills. However,the unquestionable advantages of the first-generation applications of this plant concept also entail significant limitations both in productivity and steel grades that can be produced. Since his first pioneering applications,Danieli considered strategic the development of new technical solutions specifically conceived to overcome these limitations with the goal of increasing plant production volumes and enlarging steel grade product mix,in order to cover the gap between "Conventional mill" and "Thin slab casting and rolling" process routes. In order to reach this goal,Danieli has developed a complete portfolio of plant lay outs adopting Thin Slab Casting and Rolling technologies,each of them conceived to guarantee the optimal CAPEX and OPEX parameters in fitting with market requirements our Customer intend to target.in terms of productivity,steel grades and coil dimension product mix. Danieli TSR(Thin Slab Rolling) fTSR(flexible Thins Slab Rolling) QSP(Quality Strip Production) and ETR(Extra Thin Rolling) plant configurations are analyzed in this paper. With this diversified approach,Danieli solutions are most appropriate answers to thin slab casting and rolling to produce hot rolled coils with superior quality and an extremely diversified range of steel grades. Already,this approach has allowed Danieli plants to:①exceed the threshold production of 3.0 Mt/a with 2 casting strands in operation as done in Tangshan Iron and Steel plant in P.R.China since 2005;②expand the product mix to include virtually all the steel grades used for flat product applications,including the most demanding ones,such as peritectic(in Essar Algoma Canada and Benxi Iron and Steel,China),micro-alloyed,and silicon steels,for the most sophisticated applications,such as automotive and pipe manufacturing,including Arctic applications,(as done in OMK plant in Russia);③extend the range of final strip thicknesses to include ultra thin gauges,down to 0.8 mm(as in Ezz Flat Steel,in Egypt).展开更多
The increased production efficiency of heat treatable A1 alloys, as the result of applied electromagnetic field during continuous casting process was investigated. The applied frequency of the electromagnetic field (...The increased production efficiency of heat treatable A1 alloys, as the result of applied electromagnetic field during continuous casting process was investigated. The applied frequency of the electromagnetic field (EMF) during the AI alloys continuous casting was changing from 30 Hz to 50 Hz, while some castings were obtained without the EMF influence. The mechanical characterization of continuous casted AI alloys EN AW 2007 and En AW 2024 was done on testing machine Zwick/Roell Z 100. The microstructure of as-cast samples was examined, as well. When the frequency decreases (from 50 Hz to 30 Hz), the grain size decreases as well, what is noticeable through the finer microstructure and its uniformity throughout the cross-section. These results have shown that low frequency electromagnetic field significantly influenced the microstructure and therefore the mechanical properties of as cast ingots. Thus, through improved castings quality, operation time and energy savings, the production efficiency was increased.展开更多
Emerging technological advances are reshaping the casting sector in latest decades.Casting technology is evolving towards intelligent casting paradigm that involves automation,greenization and intelligentization,which...Emerging technological advances are reshaping the casting sector in latest decades.Casting technology is evolving towards intelligent casting paradigm that involves automation,greenization and intelligentization,which attracts more and more attention from the academic and industry communities.In this paper,the main features of casting technology were briefly summarized and forecasted,and the recent developments of key technologies and the innovative efforts made in promoting intelligent casting process were discussed.Moreover,the technical visions of intelligent casting process were also put forward.The key technologies for intelligent casting process comprise 3D printing technologies,intelligent mold technologies and intelligent process control technologies.In future,the intelligent mold that derived from mold with sensors,control devices and actuators will probably incorporate the Internet of Things,online inspection,embedded simulation,decision-making and control system,and other technologies to form intelligent cyber-physical casting system,which may pave the way to realize intelligent casting.It is promising that the intelligent casting process will eventually achieve the goal of real-time process optimization and full-scale control,with the defects,microstructure,performance,and service life of the fabricated castings can be accurately predicted and tailored.展开更多
To investigate the thermal and mechanical behavior of casting wheel,a two-dimensional thermoelastic-plastic finite element model was used to predict the temperature,stress and distortion distribution of the casting wh...To investigate the thermal and mechanical behavior of casting wheel,a two-dimensional thermoelastic-plastic finite element model was used to predict the temperature,stress and distortion distribution of the casting wheel during the wheel and belt continuous casting process.The effects of grinding thickness and casting speed on the thermal and mechanical behaviors of the center of the hot face of the casting wheel were discussed in detail.In each rotation,the casting wheel passes through four different spray zones.The results show that the temperature distribution of the casting wheel in different spray zones is similar,the temperature of the hot face is the highest and the temperature reaches the peak in the spray zoneⅢ.The stress and distortion depend on the temperature distribution,and the maximum stress and distortion of the hot face are 358.2 MPa and 1.82 mm,respectively.The temperature at the center of the hot face decreases with increasing grinding thickness and increases with increasing casting speed.展开更多
The influences of two kinds of casting modules of metal casting (MC) and expandable pattern casting (EPC) on the corrosion behavior of Mg-11Gd-3Y alloy were studied by electrochemical measurements, scanning electr...The influences of two kinds of casting modules of metal casting (MC) and expandable pattern casting (EPC) on the corrosion behavior of Mg-11Gd-3Y alloy were studied by electrochemical measurements, scanning electron microscopy (SEM) observation, X-ray diffractometry (XRD) and X-ray photoelectron spectroscopy (XPS) analysis. It is found that the quantity of the Mg 24 (Gd, Y) 5 phase in MC is more than that in EPC due to the cooling rate. There is more alloying element dissolved in the matrix compared with MC. For EPC, the galvanic corrosion effect between the matrix and the Mg 24 (Gd, Y) 5 phase decreases and the corrosion resistance increases compared with the MC. The chief corrosion mode for Mg-11Gd-3Y alloy is pitting corrosion because most of the alloying elements are transformed into intermetallic phases. The average corrosion rate of the MC alloy in the immersion test is five times higher than that of EPC alloy and yttrium is present in the product film, which will provide increased protection for Mg-11Gd-3Y alloy. The electrochemical measurements and immersion test show that the EPC process increases the corrosion resistance compared with the MC Mg-11Gd-3Y alloy.展开更多
