期刊文献+
共找到75,998篇文章
< 1 2 250 >
每页显示 20 50 100
Achieving high-efficient photocatalytic persulfate-activated degradation of tetracycline via carbon dots modified MIL-101(Fe)octahedrons 被引量:1
1
作者 Hao Yuan Xinhai Sun +2 位作者 Shuai Zhang Weilong Shi Feng Guo 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期298-309,共12页
The synergistic reaction of photocatalysis and advanced oxidation is a valid strategy for the degradation of harmful antibiotic wastewater.Herein,carbon dots(CDs)modified MIL-101(Fe)octahedrons to form CDs/MIL-101(Fe)... The synergistic reaction of photocatalysis and advanced oxidation is a valid strategy for the degradation of harmful antibiotic wastewater.Herein,carbon dots(CDs)modified MIL-101(Fe)octahedrons to form CDs/MIL-101(Fe)composite photocatalyst was synthesized for visible light-driven photocatalytic/persulfate(PS)-activated tetracycline(TC)degradation.The electron spin resonance(ESR)spectra,scavenging experiment and electrochemical analysis were carried out to reveal that the high visible light-driven photocatalytic degradation activity of TC over CDs/MIL-101(Fe)photocatalysts is not only ascribed to the production of free active radicals in the CDs/MIL-101(Fe)/PS system(·OH,·SO_(4-),^(1)O_(2),h^(+)and·O_(2)^(-))but also attributed to the consumption of electrons caused by the PS,which can suppress the recombination of photo-generated carriers as well as strong light scattering and electron trapping effects of CDs.Finally,the possible degradation pathways were proposed by analyzing intermediates via liquid chromatography-mass spectrometry technique.This research presents a rational design conception to construct a CDs/PS-based photocatalysis/advanced oxidation technology with high-efficient degradation activity for the remediation of organic antibiotic pollutant wastewater and for the improvement of carrier transport kinetics of photocatalysts. 展开更多
关键词 Carbon dots MIL-101(Fe) PHOTOcatalytic Persulfate activation Tetracycline degradation
下载PDF
Biocatalytic enhancement of laccase immobilized on ZnFe_(2)O_(4) nanoparticles and its application for degradation of textile dyes
2
作者 Yuhang Wei Qingpeng Zhu +3 位作者 Weiwei Xie Xinyue Wang Song Li Zhiming Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第4期216-223,共8页
Efficient and convenient treatment of industrial dyeing wastewater is of great significance to guarantee human and animal health.This work presented the enhanced catalytic activity at pH 3.0 of laccase immobilized on ... Efficient and convenient treatment of industrial dyeing wastewater is of great significance to guarantee human and animal health.This work presented the enhanced catalytic activity at pH 3.0 of laccase immobilized on amino-functionalized ZnFe_(2)O_(4) nanoparticles(ZnFe_(2)O_(4)-laccase)and its application for the degradation of textile dyes.Due to the existence of a large number of oxygen vacancies on the surface of the ZnFe_(2)O_(4) nanoparticles,negative ions accumulated on the magnetic carriers,which resulted in a harsh optimal pH value of the ZnFe_(2)O_(4)-laccase.Laccase activity assays revealed that the ZnFe_(2)O_(4)-laccase possessed superior pH and thermal stabilities,excellent reusability,and noticeable organic solvent tolerance.Meanwhile,the ZnFe_(2)O_(4) laccase presented efficient and sustainable degradation of high concentrations of textile dyes.The initial decoloration efficiencies of malachite green(MG),brilliant green(BG),azophloxine,crystal violet(CV),reactive blue 19(RB19),and procion red MX-5B were approximately 99.1%,95.0%,93.3%,87.4%,86.1%,and 85.3%,respectively.After 10 consecutive reuses,the degradation rates of the textile dyes still maintained about 98.2%,92.5%,83.2%,81.5%,79.8%and 65.9%,respectively.The excellent dye degradation properties indicate that the ZnFe_(2)O_(4)-laccase has a technical application in high concentrations of dyestuff treatment. 展开更多
关键词 ZnFe_(2)O_(4)-laccase catalytic activity Stability and reusability degradation of textile dye
下载PDF
Photocatalytic Degradation of Plastic Waste: Recent Progress and Future Perspectives
3
作者 Amra Bratovcic 《Advances in Nanoparticles》 CAS 2024年第3期61-78,共18页
