期刊文献+
共找到39篇文章
< 1 2 >
每页显示 20 50 100
Catalytic effect in lithium metal batteries: From heterogeneous catalyst to homogenous catalyst
1
作者 Haining Fan Xuan-Wen Gao +3 位作者 Hailong Xu Yichun Ding Shi-Xue Dou Wen-Bin Luo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期305-326,I0008,共23页
Lithium metal batteries are regarded as prominent contenders to address the pressing needs owing to the high theoretical capacity.Toward the broader implementation,the primary obstacle lies in the intricate multi-elec... Lithium metal batteries are regarded as prominent contenders to address the pressing needs owing to the high theoretical capacity.Toward the broader implementation,the primary obstacle lies in the intricate multi-electron,multi-step redox reaction associated with sluggish conversion kinetics,subsequently giving rise to a cascade of parasitic issues.In order to smooth reaction kinetics,catalysts are widely introduced to accelerate reaction rate via modulating the energy barrier.Over past decades,a large amount of research has been devoted to the catalyst design and catalytic mechanism exploration,and thus the great progress in electrochemical performance has been realized.Therefore,it is necessary to make a comprehensive review toward key progress in catalyst design and future development pathway.In this review,the basic mechanism of lithium metal batteries is provided along with corresponding advantages and existing challenges detailly described.The main catalysts employed to accelerate cathode reaction with emphasis on their catalytic mechanism are summarized as well.Finally,the rational design and innovative direction toward efficient catalysts are suggested for future application in metal-sulfur/gas battery and beyond.This review is expected to drive and benefit future research on rational catalyst design with multi-parameter synergistic impacts on the activity and stability of next-generation metal battery,thus opening new avenue for sustainable solution to climate change,energy and environmental issues,and the potential industrial economy. 展开更多
关键词 Energy storage and conversion Metal battery Sulfur battery Air battery catalytic effect Heterogeneous catalyst Homogeneous catalyst
下载PDF
Catalytic Effect of Transition Metal Complexes of Triaminoguanidine on the Thermolysis of Energetic NC/DEGDN Composite
2
作者 Mohammed Dourari Ahmed Fouzi Tarchoun +4 位作者 Djalal Trache Amir Abdelaziz Roufaida Tiliouine Tessnim Barkat Weiqiang Pang 《火炸药学报》 EI CAS CSCD 北大核心 2024年第3期209-219,I0003,共12页
The transition metal complexes of triaminoguanidine(TAG-M,where M=Cobalt(Co)or Iron(Fe))have been prepared.The catalytic effect of these complexes on the thermolysis of energetic composite based on nitrocellulose and ... The transition metal complexes of triaminoguanidine(TAG-M,where M=Cobalt(Co)or Iron(Fe))have been prepared.The catalytic effect of these complexes on the thermolysis of energetic composite based on nitrocellulose and diethylene glycol dinitrate,has been investigated.Extensive characterization of the resulting energetic composites was carried out using scanning electron microscopy(SEM),X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR),and differential scanning calorimetry(DSC).Isoconversional kinetic analysis was performed to determine the Arrhenius parameters associated with the thermolysis of the elaborated energetic formulations.It is found that TAG-M complexes have strong catalytic effect on the thermo-kinetic decomposition of NC/DEGDN by decreasing the apparent activation energy and significantly increased the total heat release.The models that govern the decomposition processes are also studied,and it is revealed that different reaction processes are accomplished by introduction metal complexes of triaminoguanidine.Overall,this study serves as a valuable reference for future research focused on the investigation of catalytic combustion features of solid propellants. 展开更多
关键词 triaminoguanidine transition metal complexes NITROCELLULOSE diethylene glycol dinitrate catalytic effect
下载PDF
Catalytic Effect of Activated Carbon and Activated Carbon Fiber in Non-Equilibrium Plasma-Based Water Treatment 被引量:2
3
作者 张延宗 郑经堂 +2 位作者 曲险峰 于维钊 陈宏刚 《Plasma Science and Technology》 SCIE EI CAS CSCD 2008年第3期358-362,共5页