The present status and perspectives of Chinese die-casting market were commented. In 2003, the total output of die castings in the whole country was 708000 tons, in which the outputs of Al-alloy, Zn-alloy, Mg-alloy, C...The present status and perspectives of Chinese die-casting market were commented. In 2003, the total output of die castings in the whole country was 708000 tons, in which the outputs of Al-alloy, Zn-alloy, Mg-alloy, Cu-alloy die castings were 474600 tons, 222000 tons, 5800 tons, 5600 tons, respectively, each accounted for 67%, 31.35%, 0.85%, 0.8% of the total. The annual sale volume of die-casting machines was approximately 1800. And the gross output value of dies approached RMB 38 billion, in which die-casting dies accounted for about 10%. In the die-casting industry of the entire country, the foreign capital enterprises, public-run enterprises, township and village enterprises, private enterprises accounted for over 80% of the total die-casting enterprises. Super huge die-casting groups are forming.展开更多
A novel Mg^(-1)0Li-3Al(wt.%,LA103)matrix composite reinforced by ex situ micron TiB_(2) particles was developed in the present study.The ball milling and cold pressing pretreatment of the reinforcements made it feasib...A novel Mg^(-1)0Li-3Al(wt.%,LA103)matrix composite reinforced by ex situ micron TiB_(2) particles was developed in the present study.The ball milling and cold pressing pretreatment of the reinforcements made it feasible to prepare this material under stir casting conditions with good dispersion.The microstructure and mechanical properties of the composites prepared by different pretreatment methods were analyzed in detail.The TiB_(2) particles in the Al-TiB_(2)/LA103 composite using the pretreatment process were uniformly distributed in the microstructure due to the formation of highly wettable core-shell units in the melt.Compared with the matrix alloys,the Al-TiB_(2)/LA103 composite exhibited effective strength and elastic modulus improvements while maintaining acceptable elongation.The strengthening effect in the composites was mainly attributed to the strong grain refining effect of TiB2.This work shows a balance of high specific modulus(36.1 GPa·cm^(3)·g^(-1))and elongation(8.4%)with the conventional stir casting path,which is of considerable application value.展开更多
The complex sand-casting process combined with the interactions between process parameters makes it difficult to control the casting quality,resulting in a high scrap rate.A strategy based on a data-driven model was p...The complex sand-casting process combined with the interactions between process parameters makes it difficult to control the casting quality,resulting in a high scrap rate.A strategy based on a data-driven model was proposed to reduce casting defects and improve production efficiency,which includes the random forest(RF)classification model,the feature importance analysis,and the process parameters optimization with Monte Carlo simulation.The collected data includes four types of defects and corresponding process parameters were used to construct the RF model.Classification results show a recall rate above 90% for all categories.The Gini Index was used to assess the importance of the process parameters in the formation of various defects in the RF model.Finally,the classification model was applied to different production conditions for quality prediction.In the case of process parameters optimization for gas porosity defects,this model serves as an experimental process in the Monte Carlo method to estimate a better temperature distribution.The prediction model,when applied to the factory,greatly improved the efficiency of defect detection.Results show that the scrap rate decreased from 10.16% to 6.68%.展开更多
BiFeO_(3)(BFO)has received considerable attention as a lead-free ferroelectric film due to its large theoretical remnant polariza-tion.However,BFO suffers from a large leakage current,resulting in poor ferroelectric p...BiFeO_(3)(BFO)has received considerable attention as a lead-free ferroelectric film due to its large theoretical remnant polariza-tion.However,BFO suffers from a large leakage current,resulting in poor ferroelectric properties.Herein,the sol-gel method was used to deposit a series of BFO-based thin films on fluorine-doped tin oxide substrates,and the effects of the substitution of the elements Co,Cu,Mn(B-site)and Sm,Eu,La(A-site)on the crystal structure,ferroelectricity,and leakage current of the BFO-based thin films were invest-igated.Results confirmed that lattice distortion by X-ray diffraction can be attributed to the substitution of individual elements in the BFO-based films.Sm and Eu substitutions contribute to the lattice distortion in a pseudo-cubic structure,while La is biased toward pseudo-tet-ragonal.Piezoelectric force microscopy confirmed that reversible switching of ferroelectric domains by nearly 180°can be realized through the prepared films.The ferroelectric hysteresis loops showed that the order for the polarization contribution is as follows:Cu>Co>Mn(B-site),Sm>La>Eu(A-site).The current density voltage curves indicated that the order for leakage contribution is as follows:Mn<Cu<Co(B-site),La<Eu<Sm(A-site).Scanning electron microscopy showed that the introduction of Cu elements facilitates the formation of dense grains,and the grain size distribution statistics proved that La element promotes the reduction of grain size,leading to the increase of grain boundaries and the reduction of leakage.Finally,a Bi_(0.985)Sm_(0.045)La_(0.03)Fe_(0.96)Co_(0.02)Cu_(0.02)O_(3)(SmLa-CoCu)thin film with a qualitative leap in the remnant polarization from 25.5(Bi_(0.985)Sm_(0.075)FeO_(3))to 98.8µC/cm^(2)(SmLa-CoCu)was prepared through the syner-gistic action of Sm,La,Co,and Cu elements.The leakage current is also drastically reduced from 160 to 8.4 mA/cm^(2)at a field strength of 150 kV/cm.Thus,based on the increasing entropy strategy of chemical engineering,this study focuses on enhancing ferroelectricity and decreasing leakage current,providing a promising path for the advancement of ferroelectric devices.展开更多
Ultra-large aluminum shape castings have been increasingly used in automotive vehicles,particularly in electric vehicles for light-weighting and vehicle manufacturing cost reduction.As most of them are structural comp...Ultra-large aluminum shape castings have been increasingly used in automotive vehicles,particularly in electric vehicles for light-weighting and vehicle manufacturing cost reduction.As most of them are structural components subject to both quasi-static,dynamic and cyclic loading,the quality and quantifiable performance of the ultra-large aluminum shape castings is critical to their success in both design and manufacturing.This paper briefly reviews some application examples of ultra-large aluminum castings in automotive industry and outlines their advantages and benefits.Factors affecting quality,microstructure and mechanical properties of ultra-large aluminum castings are evaluated and discussed as aluminum shape casting processing is very complex and often involves many competing mechanisms,multi-physics phenomena,and potentially large uncertainties that significantly influence the casting quality and performance.Metallurgical analysis and mechanical property assessment of an ultra-large aluminum shape casting are presented.Challenges are highlighted and suggestions are made for robust design and manufacturing of ultra-large aluminum castings.展开更多