Microplastics are persistent anthropogenic pollutants that have become a global concern due to their widespread distribution and unfamiliar threat to the environment and living organisms. Conventional technologies are... Microplastics are persistent anthropogenic pollutants that have become a global concern due to their widespread distribution and unfamiliar threat to the environment and living organisms. Conventional technologies are unable to fully decompose and mineralize plastic waste. Therefore, there is a need to develop an environmentally friendly, innovative and sustainable photocatalytic process that can destroy these wastes with much less energy and chemical consumption. In photocatalysis, various nanomaterials based on wide energy band gap semiconductors such as TiO2 and ZnO are used for the conversion of plastic contaminants into environmentally friendly compounds. In this work, the removal of plastic fragments by photocatalytic reactions using newly developed photocatalytic composites and the mechanism of photocatalytic degradation of microplastics are systematically investigated. In these degradation processes, sunlight or an artificial light source is used to activate the photocatalyst in the presence of oxygen. 展开更多
关键词 Plastic Waste Microplastics Photocatalytic Method degradation SEMICONDUCTORS Heterogeneous Photocatalysts
下载PDF
Photocatalytic degradation of methylene blue over MIL-100(Fe)/GO composites: a performance and kinetic study
4
作者 Yuxue Wei Zhiyuan Fu +6 位作者 Yingzi Meng Chun Li Fu Yin Xue Wang Chenghua Zhang Lisheng Guo Song Sun 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第3期208-222,共15页
Adsorption coupled with photocatalytic degradation is proposed to fulfill the removal and thorough elimination of organic dyes.Herein,we report a facile hydrothermal synthesis of MIL-100(Fe)/GO photocatalysts.The adso... Adsorption coupled with photocatalytic degradation is proposed to fulfill the removal and thorough elimination of organic dyes.Herein,we report a facile hydrothermal synthesis of MIL-100(Fe)/GO photocatalysts.The adsorption and photocatalytic degradation process of methylene blue(MB)on MIL‐100(Fe)/GO composites were systematically studied from performance and kinetic perspectives.A possible adsorption‐photocatalytic degradation mechanism is proposed.The optimized 1M8G composite achieves 95%MB removal(60.8 mg/g)in 210 min and displays well recyclability over ten cycles.The obtained MB adsorption and degradation results are well fitted onto Langmuir isotherm and pseudo‐second order kinetic model.This study shed light on the design of MOFs based composites for water treatment. 展开更多
关键词 Graphene oxide Metal organic frameworks Methylene blue ADSORPTION Photocatalytic degradation
下载PDF
Preparation of PrFe_(x)Co_(1-x)O_(3)/Mt catalyst and study on degradation of 2-hydroxybenzoic acid wastewater by catalytic wet peroxide oxidation
5
作者 Binxia Zhao Yijia Gao +3 位作者 Tiancheng Hun Xiaoxiao Fan Nan Shao Xiaoqian Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期286-297,共12页
In this study,the perovskite nanocomposite PrFe_(x)Co_(1-x)O_(3)(Pr(S))was successfully synthesized by the sol-gel method;PrFe_(x)Co_(1-x)O_(3)/Al-pillared montmorillonite(Pr(S)/Mt)catalysts were prepared by impregnat... In this study,the perovskite nanocomposite PrFe_(x)Co_(1-x)O_(3)(Pr(S))was successfully synthesized by the sol-gel method;PrFe_(x)Co_(1-x)O_(3)/Al-pillared montmorillonite(Pr(S)/Mt)catalysts were prepared by impregnation(D)method and solid-melting(G)method,respectively,with Pr(S)as the active component and Al-pillared montmorillonite as the carrier.The catalysts were applied to treat the 2-hydroxybenzoic acid(2-HA)-simulated wastewater by catalytic wet peroxide oxidation(CWPO)technique,and the chemical oxygen demand(COD)removal rate and the 2-HA degradation rate were used as indicators to evaluate the catalytic performance.The results of the experiment indicated that the solid-melting method was more conducive to preparing the catalyst when the Co/Fe molar ratio of 7:3 and the optimal structural properties of the catalysts were achieved.The influence of operating parameters,including reaction temperature,catalyst dosage,H_(2)O_(2)dosage,pH,and initial 2-HA concentration,were optimized for the degradation of 2-HA by CWPO.The results showed that 97.64%of 2-HA degradation and 75.23%of COD removal rate