Catalysis and regeneration efficiency of granular activated carbon (GAC) and activated carbon fiber (ACF) were investigated in a non-equilibrium plasma water treatment reactor with a combination of pulsed streamer... Catalysis and regeneration efficiency of granular activated carbon (GAC) and activated carbon fiber (ACF) were investigated in a non-equilibrium plasma water treatment reactor with a combination of pulsed streamer discharge and GAC or ACF. The experimental results show that the degradation efficiency of methyl orange (MO) by the combined treatment can increase 22% (for GAC) and 24% (for ACF) respectively compared to pulsed discharge treatment alone, indicating that the combined treatment has a synergetic effect. The MO degradation efficiency by the combined treatment with pulsed discharge and saturated GAC or ACF can increase 12% and 17% respectively compared to pulsed discharge treatment alone. Both GAC and ACF show catalysis and the catalysis of ACF is prominent. Meanwhile, the regeneration of GAC and ACF are realized in this process. When H202 is introduced into the system, the utilization efficiency of ozone and ultraviolet light is improved and the regeneration efficiency of GAC and ACF is also increased. 展开更多
关键词 non-equilibrium plasma water treatment activated carbon activated carbon fiber catalytic effect
下载PDF
THE PREPARATION OF ISOPOLYMOLYBDIC ACID-POLYANILINE FILM MODIFIED ELECTRODE AND ITS CATALYTIC EFFECTS ON CHLORATE IONS
4
作者 Shao Jun DONG Bao Xing WANG Fa Yi SONG Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Academia Sinica, Changchun Jilin 130022 《Chinese Chemical Letters》 SCIE CAS CSCD 1991年第5期411-414,共4页
The preparation method of H_4MoO_(26)-polyaniline film modified electrode and its voltammetric behaviour are described. The modified electrode has high electrocatalytic activity on chlorate ions.
关键词 rate THE PREPARATION OF ISOPOLYMOLYBDIC ACID-POLYANILINE FILM MODIFIED ELECTRODE AND ITS catalytic effectS ON CHLORATE IONS ACID ITS
下载PDF
Catalytic Effect of SCN^- on Electrodeposition of Zinc-Nickle Alloy
5
作者 FANGZheng-hua YINRen-he 《Journal of Shanghai University(English Edition)》 CAS 2001年第2期160-163,共4页
The electrodeposition of zinc nickle alloy was obtained on a copper cathode of 1×1cm 2. The deposited alloys are quantitatively analyzed by atomic absorption spectrometry. The morphology of the deposits was obs... The electrodeposition of zinc nickle alloy was obtained on a copper cathode of 1×1cm 2. The deposited alloys are quantitatively analyzed by atomic absorption spectrometry. The morphology of the deposits was observed by means of scanning electron microscopy(SEM).We observed that the electrodeposition of zinc nickle alloy is an anomalous codeposition. The catalytic effects of SCN - on the electrochemical behavior of Ni deposition and hydrogen discharge are obvious. SEM analysis shows that the surface morphology of the coating appears to be more compact and homogeneous with the increase of SCN - concentration. 展开更多
关键词 zinc nickle alloy anomalous codeposition catalytic effect
下载PDF
Kinetics of Carbothermic Reduction of MnO_2 and Catalytic Effect of La_2O_3
6
作者 HuiqingTang XingminGuo 《Journal of University of Science and Technology Beijing》 CSCD 2002年第1期40-44,共5页
Kinetics of carbothermic reduction of manganese oxide and the catalyticeffect of La_2O_3 on the reduction have been studied by the measurement of mass loss in N_2atmosphere at different temperatures and followed by SE... Kinetics of carbothermic reduction of manganese oxide and the catalyticeffect of La_2O_3 on the reduction have been studied by the measurement of mass loss in N_2atmosphere at different temperatures and followed by SEM analysis. It is concluded that the kineticsof carbothermic reduction of manganese oxide is divided into three stages: gas diffusioncontrolling stage, carbon gasification con-trolling stage and solid state diffusion controllingstage. La_2O_3 has catalytic effect on the reduction. The catalytic effect of La_2O_3 increases withthe added amount of La_2O_3. SEM analysis shows that the catalytic mechanism is that La_2O_3promotes the transfer of oxygen ions so that carbon gasifying is catalyzed and thus carbothermicreduction of MnO_2 is catalyzed. 展开更多
关键词 lanthanum oxide carbothermic reduction catalytic effect
下载PDF
Catalytic Effect Analysis of Metallic Catalyst During Diamond Single Crystal Synthesis 被引量:4
7