Four typical theories on the formation of thermal tears:strength,liquid film,intergranular bridging,and solidifica-tion shrinkage compensation theories.From these theories,a number of criteria have been derived for pr...Four typical theories on the formation of thermal tears:strength,liquid film,intergranular bridging,and solidifica-tion shrinkage compensation theories.From these theories,a number of criteria have been derived for predicting the formation of thermal cracks,such as the stress-based Niyama,Clyne,and RDG(Rapaz-Dreiser-Grimaud)criteria.In this paper,a mathematical model of horizontal centrifugal casting was established,and numerical simulation analysis was conducted for the centrifugal casting process of cylindrical Al-Cu alloy castings to investigate the effect of the centrifugal casting process conditions on the microstructure and hot tearing sensitivity of alloy castings by using the modified RDG hot tearing criterion.Results show that increasing the centrifugal rotation and pouring speeds can refine the microstructure of the alloy but increasing the pouring and mold preheating temperatures can lead to an increase in grain size.The grain size gradually transitions from fine grain on the outer layer to coarse grain on the inner layer.Meanwhile,combined with the modified RDG hot tearing criterion,the overall distribution of the castings’hot tearing sensitivity was analyzed.The analysis results indicate that the porosity in the middle region of the casting was large,and hot tearing defects were prone to occur.The hot tearing tendency on the inner side of the casting was greater than that on the outer side.The effects of centrifugal rotation speed,pouring temperature,and preheating temperature on the thermal sensitivity of Al-Cu alloy castings are summarized in this paper.This study revealed that the tendency of alloy hot cracking decreases with the increase of the centrifugal speed,and the maximum porosity of castings decreases first and then increases with the pouring temperature.As the preheating temperature increases,the overall maximum porosity of castings shows a decreasing trend.展开更多
Casting speed,casting temperature and secondary cooling water flow rate are the main process parameters affecting the DC casting process.These parameters significantly influence the flow and temperature fields during ...Casting speed,casting temperature and secondary cooling water flow rate are the main process parameters affecting the DC casting process.These parameters significantly influence the flow and temperature fields during casting,which are crucial for the quality of the ingot and can determine the success or failure of the casting operation.Numerical simulation,with the advantages of low cost,rapid execution,and visualized results,is an important method to study and optimize the DC casting process.In the present work,a simulation model of DC casting 2024 aluminum alloy was established,and the reliability of the model was verified.Then,the influence of casting parameters on flow field and temperature field was studied in detail by numerical simulation method.Results show that with the increase of casting speed,the melt flow becomes faster,the depths of slurry zone and mushy zone increase,and the variation of slurry zone depth is greater than that of mushy zone.With an increase in casting temperature,the melt flow rate increases,the depth of the slurry zone becomes shallower,and the depth of the mushy zone experiences only minor changes.The simulation results further indicate that the increase of the flow rate of the secondary cooling water slightly reduces the depths of both slurry and mushy zone.展开更多
In order to effectively reduce energy consumption and increase range mile,new energy vehicles represented by Tesla have greatly aroused the application of integrated magnesium(Mg)alloy die casting technology in automo...In order to effectively reduce energy consumption and increase range mile,new energy vehicles represented by Tesla have greatly aroused the application of integrated magnesium(Mg)alloy die casting technology in automobiles.Previously,the application of Mg alloys in automobiles,especially in automotive cockpit components,is quite extensive,while it has almost disappeared for a period of time due to its relatively high cost,causing a certain degree of information loss in the application technology of Mg alloy parts in automobiles.The rapid development of automotive technology has led to a higher requirement for the automotive components compared with those traditional one.Therefore,whatever the components themselves,or the Mg alloy materials and die casting process have to face an increasing challenge,needing to be upgraded.In addition,owing to its high integration characteristics,the application of Mg alloy die casting technology in large-sized and thin-walled automotive parts has inherent advantages and needs to be expanded urgently.Indeed,it necessitates exploring advance Mg alloys and new product structures and optimizing die casting processes.This article summarizes and analyzes the development status of thin-walled and large-sized die casting Mg alloy parts in passenger car cockpit and corresponding material selection methods,die casting processes as well as mold design techniques.Furthermore,this work will aid researchers in establishing a comprehensive understanding of the manufacture of thin-walled and large-sized die casting Mg alloy parts in automobile cockpit.It will also assist them in developing new Mg alloys with improved comprehensive performance and new processes to meet the high requirements for die casting automotive components.展开更多
High-performance magnesium alloys are moving towards a trend of being produced on a large scale and in an integrated manner.The foundational key to their successful production is the high-quality cast ingots.Magnesium...High-performance magnesium alloys are moving towards a trend of being produced on a large scale and in an integrated manner.The foundational key to their successful production is the high-quality cast ingots.Magnesium alloys produced through the conventional semi-continuous casting process inevitably contain casting defects,which makes it challenging to manufacture high-quality ingots.The integration of external field assisted controlled solidification technology,which combines physical fields such as electromagnetic and ultrasonic fields with traditional semi-continuous casting processes,enables the production of high-quality magnesium alloy ingots characterized by a homogeneous microstructure and absence of cracks.This article mainly summarizes the technical principles of those external field assisted casting process.The focus is on elaborating the refinement mechanism of different types of electromagnetic fields,ultrasonic fields,and combined physical fields during the solidification of magnesium alloys.Finally,the development prospects of producing highquality magnesium alloy ingots through semi-continuous casting under the external field were discussed.展开更多
The complex producing procedures and high energy-consuming limit the large-scale production and application of advanced high-strength steels(AHSSs).In this study,the direct strip casting(DSC)technology with unique sub...The complex producing procedures and high energy-consuming limit the large-scale production and application of advanced high-strength steels(AHSSs).In this study,the direct strip casting(DSC)technology with unique sub-rapid solidification characteristics and cost advantages was applied to the production of low-alloy Si-Mn steel with the help of quenching&partitioning(Q&P)concept to address these issues.Compared this method with the conventional compact strip production(CSP)process,the initial microstructure formed under different solidification conditions and the influence of heat treatment processes on the final mechanical properties were in-vestigated.The results show that the initial structure of the DSC sample is a dual-phase structure composed of fine lath martensite and bainite,while the initial structure of the CSP sample consists of pearlite and ferrite.The volume fraction and carbon content of retained austenite(RA)in DSC samples are usually higher than those in CSP samples after the same Q&P treatment.DSC samples typically demonstrate better comprehensive mechanical properties than the CSP sample.The DSC sample partitioned at 300℃ for 300 s(DSC-Pt300)achieves the best comprehensive mechanical properties,with yield strength(YS)of 1282 MPa,ultimate tensile strength(UTS)of 1501 MPa,total elongation(TE)of 21.5%,and product of strength and elongation(PSE)as high as 32.3 GPa·%.These results indicate that the excellent mechanical properties in low-alloy Si-Mn steel can be obtained through a simple process(DSC-Q&P),which also demonstrates the superiority of DSC technology in manufacturing AHSSs.展开更多