were achieved under more suitable experimental conditions.In addition,after the catalyst was used five times,the degradation rate of 2-HA could still reach 76.93%,which implied the high stability and reusability of the catalyst.The high catalytic activity of the catalyst was due to the doping of Co into PrFeO_(3),which could promote the generation of HO·,and the high stability could be attributed to the loading of Pr(S)onto Al-Mt,which reduced the leaching of reactive metals.The study of reaction mechanism and kinetics showed that the whole degradation process conformed to the pseudo-firstorder kinetic equation,and the Langmuir-Hinshelwood method was applied to demonstrate that catalysis was dominant in the degradation process. 展开更多
关键词 MONTMORILLONITE PEROVSKITE catalytic wet peroxide oxidation(CWPO) 2-Hydroxybenzoic acid
下载PDF
High piezo/photocatalytic efficiency of Ag/Bi_(5)O_(7)I nanocomposite using mechanical and solar energy for N2 fixation and methyl orange degradation 被引量:2
6
作者 Lu Chen Wenqian Zhang +6 位作者 Junfeng Wang Xiaojing Li Yi Li Xin Hu Leihong Zhao Ying Wu Yiming He 《Green Energy & Environment》 SCIE EI CSCD 2023年第1期283-295,共13页
In this work,Ag/Bi_(5)O_(7)I nanocomposite was prepared and firstly applied in piezo/photocatalytic reduction of N2 to NH3 and methyl orange(MO)degradation.Bi_(5)O_(7)I was synthesized via a hydrothermal-calcination m... In this work,Ag/Bi_(5)O_(7)I nanocomposite was prepared and firstly applied in piezo/photocatalytic reduction of N2 to NH3 and methyl orange(MO)degradation.Bi_(5)O_(7)I was synthesized via a hydrothermal-calcination method and shows nanorods morphology.Ag nanoparticles(NPs)were photo deposited on the Bi_(5)O_(7)I nanorods as electron trappers to improve the spatial separation of charge carriers,which was confirmed via XPS,TEM,and electronic chemical analyses.The catalytic test indicates that Bi_(5)O_(7)I presents the piezoelectric-like behavior,while the loading of Ag NPs can strengthen the character.Under ultrasonic vibration,the optimal Ag/Bi_(5)O_(7)I presents high efficiency in MO degradation.The degradation rate is determined to be 0.033 min1,which is 4.7 folds faster than that of Bi_(5)O_(7)I.The Ag/Bi_(5)O_(7)I also presents a high performance in piezocatalytic N2 fixation.The piezocatalytic NH3 generation rate reaches 65.4 μmol L^(-1)g^(-1)h^(-1)with water as a hole scavenger.The addition of methanol can hasten the piezoelectric catalytic reaction.Interestingly,when ultrasonic vibration and light irradiation simultaneously act on the Ag/Bi_(5)O_(7)I catalyst,higher performance in NH3 generation and MO degradation is observed.However,due to the weak adhesion of Ag NPs,some Ag NPs would fall off from the Bi_(5)O_(7)I surface under long-term ultrasonic vibration,which would greatly reduce the piezoelectric catalytic performance.This result indicates that a strong binding force is required when preparing the piezoelectric composite catalyst.The current work provides new insights for the development of highly efficient catalysts that can use multiple energies. 展开更多
关键词 Ag/Bi_(5)O_(7)I Piezocatalysis Photocatalysis N2 fixation MO degradation
下载PDF
Investigation of photoelectrocatalytic degradation mechanism of methylene blue by a-Fe_(2)O_(3) nanorods array 被引量:1
7
作者 Yaqiao Liu Shuozhen Hu +1 位作者 Xinsheng Zhang Shigang Sun 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第5期162-172,共11页
Efficiently and thoroughly degrading organic dyes in wastewater is of great importance and challenge.Herein,vertically oriented mesoporous a-Fe_(2)O_(3)nanorods array(a-Fe_(2)O_(3)-NA)is directly grown on fluorine-dop... Efficiently and thoroughly degrading organic dyes in wastewater is of great importance and challenge.Herein,vertically oriented mesoporous a-Fe_(2)O_(3)nanorods array(a-Fe_(2)O_(3)-NA)is directly grown on fluorine-doped tin oxide(FTO)glass and employed as the photoanode for photoelectrocatalytic degradation of methylene blue simulated dye wastewater.The Ovsites on the a-Fe_(2)O_(3)-NA surface are the active sites for methylene blue(MB)adsorption.Electrons transfer from the adsorbed MB to Fe-O is detected.Compared with electrocatalytic and photocatalytic degradation processes,the photoelectrocatalytic(PEC)process exhibited the best degrading performance and the largest kinetic constant.Hydroxyl,superoxide free radicals,and photo-generated holes play a jointly leading role in the PEC degradation.A possible degrading pathway is suggested by liquid chromatography-mass spectroscopy analysis.This work demonstrates that photoelectrocatalysis by a-Fe_(2)O_(3)-NA has a remarkable superiority over photocatalysis and electrocatalysis in MB degradation.The in-depth investigation of photoelectrocatalytic degradation mechanism in this study is meaningful for organic wastewater treatment. 展开更多