作者 Li Li Shibo Xing 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2014年第1期161-167,共7页
By transition metals (Fe, Ni, Mn, Co) and their alloys as catalysts during the diamond synthesis, some transition phases will be formed, such as FeaC type carbides and y solid solutions. Based on the empirical elect... By transition metals (Fe, Ni, Mn, Co) and their alloys as catalysts during the diamond synthesis, some transition phases will be formed, such as FeaC type carbides and y solid solutions. Based on the empirical electron theory of the solid and molecules, the valence electron structures of different kinds of carbides and y solid solutions and the relative electron density differences of various diamond/carbide and y solid solution/carbide interfaces were calculated and analyzed in this paper. The electron structure conditions of the ideal catalyst were presented by analyzing the different catalytic effects of the catalysts, which provide a new theoretical path to the optimal design of the catalyst composition 展开更多
关键词 DIAMOND catalytic effect CARBIDE Electronic structure
原文传递
Assessment of the Catalytic Effects of Transforming Industrial Heritage:Case Study of Sanbao Street Industrial Historic District in Changzhou 被引量:1
8
作者 Miao Sun Zhenyu Li Lu Huang 《Built Heritage》 CSCD 2019年第1期59-75,共17页
Transforming industrial heritage will have internal economic and cultural effects and will also catalyse changes in surrounding urban areas.Transforming industrial heritage is therefore an essential part of strategies... Transforming industrial heritage will have internal economic and cultural effects and will also catalyse changes in surrounding urban areas.Transforming industrial heritage is therefore an essential part of strategies to regenerate decayed industrial districts.The aim of this study was to attempt to answer three questions.Can all transformed industrial heritage give catalytic effects?How should the potential for catalytic effects be assessed?What factors prevent catalytic effects?The Sanbao Street Industrial Heritage Historic District in Changzhou,China,was used as an example,and three effects catalysed by transforming industrial heritage were assessed.These were(1)reuse of industrial and non-industrial buildings in and near the historic district,(2)new construction in and near the historic district,and(3)revitalisation of the whole historic district.Failure of the catalytic effect caused by a lack of a conversion mechanism,failure to communicate the value of industrial heritage,and limited cultural industrial capacity was assessed.Formal transformation strategies focused on the connotative value of industrial heritage are proposed,and are expected to support future research and planning practices. 展开更多
关键词 industrial heritage urban regeneration catalytic effect ASSESSMENT connotative value
原文传递
Catalytic mechanism of in-situ Ni/C co-incorporation for hydrogen absorption of Mg
9
作者 Bogu Liu Bao Zhang +5 位作者 Haixiang Huang Xiaohong Chen Yujie Lv Zhongyu Li Jianguang Yuan Ying Wu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第5期1815-1824,共10页
Ni and carbon materials exhibit remarkable catalysis for the hydriding reaction of Mg.But the underlying mechanism of Ni/C hybrid catalysis is still unclear.In this work,density functional theory(DFT)calculation is ap... Ni and carbon materials exhibit remarkable catalysis for the hydriding reaction of Mg.But the underlying mechanism of Ni/C hybrid catalysis is still unclear.In this work,density functional theory(DFT)calculation is applied to investigate the effect of Ni/C co-incorporation on the hydriding reaction of Mg crystal.The morphology and crystal structure of the Ni/C co-incorporated Mg sample show that the coincorporated structure is credible.The transition state searching calculation suggests that both the incorporations of Ni and C are beneficial for the H_(2) dissociation.But Ni atom has a dramatic improvement for H_(2) dissociation and makes the H diffusion become limiting step of the hyriding reaction.The Ni dz_(2)orbit and H s orbit accept the electrons and combine together compactly,while the Ni d_(xy) orbit is half-occupied.The catalytic effect of Ni on H_(2) dissociation can be ascribed to the bridging effect of Ni d_(xy) orbit.The incorporation of C can weaken the over-strong interaction between Ni and H which hindered the H diffusion on Mg(0001).The Ni/C co-incorporated Mg(0001)shows the best performance during hyriding reaction compared with the clean and single incorporated Mg(0001). 展开更多