The properties of the magnetic mold in magnetic mold casting directly determine the quality of the final cast parts.In this study,the magnetic mold properties in magnetic mold casting,were studied utilizing a coupled ...The properties of the magnetic mold in magnetic mold casting directly determine the quality of the final cast parts.In this study,the magnetic mold properties in magnetic mold casting,were studied utilizing a coupled electromagnetic-structural method through numerical simulation.This study investigated key factors including equivalent stress,the distribution of tensile and compressive stresses,and the area ratio of tensile stress.It compared molds made entirely of magnetic materials with those made partially of magnetic materials.Simulation results indicate that as current increases from 4 A to 8 A,both the initial magnetic mold and the material-replaced magnetic mold initially show an increasing trend in equivalent stress,tensile-compressive stress,and the area ratio of tensile stress,peaking at 6 A before declining.After material replacement,the area ratio of tensile stress at 6 A decreases to 19.84%,representing a reduction of 29.72%.Magnetic molds comprising a combination of magnetic and non-magnetic materials exhibit sufficient strength and a reduced area ratio of tensile stress compared to those made entirely from magnetic materials.This study provides valuable insights for optimizing magnetic mold casting processes and offers practical guidance for advancing the application of magnetic molds.展开更多
Occasional irregular initial solidification phenomena,including stickers,deep oscillation marks,depressions,and surface cracks of strand shells in continuous casting molds,are important limitations for developing the ...Occasional irregular initial solidification phenomena,including stickers,deep oscillation marks,depressions,and surface cracks of strand shells in continuous casting molds,are important limitations for developing the high-efficiency continuous casting of steels.The application of mold thermal monitoring(MTM) systems,which use thermocouples to detect and respond to temperature variations in molds,has become an effective method to address irregular initial solidification phenomena.Such systems are widely applied in numerous steel companies for sticker breakout prediction.However,monitoring the surface defects of strands remains immature.Hence,indepth research is necessary to utilize the potential advantages and comprehensive monitoring of MTM systems.This paper summarizes what is included in the irregular initial solidification phenomena and systematically reviews the current state of research on these phenomena by the MTM systems.Furthermore,the influences of mold slag behavior on monitoring these phenomena are analyzed.Finally,the remaining problems of the formation mechanisms and investigations of irregular initial solidification phenomena are discussed,and future research directions are proposed.展开更多
The intelligent detection technology driven by X-ray images and deep learning represents the forefront of advanced techniques and development trends in flaw detection and automated evaluation of light alloy castings.H...The intelligent detection technology driven by X-ray images and deep learning represents the forefront of advanced techniques and development trends in flaw detection and automated evaluation of light alloy castings.However,the efficacy of deep learning models hinges upon a substantial abundance of flaw samples.The existing research on X-ray image augmentation for flaw detection suffers from shortcomings such as poor diversity of flaw samples and low reliability of quality evaluation.To this end,a novel approach was put forward,which involves the creation of the Interpolation-Deep Convolutional Generative Adversarial Network(I-DCGAN)for flaw detection image generation and a comprehensive evaluation algorithm named TOPSIS-IFP.I-DCGAN enables the generation of high-resolution,diverse simulated images with multiple appearances,achieving an improvement in sample diversity and quality while maintaining a relatively lower computational complexity.TOPSIS-IFP facilitates multi-dimensional quality evaluation,including aspects such as diversity,authenticity,image distribution difference,and image distortion degree.The results indicate that the X-ray radiographic images of magnesium and aluminum alloy castings achieve optimal performance when trained up to the 800th and 600th epochs,respectively.The TOPSIS-IFP value reaches 78.7%and 73.8%similarity to the ideal solution,respectively.Compared to single index evaluation,the TOPSIS-IFP algorithm achieves higher-quality simulated images at the optimal training epoch.This approach successfully mitigates the issue of unreliable quality associated with single index evaluation.The image generation and comprehensive quality evaluation method developed in this paper provides a novel approach for image augmentation in flaw recognition,holding significant importance for enhancing the robustness of subsequent flaw recognition networks.展开更多
The copper disc casting machine is core equipment for producing copper anode plates in the copper metallurgy industry.The copper disc casting machine casting package motion curve(CPMC) is significant for precise casti...The copper disc casting machine is core equipment for producing copper anode plates in the copper metallurgy industry.The copper disc casting machine casting package motion curve(CPMC) is significant for precise casting and efficient production.However,the lack of exact casting modeling and real-time simulation information severely restricts dynamic CPMC optimization.To this end,a liquid copper droplet model describes the casting package copper flow pattern in the casting process.Furthermore,a CPMC optimization model is proposed for the first time.On top of this,a digital twin dual closed-loop self-optimization application framework(DT-DCS) is constructed for optimizing the copper disc casting process to achieve self-optimization of the CPMC and closed-loop feedback of manufacturing information during the casting process.Finally,a case study is carried out based on the proposed methods in the industrial field.展开更多
基金Project(70373017) supported by the National Natural Science Foundation of China
文摘Considering the factors affecting the increasing rate of power consumption, the BP neural network structure and the neural network forecasting model of the increasing rate of power consumption were established. Immune genetic algorithm was applied to optimizing the weight from input layer to hidden layer, from hidden layer to output layer, and the threshold value of neuron nodes in hidden and output layers. Finally, training the related data of the increasing rate of power consumption from 1980 to 2000 in China, a nonlinear network model between the increasing rate of power consumption and influencing factors was obtained. The model was adopted to forecasting the increasing rate of power consumption from 2001 to 2005, and the average absolute error ratio of forecasting results is 13.521 8%. Compared with the ordinary neural network optimized by genetic algorithm, the results show that this method has better forecasting accuracy and stability for forecasting the increasing rate of power consumption.