关键词 a-Fe_(2)O_(3)nanorods array Methylene blue Photoelectrocatalytic degradation mechanism Free radicals Photo-generated holes
下载PDF
Inhibition of protein degradation increases the Bt protein concentration in Bt cotton 被引量:1
8
作者 Yuting Liu Hanjia Li +6 位作者 Yuan Chen Tambel Leila.I.M Zhenyu Liu Shujuan Wu Siqi Sun Xiang Zhang Dehua Chen 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第6期1897-1909,共13页
Bacillus thuringiensis(Bt)cotton production is challenged by two main problems,i.e.,the low concentration of Bt protein at the boll setting stage and the lowest insect resistance in bolls among all the cotton plant’s... Bacillus thuringiensis(Bt)cotton production is challenged by two main problems,i.e.,the low concentration of Bt protein at the boll setting stage and the lowest insect resistance in bolls among all the cotton plant’s organs.Therefore,increasing the Bt protein concentration at the boll stage,especially in bolls,has become the main goal for increasing insect resistance in cotton.In this study,two protein degradation inhibitors(ethylene diamine tetra acetic acid(EDTA)and leupeptin)were sprayed on the bolls,subtending leaves,and whole cotton plants at the peak flowering stage of two Bt cultivars(medium maturation Sikang 1(SK1))and early maturation Zhongmian 425(ZM425)in 2019 and 2020.The Bt protein content and protein degradation metabolism were assessed.The results showed that the Bt protein concentrations were enhanced by 21.3 to 38.8%and 25.0 to 38.6%in the treated bolls of SK1 and ZM425 respectively,while they were decreased in the subtending leaves of these treated bolls.In the treated leaves,the Bt protein concentrations increased by 7.6 to 23.5%and 11.2 to 14.9%in SK1 and ZM425,respectively.The combined application of EDTA and leupeptin to the whole cotton plant increased the Bt protein concentrations in both bolls and subtending leaves.The Bt protein concentrations in bolls were higher,increasing by 22.5 to 31.0%and 19.6 to 32.5%for SK1 and ZM425,respectively.The organs treated with EDTA or/and leupeptin showed reduced free amino acid contents,protease and peptidase activities and significant enhancements in soluble protein contents.These results indicated that inhibiting protein degradation could improve the protein content,thus increasing the Bt protein concentrations in the bolls or/and leaves of cotton plants.Therefore,the increase in the Bt protein concentration without yield reduction suggested that these two protein degradation inhibitors may be applicable for improving insect resistance in cotton production. 展开更多
关键词 Bt cotton Bt protein inhibition of protein degradation protein degradation metabolism
下载PDF
Deformable Catalytic Material Derived from Mechanical Flexibility for Hydrogen Evolution Reaction 被引量:2
9
作者 Fengshun Wang Lingbin Xie +7 位作者 Ning Sun Ting Zhi Mengyang Zhang Yang Liu Zhongzhong Luo Lanhua Yi Qiang Zhao Longlu Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期287-311,共25页
Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions,especially electrocatalytic hydrogen evolution reaction(HER).In recent year... Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions,especially electrocatalytic hydrogen evolution reaction(HER).In recent years,deformable catalysts for HER have made great progress and would become a research hotspot.The catalytic activities of deformable catalysts could be adjustable by the strain engineering and surface reconfiguration.The surface curvature of flexible catalytic materials is closely related to the electrocatalytic HER properties.Here,firstly,we systematically summarized self-adaptive catalytic performance of deformable catalysts and various micro–nanostructures evolution in catalytic HER process.Secondly,a series of strategies to design highly active catalysts based on the mechanical flexibility of lowdimensional nanomaterials were summarized.Last but not least,we presented the challenges and prospects of the study of flexible and deformable micro–nanostructures of electrocatalysts,which would further deepen the understanding of catalytic mechanisms of deformable HER catalyst. 展开更多