关键词 MAGNESIUM Ni/C co-incorporation Density functional theory catalytic effect Hydriding reaction
下载PDF
ELECTROCARBOXYLATION OF ORGANIC COMPOUNDS WITH CARBON DIOXIDE CATALYZED BY METALLOPORPHYRINS(Ⅲ)——EFFECTS OF AXIAL LIGANDS ON CATALYTIC ACTIVITY OF CoTPP
10
作者 Guo Dong ZHENG Yu Wen LIU +1 位作者 Qing Da AN Xi Zhang CAODepartment of Chemistry,Jilin University,Changchun,130023 Present adress:Dalian Institute of Light Industry. 《Chinese Chemical Letters》 SCIE CAS CSCD 1992年第5期355-356,共2页
The effects of peptides,amino acids and organic bases as an axial ligand on reaction ac- tivities in the electrocarboxylation of benzyl chloride with CO_2 catalyzed by CoTPP are reported. The imidazole organic base,pe... The effects of peptides,amino acids and organic bases as an axial ligand on reaction ac- tivities in the electrocarboxylation of benzyl chloride with CO_2 catalyzed by CoTPP are reported. The imidazole organic base,peptide containing —SH and amino acid containing imidazolyl en- hance the catalytic activity.The effect of imidazole amounts on the catalytic activity of CoTPP is studied. 展开更多
关键词 As effectS OF AXIAL LIGANDS ON catalytic ACTIVITY OF CoTPP ELECTROCARBOXYLATION OF ORGANIC COMPOUNDS WITH CARBON DIOXIDE CATALYZED BY METALLOPORPHYRINS
下载PDF
The effect of K2SiF6 on the MgH2 hydrogen storage properties 被引量:10
11
作者 M.Ismail M.S.Yahya +3 位作者 N.A.Sazelee N.A.Ali F.A.Halim Yap N.S.Mustafa 《Journal of Magnesium and Alloys》 SCIE EI CAS 2020年第3期832-840,共9页
The catalytic effect of K2SiF6 on MgH2 was first timely studied.The MgH2+5 wt.%K2SiF6 was prepared via the ball milling technique.The catalyst had lessened the initial decomposition temperature by 134℃ and 48℃ as co... The catalytic effect of K2SiF6 on MgH2 was first timely studied.The MgH2+5 wt.%K2SiF6 was prepared via the ball milling technique.The catalyst had lessened the initial decomposition temperature by 134℃ and 48℃ as compared to both pristine and milled MgH2 samples,respectively.In 2 minutes,4.5 wt.%of hydrogen was absorbed(250℃)by the doped composite,which was 0.8 wt.%higher than the milled MgH2.Meanwhile,for the desorption kinetics(320℃,1 atm),the amount of desorbed hydrogen was increased by 2.4 wt.%and 2.3 wt.%for the first 10 and 20 minutes.Besides,contracting volume and Johnson-Mehl-Avrami models were used to analyse the kinetics sorptions.The decomposition activation energy calculated based on Kissinger equation was 114 kJ/mol.As for the active species,Mg2Si,MgF2 and KH were formed during the heating process.These active species are speculated to be responsible for the improvement of the hydrogenation properties of the composite. 展开更多
关键词 catalytic effect Magnesium hydride Hydrogen storage Sorption properties Contracting volume model
下载PDF
Catalytic Mechanism of KCl during Carbothermic Reduction of Pre-Oxidized Ilmenite 被引量:2
12
作者 SUN Kang WU Jian-hui 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2001年第2期7-11,共5页
As alkali additive,KC1 catalyzes effectively the carbothermic reduction of pre-oxidized ilmenite,and the catalytic effect becomes more remarkable as the amount of KC1 increases.During the carbothermic reduction,the ga... As alkali additive,KC1 catalyzes effectively the carbothermic reduction of pre-oxidized ilmenite,and the catalytic effect becomes more remarkable as the amount of KC1 increases.During the carbothermic reduction,the gaseous product consists mainly of CO,and the partial pressure of which increases with reaction temperature.The EPMA and XPS of the partially reduced ilmenite ore and that of the used graphite as reductant showed that the potassium ions enter both ilmenite particles and graphite powders during reduction.The above-mentioned phenomena result in the distortion of ilmenite and carbon structure by potassium ions and reaction activity of carbon and ilmenite was enhanced.As a result,the overall carbothermic reduction was catalyzed by KC1. 展开更多
关键词 carbothermic reduction catalytic effect reaction mechanism alkali additives preoxidized ilmenite
下载PDF
A novel indicator system for catalytic spectrophotometric determination and speciation of inorganic selenium species (Se(Ⅳ), Se(Ⅵ)) at trace levels in natural lake and river water samples 被引量:1
13