文摘The direct rolling process for hot strip production,where the thin slab caster is connected directly to the mill,has gained market share rapidly because of its remarkable advantages in terms of energy savings and investment cost over the conventional hot strip mills. However,the unquestionable advantages of the first-generation applications of this plant concept also entail significant limitations both in productivity and steel grades that can be produced. Since his first pioneering applications,Danieli considered strategic the development of new technical solutions specifically conceived to overcome these limitations with the goal of increasing plant production volumes and enlarging steel grade product mix,in order to cover the gap between "Conventional mill" and "Thin slab casting and rolling" process routes. In order to reach this goal,Danieli has developed a complete portfolio of plant lay outs adopting Thin Slab Casting and Rolling technologies,each of them conceived to guarantee the optimal CAPEX and OPEX parameters in fitting with market requirements our Customer intend to target.in terms of productivity,steel grades and coil dimension product mix. Danieli TSR(Thin Slab Rolling) fTSR(flexible Thins Slab Rolling) QSP(Quality Strip Production) and ETR(Extra Thin Rolling) plant configurations are analyzed in this paper. With this diversified approach,Danieli solutions are most appropriate answers to thin slab casting and rolling to produce hot rolled coils with superior quality and an extremely diversified range of steel grades. Already,this approach has allowed Danieli plants to:①exceed the threshold production of 3.0 Mt/a with 2 casting strands in operation as done in Tangshan Iron and Steel plant in P.R.China since 2005;②expand the product mix to include virtually all the steel grades used for flat product applications,including the most demanding ones,such as peritectic(in Essar Algoma Canada and Benxi Iron and Steel,China),micro-alloyed,and silicon steels,for the most sophisticated applications,such as automotive and pipe manufacturing,including Arctic applications,(as done in OMK plant in Russia);③extend the range of final strip thicknesses to include ultra thin gauges,down to 0.8 mm(as in Ezz Flat Steel,in Egypt).
文摘The increased production efficiency of heat treatable A1 alloys, as the result of applied electromagnetic field during continuous casting process was investigated. The applied frequency of the electromagnetic field (EMF) during the AI alloys continuous casting was changing from 30 Hz to 50 Hz, while some castings were obtained without the EMF influence. The mechanical characterization of continuous casted AI alloys EN AW 2007 and En AW 2024 was done on testing machine Zwick/Roell Z 100. The microstructure of as-cast samples was examined, as well. When the frequency decreases (from 50 Hz to 30 Hz), the grain size decreases as well, what is noticeable through the finer microstructure and its uniformity throughout the cross-section. These results have shown that low frequency electromagnetic field significantly influenced the microstructure and therefore the mechanical properties of as cast ingots. Thus, through improved castings quality, operation time and energy savings, the production efficiency was increased.
基金funded by the Beijing Natural Science Foundation-Haidian Original Innovation Joint Fund(L212002)the Tsinghua-Toyota Joint Research Fund(20223930096)the Guangdong Provincial Key Area Research and Development Program(2022B0909070001).
文摘Emerging technological advances are reshaping the casting sector in latest decades.Casting technology is evolving towards intelligent casting paradigm that involves automation,greenization and intelligentization,which attracts more and more attention from the academic and industry communities.In this paper,the main features of casting technology were briefly summarized and forecasted,and the recent developments of key technologies and the innovative efforts made in promoting intelligent casting process were discussed.Moreover,the technical visions of intelligent casting process were also put forward.The key technologies for intelligent casting process comprise 3D printing technologies,intelligent mold technologies and intelligent process control technologies.In future,the intelligent mold that derived from mold with sensors,control devices and actuators will probably incorporate the Internet of Things,online inspection,embedded simulation,decision-making and control system,and other technologies to form intelligent cyber-physical casting system,which may pave the way to realize intelligent casting.It is promising that the intelligent casting process will eventually achieve the goal of real-time process optimization and full-scale control,with the defects,microstructure,performance,and service life of the fabricated castings can be accurately predicted and tailored.
基金financially supported by the National Natural Science Foundation of China(Grant No.U20A20289)the Innovative Research Groups Project of the Natural Science Foundation of Hebei Province(Grant No.E2021203011)the Central Government Guides Local Science and Technology Development Fund Project(Grant No.206Z1601G)。
文摘To investigate the thermal and mechanical behavior of casting wheel,a two-dimensional thermoelastic-plastic finite element model was used to predict the temperature,stress and distortion distribution of the casting wheel during the wheel and belt continuous casting process.The effects of grinding thickness and casting speed on the thermal and mechanical behaviors of the center of the hot face of the casting wheel were discussed in detail.In each rotation,the casting wheel passes through four different spray zones.The results show that the temperature distribution of the casting wheel in different spray zones is similar,the temperature of the hot face is the highest and the temperature reaches the peak in the spray zoneⅢ.The stress and distortion depend on the temperature distribution,and the maximum stress and distortion of the hot face are 358.2 MPa and 1.82 mm,respectively.The temperature at the center of the hot face decreases with increasing grinding thickness and increases with increasing casting speed.
基金Project(2007CB613705)supported by the National Basic Research Program of China
文摘The influences of two kinds of casting modules of metal casting (MC) and expandable pattern casting (EPC) on the corrosion behavior of Mg-11Gd-3Y alloy were studied by electrochemical measurements, scanning electron microscopy (SEM) observation, X-ray diffractometry (XRD) and X-ray photoelectron spectroscopy (XPS) analysis. It is found that the quantity of the Mg 24 (Gd, Y) 5 phase in MC is more than that in EPC due to the cooling rate. There is more alloying element dissolved in the matrix compared with MC. For EPC, the galvanic corrosion effect between the matrix and the Mg 24 (Gd, Y) 5 phase decreases and the corrosion resistance increases compared with the MC. The chief corrosion mode for Mg-11Gd-3Y alloy is pitting corrosion because most of the alloying elements are transformed into intermetallic phases. The average corrosion rate of the MC alloy in the immersion test is five times higher than that of EPC alloy and yttrium is present in the product film, which will provide increased protection for Mg-11Gd-3Y alloy. The electrochemical measurements and immersion test show that the EPC process increases the corrosion resistance compared with the MC Mg-11Gd-3Y alloy.