关键词 Deformable catalytic material Micro-nanostructures evolution Mechanical flexibility Hydrogen evolution reaction
下载PDF
Understanding the oxidation chemistry of Ti_(3)C_(2)T_(x)(MXene)sheets and their catalytic performances 被引量:1
10
作者 Suvdanchimeg Sunderiya Selengesuren Suragtkhuu +9 位作者 Solongo Purevdorj Tumentsereg Ochirkhuyag Munkhjargal Bat-Erdene Purevlkham Myagmarsereejid Ashley DSlattery Abdulaziz SRBati Joseph GShapter Dorj Odkhuu Sarangerel Davaasambuu Munkhbayar Batmunkh 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期437-445,I0010,共10页
Transition metal carbides and nitrides(MXenes)nanosheets are attractive two-dimensional(2D)materials,but they suffer from oxidation/degradation issues during storage and/or applications due to their sensitivity to wat... Transition metal carbides and nitrides(MXenes)nanosheets are attractive two-dimensional(2D)materials,but they suffer from oxidation/degradation issues during storage and/or applications due to their sensitivity to water and oxygen.Despite the great research progress,the exact oxidation kinetics of Ti_(3)C_(2)T_(x)(MXene)and their final products after oxidation are not fully understood.Herein,we systematically tracked the oxidation process of few-layer Ti_(3)C_(2)T_(x) nanosheets in an aqueous solution at room temperature over several weeks.We also studied the oxidation effects on the electrocatalytic properties of Ti_(3)C_(2)T_(x) for hydrogen evolution reaction and found that the overpotential to achieve a current density of 10 mA cm^(-2)increases from 0.435 to 0.877 V after three weeks of degradation,followed by improvement to stabilized values of around 0.40 V after eight weeks.These results suggest that severely oxidized MXene could be a promising candidate for designing efficient catalysts.According to our detailed experimental characterization and theoretical calculations,unlike previous studies,black titanium oxide is formed as the final product in addition to white Ti(IV)oxide and disordered carbons after the complete oxidation of Ti_(3)C_(2)T_(x).This work presents significant advancements in better understanding of 2D Ti_(3)C_(2)T_(x)(MXene)oxidation and enhances the prospects of this material for various applications. 展开更多
关键词 2D materials MXene Chemical degradation CATALYSIS Hydrogen evolution reaction
下载PDF
Recent advances in cobalt phosphide-based materials for electrocatalytic water splitting:From catalytic mechanism and synthesis method to optimization design 被引量:1
11
作者 Rongrong Deng Mengwei Guo +1 位作者 Chaowu Wang Qibo Zhang 《Nano Materials Science》 EI CAS CSCD 2024年第2期139-173,共35页
Electrochemical water splitting has long been considered an effective energy conversion technology for trans-ferring intermittent renewable electricity into hydrogen fuel,and the exploration of cost-effective and high... Electrochemical water splitting has long been considered an effective energy conversion technology for trans-ferring intermittent renewable electricity into hydrogen fuel,and the exploration of cost-effective and high-performance electrocatalysts is crucial in making electrolyzed water technology commercially viable.Cobalt phosphide(Co-P)has emerged as a catalyst of high potential owing to its high catalytic activity and durability in water splitting.This paper systematically reviews the latest advances in the development of Co-P-based materials for use in water splitting.The essential effects of P in enhancing the catalytic performance of the hydrogen evolution reaction and oxygen evolution reaction are first outlined.Then,versatile synthesis techniques for Co-P electrocatalysts are summarized,followed by advanced strategies to enhance the electrocatalytic performance of Co-P materials,including heteroatom doping,composite construction,integration with well-conductive sub-strates,and structure control from the viewpoint of experiment.Along with these optimization strategies,the understanding of the inherent mechanism of enhanced catalytic performance is also discussed.Finally,some existing challenges in the development of highly active and stable Co-P-based materials are clarified,and pro-spective directions for prompting the wide commercialization of water electrolysis technology are proposed. 展开更多