作者 Ramazan Gürkan Halil brahim Ulusoy +1 位作者 Mehmet Akay Pinar Bulut 《Rare Metals》 SCIE EI CAS CSCD 2011年第5期477-487,共11页
A novel catalytic kinetic method is proposed for the determination of Se(Ⅳ), Se(Ⅵ), and total inorganic selenium in water based on the catalytic effect of Se(Ⅳ) on the reduction of Celestine blue by sodium su... A novel catalytic kinetic method is proposed for the determination of Se(Ⅳ), Se(Ⅵ), and total inorganic selenium in water based on the catalytic effect of Se(Ⅳ) on the reduction of Celestine blue by sodium sulfide at pH 7.0 phosphate buffer. The fixed-time method was adopted for the determination and speciation of inorganic selenium. Under the optimum conditions, the two calibration graphs are linear with a good correlation coefficient in the range 2-20 and 20-200 μg·L-1 of Se(Ⅳ) for the fixed-time method at 30℃. The experimental and theo- retical detection limits of the developed kinetic method were found to be 0.21 and 2.50 μg·L-1 for the fixed-time method (3 min). All of the variables that affect the sensitivity at 645 nm were investigated, and the optimum conditions were established. The interference effect of various cations and anions on the Se(Ⅳ) determination was also studied. The selectivity of the selenium determination was greatly improved with the use of the strongly cation exchange resin such as Amberlite IR120 plus as long as chelating agents of thiourea and thiosulphate. The proposed kinetic method was validated statistically and through recovery studies in natural water samples. The relative standard deviations (RSDs) for ten replicate measurements of 2, 10, and 20 μg·L-1 of Se(Ⅳ) change between 0.35% and 5.58%, while the RSDs for ten replicate measurements of 3, 6, and 12 μg·L-1 of Se(Ⅵ) change between 0.49% and 1.61%. Analyses of a certified standard reference material (NIST SRM 1643e) for selenium using the fixed-time method showed that the proposed kinetic method has good accuracy. The Se(Ⅳ), Se(Ⅵ), and total inorganic selenium in lake and river water samples have been successfully determined by this method after selective reduction of Se(Ⅵ) to Se(Ⅳ). 展开更多
关键词 selenium speciation Celestine blue catalytic effect kinetic spectrophotometry natural waters
下载PDF
Catalytic-kinetic spectrophotometric determination of vanadium (V) based on the Celestine blue-bromate-vanadium (V)-citric acid reaction
14
作者 Ramazan Gürkan Olcay Gürkan 《Rare Metals》 SCIE EI CAS CSCD 2011年第4期348-358,共11页
A novel sensitive and relatively selective kinetic method is presented for the determination of V(V) based on its catalytic effect on the oxidation reaction of Celestine blue by potassium bromate in the presence of ... A novel sensitive and relatively selective kinetic method is presented for the determination of V(V) based on its catalytic effect on the oxidation reaction of Celestine blue by potassium bromate in the presence of citric acid as an activator. The reaction was monitored spectropho- tometrically by measuring the decrease in absorbance of Celestine blue at a maximum absorption wavelength of 540 nm between 0.5 and 9 min (the fixed-time method) in an H3PO4 medium at 45℃. The effect of various parameters such as concentrations of H3PO4, citric acid, potassium bromate and Celestine blue, ionic strength, reaction temperature and time on the rate of V(V) catalyzed reaction was studied. The method is free from the most interferences, especially from large amounts of V(IV). The decrease in absorbance is proportional to the concentration of V(V) over the entire concentration range tested (0.025-1.25 lag.mL^-1) with a detection limit of 6.80 tag.L^-1 (according to statistical 3Sblank/k criterion) and a coefficient of variation (CV) of 1.78% (for ten replicate measurements at 95% confidence level). The proposed method suffers from a few interferences such as Cr(VI) and Hg(Ⅱ) ions. The method was successfully applied to the determination of V(V) in river water, lake water, tap water, natural drinking water samples and a certified standard reference material such as SRM-1640 with satis- factory results. The vanadium contents of natural water samples were detected by using both linear calibration curve and standard addition curve methods. The recoveries of spiked vanadium (V) into the certified standard water sample were found to be quantitative, and the reproducibility was satisfactory. It was observed that the results of the SRM 1640 were in good agreement with the certified value. 展开更多