文摘The present status and perspectives of Chinese die-casting market were commented. In 2003, the total output of die castings in the whole country was 708000 tons, in which the outputs of Al-alloy, Zn-alloy, Mg-alloy, Cu-alloy die castings were 474600 tons, 222000 tons, 5800 tons, 5600 tons, respectively, each accounted for 67%, 31.35%, 0.85%, 0.8% of the total. The annual sale volume of die-casting machines was approximately 1800. And the gross output value of dies approached RMB 38 billion, in which die-casting dies accounted for about 10%. In the die-casting industry of the entire country, the foreign capital enterprises, public-run enterprises, township and village enterprises, private enterprises accounted for over 80% of the total die-casting enterprises. Super huge die-casting groups are forming.
基金supported by the National Natural Science Foundation of China(Nos.51821001 and U2037601)Major Scientific and Technological Inno-vation Projects in Luoyang(No.2201029A)+1 种基金Foundation Strengthening Plan Technical Field Fund(No.2021-JJ-0112)Shanghai Jiao Tong University Student Innovation Prac-tice Program(No.IPP24076).
文摘A novel Mg^(-1)0Li-3Al(wt.%,LA103)matrix composite reinforced by ex situ micron TiB_(2) particles was developed in the present study.The ball milling and cold pressing pretreatment of the reinforcements made it feasible to prepare this material under stir casting conditions with good dispersion.The microstructure and mechanical properties of the composites prepared by different pretreatment methods were analyzed in detail.The TiB_(2) particles in the Al-TiB_(2)/LA103 composite using the pretreatment process were uniformly distributed in the microstructure due to the formation of highly wettable core-shell units in the melt.Compared with the matrix alloys,the Al-TiB_(2)/LA103 composite exhibited effective strength and elastic modulus improvements while maintaining acceptable elongation.The strengthening effect in the composites was mainly attributed to the strong grain refining effect of TiB2.This work shows a balance of high specific modulus(36.1 GPa·cm^(3)·g^(-1))and elongation(8.4%)with the conventional stir casting path,which is of considerable application value.
基金financially supported by the National Key Research and Development Program of China(2022YFB3706800,2020YFB1710100)the National Natural Science Foundation of China(51821001,52090042,52074183)。
文摘The complex sand-casting process combined with the interactions between process parameters makes it difficult to control the casting quality,resulting in a high scrap rate.A strategy based on a data-driven model was proposed to reduce casting defects and improve production efficiency,which includes the random forest(RF)classification model,the feature importance analysis,and the process parameters optimization with Monte Carlo simulation.The collected data includes four types of defects and corresponding process parameters were used to construct the RF model.Classification results show a recall rate above 90% for all categories.The Gini Index was used to assess the importance of the process parameters in the formation of various defects in the RF model.Finally,the classification model was applied to different production conditions for quality prediction.In the case of process parameters optimization for gas porosity defects,this model serves as an experimental process in the Monte Carlo method to estimate a better temperature distribution.The prediction model,when applied to the factory,greatly improved the efficiency of defect detection.Results show that the scrap rate decreased from 10.16% to 6.68%.
基金supported by the National Natural Science Foundation of China(No.22371013)the National Key Research and Development Program of China(No.2018YFA0703700)+3 种基金the Fundamental Research Funds for the Central Universities,China(Nos.FRF-IDRY-19-007 and FRF-TP-19-055A2Z)the National Program for Support of Top-notch Young Professionals,Chinathe Young Elite Scientists Sponsorship Program by the China Association for Science and Technology(CAST),China(No.2019-2021 QNRC)the“Xiaomi Young Scholar”Funding Project,China.
文摘BiFeO_(3)(BFO)has received considerable attention as a lead-free ferroelectric film due to its large theoretical remnant polariza-tion.However,BFO suffers from a large leakage current,resulting in poor ferroelectric properties.Herein,the sol-gel method was used to deposit a series of BFO-based thin films on fluorine-doped tin oxide substrates,and the effects of the substitution of the elements Co,Cu,Mn(B-site)and Sm,Eu,La(A-site)on the crystal structure,ferroelectricity,and leakage current of the BFO-based thin films were invest-igated.Results confirmed that lattice distortion by X-ray diffraction can be attributed to the substitution of individual elements in the BFO-based films.Sm and Eu substitutions contribute to the lattice distortion in a pseudo-cubic structure,while La is biased toward pseudo-tet-ragonal.Piezoelectric force microscopy confirmed that reversible switching of ferroelectric domains by nearly 180°can be realized through the prepared films.The ferroelectric hysteresis loops showed that the order for the polarization contribution is as follows:Cu>Co>Mn(B-site),Sm>La>Eu(A-site).The current density voltage curves indicated that the order for leakage contribution is as follows:Mn<Cu<Co(B-site),La<Eu<Sm(A-site).Scanning electron microscopy showed that the introduction of Cu elements facilitates the formation of dense grains,and the grain size distribution statistics proved that La element promotes the reduction of grain size,leading to the increase of grain boundaries and the reduction of leakage.Finally,a Bi_(0.985)Sm_(0.045)La_(0.03)Fe_(0.96)Co_(0.02)Cu_(0.02)O_(3)(SmLa-CoCu)thin film with a qualitative leap in the remnant polarization from 25.5(Bi_(0.985)Sm_(0.075)FeO_(3))to 98.8µC/cm^(2)(SmLa-CoCu)was prepared through the syner-gistic action of Sm,La,Co,and Cu elements.The leakage current is also drastically reduced from 160 to 8.4 mA/cm^(2)at a field strength of 150 kV/cm.Thus,based on the increasing entropy strategy of chemical engineering,this study focuses on enhancing ferroelectricity and decreasing leakage current,providing a promising path for the advancement of ferroelectric devices.