关键词 Co-P electrocatalysts Water splitting Hydrogen production catalytic mechanism Synthesis technique Optimization design
下载PDF
Enhanced photocatalytic performance of iron oxides@HTCC fabricated from zinc extraction tailings for methylene blue degradation:Investigation of the photocatalytic mechanism
12
作者 Yang Xue Xiaoming Liu +2 位作者 Na Zhang Yang Shao Chunbao(Charles)Xu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第12期2364-2374,共11页
Photocatalytic processes are efficient methods to solve water contamination problems,especially considering dyeing wastewater disposal.However,high-efficiency photocatalysts are usually very expensive and have the ris... Photocatalytic processes are efficient methods to solve water contamination problems,especially considering dyeing wastewater disposal.However,high-efficiency photocatalysts are usually very expensive and have the risk of heavy metal pollution.Recently,an iron oxides@hydrothermal carbonation carbon(HTCC)heterogeneous catalyst was prepared by our group through co-hydrothermal treatment of carbohydrates and zinc extraction tailings of converter dust.Herein,the catalytic performance of the iron oxides@HTCC was verified by a nonbiodegradable dye,methylene blue(MB),and the catalytic mechanism was deduced from theoretical simulations and spectroscopic measurements.The iron oxides@HTCC showed an excellent synergy between photocatalysis and Fenton-like reactions.Under visible-light illumination,the iron oxides@HTCC could be excited to generate electrons and holes,reacting with H_(2)O_(2)to produce·OH radicals to oxidize and decompose organic pollutants.The removal efficiency of methylene blue over iron oxides@HTCC at 140 min was 2.86 times that of HTCC.The enhanced catalytic performance was attributed to the advantages of iron oxides modification:(1)promoting the excitation induced by photons;(2)improving the charge transfer.Furthermore,the iron oxides@HTCC showed high catalytic activity in a wide pH value range of 2.3-10.4,and the MB removal efficiency remained higher than 95% after the iron oxides@HTCC was recycled 4 times.The magnetically recyclable iron oxides@HTCC may provide a solution for the treatment of wastewater from the textile industry. 展开更多
关键词 PHOTOCATALYSIS photo-Fenton reaction methylene blue degradation tailings utilization
下载PDF
Study on the catalytic degradation of sodium lignosulfonate to aromatic aldehydes over nano-CuO:Process optimization and reaction kinetics
13
作者 Yingjie Song Shuqi Zhong +5 位作者 Yingjiao Li Kun Dong Yong Luo Guangwen Chu Haikui Zou Baochang Sun 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第1期300-309,共10页
As one of the few renewable aromatic resources,the research of depolymerization of lignin into highvalue chemicals has attracted extensive attention in recent years.Catalytic wet aerobic oxidation(CWAO)is an effective... As one of the few renewable aromatic resources,the research of depolymerization of lignin into highvalue chemicals has attracted extensive attention in recent years.Catalytic wet aerobic oxidation(CWAO)is an effective technology to convert lignin like sodium lignosulfonate(SL),a lignin derivative,into aromatic aldehydes such as vanillin and syringaldehyde.However,how to improve the yield of aromatic aldehyde and conversion efficiency is still a challenge,and many operating conditions that significantly affect the yield of these aromatic compounds have rarely been investigated systematically.In this work,we adopted the stirred tank reactor(STR)for the CWAO process with nano-CuO as catalyst to achieve the conversion of SL into vanillin and syringaldehyde.The effect of operating conditions including reaction time,oxygen partial pressure,reaction temperature,SL concentration,rotational speed,catalyst amount,and NaOH concentration on the yield of single phenolic compound was systematically investigated.The results revealed that all these operating conditions exhibit a significant effect on the aromatic aldehyde yield.Therefore,they should be regulated in an optimal value to obtain high yield of these aldehydes.More importantly,the reaction kinetics of the lignin oxidation was explored.This work could provide basic data for the optimization and design of industrial operation of lignin oxidation. 展开更多