关键词 catalytic effect VANADIUM SPECTROPHOTOMETRY BROMATES Celestine blue citric acid
下载PDF
Iridium-based catalysts for oxygen evolution reaction in acidic media:Mechanism,catalytic promotion effects and recent progress 被引量:2
15
作者 Chunyan Wang Alex Schechter Ligang Feng 《Nano Research Energy》 2023年第2期151-181,共31页
Iridium(Ir)-based catalysts are highly efficient for the anodic oxygen evolution reaction(OER)due to high stability and anti-corrosion ability in the strong acid electrolyte.Recently,intensive attention has been direc... Iridium(Ir)-based catalysts are highly efficient for the anodic oxygen evolution reaction(OER)due to high stability and anti-corrosion ability in the strong acid electrolyte.Recently,intensive attention has been directed to novel,efficient,and low-cost Ir-based catalysts to overcome the challenges of their application in the water electrolysis technique.To make a comprehensive understanding of the recently developed Ir-based catalysts and their catalytic properties,the mechanism and catalytic promotion principles of Ir-based catalysts were discussed for OER in the acid condition aimed for the proton exchange membrane water electrolyzer(PEMWE)in this review.The OER catalytic mechanisms of the adsorbate evolution mechanism and the lattice oxygen mechanism were first presented and discussed for easy understanding of the catalytic mechanism;a brief perspective analysis of promotion principles from the aspects of geometric effect,electronic effect,synergistic effect,defect engineering,support effect was concluded.Then,the latest progress and the practical application of Ir-based catalysts were introduced in detail,which was classified into the varied composition of Ir catalyst in terms of alloys,hetero-element doping,perovskite,pyrochlore,heterostructure,core-shell structure,and supported catalysts.Finally,the problems and challenges faced by the current Ir-based catalyst in the acidic electrolyte were put forward.It is concluded that highly efficient catalysts with low Ir loading should be developed in the future,and attention should be paid to probing the structural and performance correlation,and their application in real PEMWE devices.Hopefully,the current effort can be helpful in the catalysis mechanism understanding of Ir-based catalysts for OER,and instructive to the novel efficient catalysts design and fabrication. 展开更多
关键词 Ir-based catalysts catalytic promotion effects oxygen evolution reaction acidic media
原文传递
Superior de/hydrogenation performances of MgH2 catalyzed by 3D flower-like TiO2@C nanostructures 被引量:7
16
作者 Meng Zhang Xuezhang Xiao +3 位作者 Bosang Luo Meijia Liu Man Chen Lixin Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第7期191-198,I0006,共9页
Magnesium hydride has been seen as a potential material for solid state hydrogen storage,but the kinetics and thermodynamics obstacles have hindered its development and application.Three-dimensional flower-like TiO2@C... Magnesium hydride has been seen as a potential material for solid state hydrogen storage,but the kinetics and thermodynamics obstacles have hindered its development and application.Three-dimensional flower-like TiO2@C and TiO2 were synthesized as the catalyst for MgH2 system and great catalytic activities are acquired in the hydrogen sorption properties.Experiments also show that the flower-like TiO2@C is superior to flower-like TiO2 in improving the hydrogen storage properties of MgH2.The hydrogen desorption onset and peak temperatures of flower-like TiO2 doped MgH2 is reduced to 199.2℃and 245.4℃,while the primitive MgH2 starts to release hydrogen at 294.6℃and the rapid dehydrogenation temperature is even as high as 362.6℃.The onset and peak temperatures of flower-like TiO2@C doped MgH2 are further reduced to 180.3℃and 233.0℃.The flower-like TiO2@C doped MgH2 composite can release6.0 wt%hydrogen at 250℃within 7 min,and 4.86 wt%hydrogen at 225℃within 60 min,while flowerlike TiO2 doped MgH2 can release 6.0 wt%hydrogen at 250℃within 8 min,and 3.89 wt%hydrogen at225℃within 60 min.Hydrogen absorption kinetics is also improved dramatically.Moreover,compared with primitive MgH2 and the flower-like TiO2 doped MgH2,the activation energy of flower-like TiO2@C doped MgH2 is significantly decreased to 67.10 kJ/mol.All the improvement of hydrogen sorption properties can be ascribed to the flower-like structure and the two-phase coexistence of TiO2 and amorphous carbon.Such phase composition and unique structure are proved to be the critical factor to improve the hydrogen sorption properties of MgH2,which can be considered as the new prospect for improving the kinetics of light-metal hydrogen storage materials. 展开更多