文摘Ultra-large aluminum shape castings have been increasingly used in automotive vehicles,particularly in electric vehicles for light-weighting and vehicle manufacturing cost reduction.As most of them are structural components subject to both quasi-static,dynamic and cyclic loading,the quality and quantifiable performance of the ultra-large aluminum shape castings is critical to their success in both design and manufacturing.This paper briefly reviews some application examples of ultra-large aluminum castings in automotive industry and outlines their advantages and benefits.Factors affecting quality,microstructure and mechanical properties of ultra-large aluminum castings are evaluated and discussed as aluminum shape casting processing is very complex and often involves many competing mechanisms,multi-physics phenomena,and potentially large uncertainties that significantly influence the casting quality and performance.Metallurgical analysis and mechanical property assessment of an ultra-large aluminum shape casting are presented.Challenges are highlighted and suggestions are made for robust design and manufacturing of ultra-large aluminum castings.
文摘Four typical theories on the formation of thermal tears:strength,liquid film,intergranular bridging,and solidifica-tion shrinkage compensation theories.From these theories,a number of criteria have been derived for predicting the formation of thermal cracks,such as the stress-based Niyama,Clyne,and RDG(Rapaz-Dreiser-Grimaud)criteria.In this paper,a mathematical model of horizontal centrifugal casting was established,and numerical simulation analysis was conducted for the centrifugal casting process of cylindrical Al-Cu alloy castings to investigate the effect of the centrifugal casting process conditions on the microstructure and hot tearing sensitivity of alloy castings by using the modified RDG hot tearing criterion.Results show that increasing the centrifugal rotation and pouring speeds can refine the microstructure of the alloy but increasing the pouring and mold preheating temperatures can lead to an increase in grain size.The grain size gradually transitions from fine grain on the outer layer to coarse grain on the inner layer.Meanwhile,combined with the modified RDG hot tearing criterion,the overall distribution of the castings’hot tearing sensitivity was analyzed.The analysis results indicate that the porosity in the middle region of the casting was large,and hot tearing defects were prone to occur.The hot tearing tendency on the inner side of the casting was greater than that on the outer side.The effects of centrifugal rotation speed,pouring temperature,and preheating temperature on the thermal sensitivity of Al-Cu alloy castings are summarized in this paper.This study revealed that the tendency of alloy hot cracking decreases with the increase of the centrifugal speed,and the maximum porosity of castings decreases first and then increases with the pouring temperature.As the preheating temperature increases,the overall maximum porosity of castings shows a decreasing trend.
基金financially supported by the National Natural Science Foundation of China(No.51674078)。
文摘Casting speed,casting temperature and secondary cooling water flow rate are the main process parameters affecting the DC casting process.These parameters significantly influence the flow and temperature fields during casting,which are crucial for the quality of the ingot and can determine the success or failure of the casting operation.Numerical simulation,with the advantages of low cost,rapid execution,and visualized results,is an important method to study and optimize the DC casting process.In the present work,a simulation model of DC casting 2024 aluminum alloy was established,and the reliability of the model was verified.Then,the influence of casting parameters on flow field and temperature field was studied in detail by numerical simulation method.Results show that with the increase of casting speed,the melt flow becomes faster,the depths of slurry zone and mushy zone increase,and the variation of slurry zone depth is greater than that of mushy zone.With an increase in casting temperature,the melt flow rate increases,the depth of the slurry zone becomes shallower,and the depth of the mushy zone experiences only minor changes.The simulation results further indicate that the increase of the flow rate of the secondary cooling water slightly reduces the depths of both slurry and mushy zone.
基金supported by the foundation of“Cold area new energy service engineering laboratory battery pack comprehensive test system”from Jilin Provincial Development and Reform Commission(2020C021-6)the National Natural Science Foundation of China(NNSFC,No.52371109).
文摘In order to effectively reduce energy consumption and increase range mile,new energy vehicles represented by Tesla have greatly aroused the application of integrated magnesium(Mg)alloy die casting technology in automobiles.Previously,the application of Mg alloys in automobiles,especially in automotive cockpit components,is quite extensive,while it has almost disappeared for a period of time due to its relatively high cost,causing a certain degree of information loss in the application technology of Mg alloy parts in automobiles.The rapid development of automotive technology has led to a higher requirement for the automotive components compared with those traditional one.Therefore,whatever the components themselves,or the Mg alloy materials and die casting process have to face an increasing challenge,needing to be upgraded.In addition,owing to its high integration characteristics,the application of Mg alloy die casting technology in large-sized and thin-walled automotive parts has inherent advantages and needs to be expanded urgently.Indeed,it necessitates exploring advance Mg alloys and new product structures and optimizing die casting processes.This article summarizes and analyzes the development status of thin-walled and large-sized die casting Mg alloy parts in passenger car cockpit and corresponding material selection methods,die casting processes as well as mold design techniques.Furthermore,this work will aid researchers in establishing a comprehensive understanding of the manufacture of thin-walled and large-sized die casting Mg alloy parts in automobile cockpit.It will also assist them in developing new Mg alloys with improved comprehensive performance and new processes to meet the high requirements for die casting automotive components.
基金supported by the National Natural Science Foundation of China(No.52274377 and No.52304391)the Natural Science Foundation of Liaoning Province(No.2023-MSBA-133)the Fundamental Research Funds for the Central Universities(No.N2402010).
文摘High-performance magnesium alloys are moving towards a trend of being produced on a large scale and in an integrated manner.The foundational key to their successful production is the high-quality cast ingots.Magnesium alloys produced through the conventional semi-continuous casting process inevitably contain casting defects,which makes it challenging to manufacture high-quality ingots.The integration of external field assisted controlled solidification technology,which combines physical fields such as electromagnetic and ultrasonic fields with traditional semi-continuous casting processes,enables the production of high-quality magnesium alloy ingots characterized by a homogeneous microstructure and absence of cracks.This article mainly summarizes the technical principles of those external field assisted casting process.The focus is on elaborating the refinement mechanism of different types of electromagnetic fields,ultrasonic fields,and combined physical fields during the solidification of magnesium alloys.Finally,the development prospects of producing highquality magnesium alloy ingots through semi-continuous casting under the external field were discussed.
基金supported by the National Natural Science Foundation of China(No.52130408)the Natural Science Foundation of Hunan Province,China(No.2022JJ10081).