关键词 NANO-CUO Sodium lignosulfonate catalytic wet aerobic oxidation(CWAO) Aromatic aldehyde Reaction kinetics
下载PDF
Investigation of cyclohexane catalytic degradation driven by N atoms from N_(2)discharges
14
作者 李钰莹 徐家成 +5 位作者 张春乐 姚水良 李晶 吴祖良 高尔豪 朱佳丽 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第2期163-171,共9页
The effect of N_(2)discharge products on cyclohexane degradation over a MnO_(2)/γ-Al_(2)O_(3)catalyst has been evaluated by feeding N_(2)discharge products to the catalyst using a specially designed dielectric barrie... The effect of N_(2)discharge products on cyclohexane degradation over a MnO_(2)/γ-Al_(2)O_(3)catalyst has been evaluated by feeding N_(2)discharge products to the catalyst using a specially designed dielectric barrier discharge reactor.At a reaction temperature of 100℃,the cyclohexane conversion increased from 2.46%(without N_(2)discharge products)to 26.3%(with N_(2)discharge products).N-and O-containing by-product(3,4-dehydroproline)was found on the catalyst surface using gas chromatograph-mass spectrometry identification,in which C=N–C and C=N–H bonds were also confirmed from x-ray photoelectron spectroscopy analysis results.Operando analysis results using diffuse reflectance infrared Fourier transform spectroscopy revealed that N atoms can react with surface H_(2)O possibly to NH and OH reactive species that have reactivities to promote CO oxidation to CO_(2).The mechanism of N-atom-driven cyclohexane degradation to CO and CO_(2)is proposed. 展开更多
关键词 N_(2)discharge N atom ion current MnO_(2) cyclohexane degradation
下载PDF
Critical approaches in the catalytic transformation of sugar isomerization and epimerization after Fischer-History,challenges,and prospects
15
作者 Da-Ming Gao Xun Zhang +5 位作者 Haichao Liu Hidemi Fujino Tingzhou Lei Fuan Sun Jie Zhu Taoli Huhe 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第3期435-453,共19页
The transformation of aldose to ketose or common sugars into rare saccharides,including rare ketoses and aldoses,is of great value and interest to the food industry and for saccharidic biomass utilization,medicine,and... The transformation of aldose to ketose or common sugars into rare saccharides,including rare ketoses and aldoses,is of great value and interest to the food industry and for saccharidic biomass utilization,medicine,and the synthesis of drugs.Nowadays,high-fructose corn syrup(HFCS)is industrially produced in more than 10 million tons annually using immobilized glucose isomerase.Some low-calorie saccharides such as tagatose and psicose,which are becoming popular sweeteners,have also been produced on a pilot scale in order to replace sucrose and HFCS.However,current catalysts and catalytic processes are still difficult to utilize in biomass conversion and also have strong substrate dependence in producing high-value,rare sugars.Considering the specific reaction properties of saccharides and catalysts,since the pioneering discovery by Fischer,various catalysts and catalytic systems have been discovered or developed in attempts to extend the reaction pathways,improve the reaction efficiency,and to potentially produce commercial products.In this review,we trace the history of sugar isomerization/epimerization reactions and summarize the important breakthroughs for each reaction as well as the difficulties that remain unresolved to date. 展开更多
关键词 Rare sugars ISOMERIZATION KETONIZATION EPIMERIZATION catalytic transformation
下载PDF
Microbial Degradation of Organic Contaminants in Streambed/Floodplain Sediments in Passaic River—New Jersey Area
16
作者 Taheim Evans English Meghann Trombetta +1 位作者 Alyssa Beres Yusuf Yildiz 《American Journal of Analytical Chemistry》 CAS 2024年第4期139-150,共12页