关键词 Hydrogen storage Magnesium hydride TIO2 Flower-like structure catalytic effects
下载PDF
Boosting polysulfide redox conversion of Li-S batteries by one-step-synthesized Co-Mo bimetallic nitride 被引量:4
17
作者 Yingying Yan Hongtai Li +5 位作者 Chen Cheng Tianran Yan Wenping Gao Jing Mao Kehua Dai Liang Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第10期336-346,I0010,共12页
Lithium-sulfur(Li-S)batteries are considered as one of the most promising next generation energy storage systems due to the high theoretical specific capacity,low cost,and environmental benignity.However,the notorious... Lithium-sulfur(Li-S)batteries are considered as one of the most promising next generation energy storage systems due to the high theoretical specific capacity,low cost,and environmental benignity.However,the notorious shuttle effect of polysulfides hinders the practical application of Li-S batteries.Herein,we have rationally designed and synthesized sea urchin-like Co-Mo bimetallic nitride(Co_(3) MO_(3) N)in the absence of additional nitrogen sources with only one step,which was applied as the sulfur host materials for Li-S batteries.The results indicate that Co_(3) Mo_(3) N can efficiently anchor and catalyze the conversion of polysulfides,thus accelerating the electrochemical reaction kinetics and enabling prominent electrochemical properties.As a consequence,the S@Co_(3) Mo_(3) N cathode exhibits a high rate performance of 705 mAh g^(-1) at 3 C rate and an excellent cycling stability with a low capacity fading rate of 0.08%per cycle at 1 C over 600 cycles.Even at a high sulfur loading of 5.4 cmg cm^(-2),it delivers a high initial areal capacity of 4.50 mAh cm^(-2) which is still retained at 3.64 mAh cm^(-2) after 120 cycles.Furthermore,the catalytic mechanism and structural stability of Co_(3) Mo_(3) N during cycling were elucidated by a combination of X-ray photoelectron spectroscopy and X-ray absorption fine structure.This work highlights the strategy of structure-catalysis engineering of bimetallic nitride,which is expected to have a wide application in Li-S batteries. 展开更多
关键词 Lithium-sulfur batteries Co3Mo3N Shuttle effect catalytic effect XAFS
下载PDF
Facile synthesis of a Ni_(3)S_(2)@C composite using cation exchange resin as an efficient catalyst to improve the kinetic properties of MgH_(2) 被引量:2
18
作者 Liang Zeng Zhiqiang Lan +7 位作者 Baobao Li Huiren Liang Xiaobin Wen Xiantun Huang Jun Tan Haizhen Liu Wenzheng Zhou Jin Guo 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第12期3628-3640,共13页
Carbon materials have excellent catalytic effects on the hydrogen storage performance of MgH2. Here, carbon-supported Ni3S2(denoted as Ni3S2@C) was synthesized by a facile chemical route using ion exchange resin and n... Carbon materials have excellent catalytic effects on the hydrogen storage performance of MgH2. Here, carbon-supported Ni3S2(denoted as Ni3S2@C) was synthesized by a facile chemical route using ion exchange resin and nickel acetate tetrahydrate as raw materials and then introduced to improve the hydrogen storage properties of MgH2. The results indicated the addition of 10 wt.% Ni3S2@C prepared by macroporous ion exchange resin can effectively improve the hydrogenation/dehydrogenation kinetic properties of MgH2. At 100 ℃,the dehydrogenated MgH2-Ni3S2@C-4 composite could absorb 5.68 wt.% H2. Additionally, the rehydrogenated MgH2-Ni3S2@C-4 sample could release 6.35 wt.% H2at 275 ℃. The dehydrogenation/hydrogenation enthalpy changes of MgH2-Ni3S2@C-4 were calculated to be 78.5 k J mol-1/-74.7 k J mol-1, i.e., 11.0 k J mol-1/7.3 k J mol-1lower than those of MgH2. The improvement in the kinetic properties of MgH2was ascribed to the multi-phase catalytic action of C, Mg2Ni, and Mg S, which were formed by the reaction between Ni3S2contained in the Ni3S2@C catalyst and Mg during the first hydrogen absorption–desorption process. 展开更多