文摘The complex producing procedures and high energy-consuming limit the large-scale production and application of advanced high-strength steels(AHSSs).In this study,the direct strip casting(DSC)technology with unique sub-rapid solidification characteristics and cost advantages was applied to the production of low-alloy Si-Mn steel with the help of quenching&partitioning(Q&P)concept to address these issues.Compared this method with the conventional compact strip production(CSP)process,the initial microstructure formed under different solidification conditions and the influence of heat treatment processes on the final mechanical properties were in-vestigated.The results show that the initial structure of the DSC sample is a dual-phase structure composed of fine lath martensite and bainite,while the initial structure of the CSP sample consists of pearlite and ferrite.The volume fraction and carbon content of retained austenite(RA)in DSC samples are usually higher than those in CSP samples after the same Q&P treatment.DSC samples typically demonstrate better comprehensive mechanical properties than the CSP sample.The DSC sample partitioned at 300℃ for 300 s(DSC-Pt300)achieves the best comprehensive mechanical properties,with yield strength(YS)of 1282 MPa,ultimate tensile strength(UTS)of 1501 MPa,total elongation(TE)of 21.5%,and product of strength and elongation(PSE)as high as 32.3 GPa·%.These results indicate that the excellent mechanical properties in low-alloy Si-Mn steel can be obtained through a simple process(DSC-Q&P),which also demonstrates the superiority of DSC technology in manufacturing AHSSs.
基金the National Natural Science Foundation of China(No.51875062,No.52205336)the China Postdoctoral Science Foundation(No.2021M700567).
文摘The properties of the magnetic mold in magnetic mold casting directly determine the quality of the final cast parts.In this study,the magnetic mold properties in magnetic mold casting,were studied utilizing a coupled electromagnetic-structural method through numerical simulation.This study investigated key factors including equivalent stress,the distribution of tensile and compressive stresses,and the area ratio of tensile stress.It compared molds made entirely of magnetic materials with those made partially of magnetic materials.Simulation results indicate that as current increases from 4 A to 8 A,both the initial magnetic mold and the material-replaced magnetic mold initially show an increasing trend in equivalent stress,tensile-compressive stress,and the area ratio of tensile stress,peaking at 6 A before declining.After material replacement,the area ratio of tensile stress at 6 A decreases to 19.84%,representing a reduction of 29.72%.Magnetic molds comprising a combination of magnetic and non-magnetic materials exhibit sufficient strength and a reduced area ratio of tensile stress compared to those made entirely from magnetic materials.This study provides valuable insights for optimizing magnetic mold casting processes and offers practical guidance for advancing the application of magnetic molds.
基金supported by the National Natural Science Foundation of China(No.52274319)。
文摘Occasional irregular initial solidification phenomena,including stickers,deep oscillation marks,depressions,and surface cracks of strand shells in continuous casting molds,are important limitations for developing the high-efficiency continuous casting of steels.The application of mold thermal monitoring(MTM) systems,which use thermocouples to detect and respond to temperature variations in molds,has become an effective method to address irregular initial solidification phenomena.Such systems are widely applied in numerous steel companies for sticker breakout prediction.However,monitoring the surface defects of strands remains immature.Hence,indepth research is necessary to utilize the potential advantages and comprehensive monitoring of MTM systems.This paper summarizes what is included in the irregular initial solidification phenomena and systematically reviews the current state of research on these phenomena by the MTM systems.Furthermore,the influences of mold slag behavior on monitoring these phenomena are analyzed.Finally,the remaining problems of the formation mechanisms and investigations of irregular initial solidification phenomena are discussed,and future research directions are proposed.
基金funded by the National Key R&D Program of China(2020YFB1710100)the National Natural Science Foundation of China(Nos.52275337,52090042,51905188).
文摘The intelligent detection technology driven by X-ray images and deep learning represents the forefront of advanced techniques and development trends in flaw detection and automated evaluation of light alloy castings.However,the efficacy of deep learning models hinges upon a substantial abundance of flaw samples.The existing research on X-ray image augmentation for flaw detection suffers from shortcomings such as poor diversity of flaw samples and low reliability of quality evaluation.To this end,a novel approach was put forward,which involves the creation of the Interpolation-Deep Convolutional Generative Adversarial Network(I-DCGAN)for flaw detection image generation and a comprehensive evaluation algorithm named TOPSIS-IFP.I-DCGAN enables the generation of high-resolution,diverse simulated images with multiple appearances,achieving an improvement in sample diversity and quality while maintaining a relatively lower computational complexity.TOPSIS-IFP facilitates multi-dimensional quality evaluation,including aspects such as diversity,authenticity,image distribution difference,and image distortion degree.The results indicate that the X-ray radiographic images of magnesium and aluminum alloy castings achieve optimal performance when trained up to the 800th and 600th epochs,respectively.The TOPSIS-IFP value reaches 78.7%and 73.8%similarity to the ideal solution,respectively.Compared to single index evaluation,the TOPSIS-IFP algorithm achieves higher-quality simulated images at the optimal training epoch.This approach successfully mitigates the issue of unreliable quality associated with single index evaluation.The image generation and comprehensive quality evaluation method developed in this paper provides a novel approach for image augmentation in flaw recognition,holding significant importance for enhancing the robustness of subsequent flaw recognition networks.
基金supported in part by the National Major Scientific Research Equipment of China (61927803)the National Natural Science Foundation of China Basic Science Center Project (61988101)+1 种基金Science and Technology Innovation Program of Hunan Province (2021RC4054)the China Postdoctoral Science Foundation (2021M691681)。
文摘The copper disc casting machine is core equipment for producing copper anode plates in the copper metallurgy industry.The copper disc casting machine casting package motion curve(CPMC) is significant for precise casting and efficient production.However,the lack of exact casting modeling and real-time simulation information severely restricts dynamic CPMC optimization.To this end,a liquid copper droplet model describes the casting package copper flow pattern in the casting process.Furthermore,a CPMC optimization model is proposed for the first time.On top of this,a digital twin dual closed-loop self-optimization application framework(DT-DCS) is constructed for optimizing the copper disc casting process to achieve self-optimization of the CPMC and closed-loop feedback of manufacturing information during the casting process.Finally,a case study is carried out based on the proposed methods in the industrial field.