关键词 MAGNESIUM Hydrogen storage performance catalytic effect Carbon-based catalyst
下载PDF
Enhancing hydrogen storage performance via optimizing Y and Ni element in magnesium alloy 被引量:2
19
作者 Xu Pang Lei Ran +2 位作者 Yu'an Chen Yuxiao Luo Fusheng Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第3期888-903,共16页
Magnesium-based hydrogen storage materials are considered as one of the most promising candidates for solid state hydrogen storage due to their advantages of high hydrogen capacity,excellent reversibility and low cost... Magnesium-based hydrogen storage materials are considered as one of the most promising candidates for solid state hydrogen storage due to their advantages of high hydrogen capacity,excellent reversibility and low cost.In this paper,Mg_(91.4)Ni_(7)Y_(1.6) and Mg_(92.8)Ni_(2.4)Y_(4.8) alloys were prepared by melting and ball milling.Their microstructures and phases were characterized by X-ray diffraction,scanning electron microscope and transmission electron microscope,and hydrogen absorbing and desorbing properties were tested by the high pressure gas adsorption apparatus and differential scanning calorimetry(DSC).In order to estimate the activation energy and growth mechanism of alloy hydride,the JMAK,Arrhenius and Kissinger methods were applied for calculation.The hydrogen absorption content of Mg_(92.8)Ni_(2.4)Y_(4.8) alloy reaches 3.84 wt.%within 5 min under 350℃,3 MPa,and the maximum hydrogen capacity of the alloy is 4.89 wt.%in same condition.However,the hydrogen absorption of Mg_(91.4)Ni_(7)Y_(1.6) alloy reaches 5.78 wt.%within 5 min,and the maximum hydrogen absorption of the alloy is 6.44 wt.%at 350℃and 3 MPa.The hydrogenation activation energy of Mg_(94.4)Ni_(7)Y_(1.6) alloy is 25.4 kJ/mol H_(2),and the enthalpy and entropy of hydrogen absorption are-60.6 kJ/mol H_(2) and 105.5 J/K/mol H_(2),separately.The alloy begins to dehydrogenate at 210℃,with the dehydrogenation activation energy of 87.7 kJ/mol H_(2).By altering the addition amount of Ni and Y elements,the 14 H-LPSO phase with smaller size and ternary eutectic areas with high volume fraction are obtained,which provides more phase boundaries and catalysts with better dispersion,and there are a lot of fine particles in the alloy,these structures are beneficial to enhance the hydrogen storage performance of the alloys. 展开更多
关键词 Hydrogen storage materials LPSO phase catalytic effect Hydrogen storage performance
下载PDF
In Situ Electrochemical Mn(Ⅲ)/Mn(Ⅳ) Generation of Mn(Ⅱ)O Electrocatalysts for High-Performance Oxygen Reduction 被引量:2
20
作者 Han Tian Liming Zeng +6 位作者 Yifan Huang Zhonghua Ma Ge Meng Lingxin Peng Chang Chen Xiangzhi Cui Jianlin Shi 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第11期255-268,共14页
Among various earth-abundant and noble metal-free catalysts for oxygen reduction reaction(ORR),manganese-based oxides are promising candidates owing to the rich variety of manganese valence.Herein,an extremely facile ... Among various earth-abundant and noble metal-free catalysts for oxygen reduction reaction(ORR),manganese-based oxides are promising candidates owing to the rich variety of manganese valence.Herein,an extremely facile method for the synthesis of cubic and orthorhombic phase coexisting Mn(Ⅱ)O electrocatalyst as an efficient ORR catalyst was explored.The obtained MnO electrocatalyst with oxygen vacancies shows a significantly elevated ORR catalytic activity with a half-wave potential(E1/2) of as high as 0.895 V,in comparison with that of commercial Pt/C(E1/2=0.877 V).More impressively,the MnO electrocatalyst exhibits a marked activity enhancement after test under a constant applied potential for 1000 s thanks to the in situ generation and stable presence of high-valence manganese species(Mn^3+ and Mn^4+) during the electrochemical process,initiating a synergetic catalytic effect with oxygen vacancies,which is proved to largely accelerate the adsorption and reduction of O_2 molecules favoring the ORR activity elevation.Such an excellent ORR catalytic performance of this MnO electrocatalyst is applied in Zn-air battery,which shows an extra-high peak power density of 63.2 mW cm^-2 in comparison with that(47.4 m W cm^-2) of commercial Pt/C under identical test conditions. 展开更多
关键词 Zinc-air battery In situ generation High-valence manganese species Synergetic catalytic effect
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部