This paper is intended to explore soil organic matter and carbon isotope fractionation at three locations of the Passaic River to determine if microbial degradation of organic contaminants in soil is correlated to the... This paper is intended to explore soil organic matter and carbon isotope fractionation at three locations of the Passaic River to determine if microbial degradation of organic contaminants in soil is correlated to the surrounding physical environment. Microbial degradation of organic contaminants is important for the detoxification of toxic substances thereby minimizing stagnation in the environment and accumulating in the food chain. Since organic contaminants are not easily dissolved in water, they will penetrate sediment and end up enriching the adjacent soil. The hypothesis that we are testing is microbial activity and carbon isotope fractionation will be greater in preserved soils than urban soils. The reason why this is expected to be the case is the expectation of higher microbial activity in preserved environments due to less exposure to pollutants, better soil structure, higher organic matter content, and more favorable conditions for microbial growth. This is contrasted with urban soils, which are impacted by pollutants and disturbances, potentially inhibiting microbial activity. We wish to collect soil samples adjacent to the Passaic River at a pristine location, Great Swamp Wildlife Refuge, a suburban location, Goffle Brook Park, Hawthorne NJ, and an urban location, Paterson NJ. These soil samples will be weighed for soil organic matter (SOM) and weighed for isotope ratio mass spectrometry (IRMS) to test organic carbon isotopes. High SOM and δ13C depletion activity indicate microbial growth based on the characteristics of the soil horizon rather than the location of the soil sample which results in degradation of organic compounds. 展开更多
关键词 Organic Contaminant PCBS Microbial degradation Passaic River
下载PDF
Development and Catalytic Cracking Performance of Ultrastable Y Zeolite Rich in Secondary Pores
17
作者 Li Jiaxing Wang Shengji +3 位作者 Sha Hao Wang Juan Zhou Lingping Wang Lixia 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第2期13-21,共9页
A novel ultra-stable zeolite, NSZ, rich in secondary pores was developed through the combination of gas-phase andmild hydrothermal methods. This zeolite was successfully tested in an industrial setting for the first t... A novel ultra-stable zeolite, NSZ, rich in secondary pores was developed through the combination of gas-phase andmild hydrothermal methods. This zeolite was successfully tested in an industrial setting for the first time in the world. The porestructure characteristics of the NSZ zeolite prepared for industrial use were analyzed and characterized using BET. The resultsindicate a significant increase in the secondary pore volume of NSZ zeolite compared to the existing ultra-stable zeolite HSZ-5, which is produced through a conventional gas-phase method. The average secondary pore volume to total pore volume ratioin NSZ zeolite was found to be 58.96% higher. The catalytic cracking performance of NSZ zeolite was evaluated. The resultsshowed that the NSC-LTA catalyst, with NSZ as the active component, outperformed the HSC-LTA catalyst with HSZ-5 zeolitein terms of obtaining more high-value products (gasoline and liquefied petroleum gas) during the hydrogenated light cycle oilprocessing. Additionally, the NSC-LTA catalyst showed a significant improvement in coke selectivity. 展开更多
关键词 GAS-PHASE ultra-stable ZEOLITE CATALYST catalytic cracking
下载PDF
Biodegradation of Crystalline Chitin:A Review of Recent Advancement,Challenges,and Future Study Directions
18
作者 SONG Jianlin SU Haipeng +1 位作者 SUN Jianan MAO Xiangzhao 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第5期1319-1328,共10页
Chitin is the second most abundant renewable polysaccharide on Earth.The degradation of chitin into soluble and bioactive N-acetyl chitooligosaccharides(NCOSs)and N-acetyl-D-glucosamine(GlcNAc)has emerged as a pivotal... Chitin is the second most abundant renewable polysaccharide on Earth.The degradation of chitin into soluble and bioactive N-acetyl chitooligosaccharides(NCOSs)and N-acetyl-D-glucosamine(GlcNAc)has emerged as a pivotal step in the efficient and sustainable utilization of chitin resources.However,because of its dense structure,high crystallinity,and poor solubility,chitin typically needs pretreatment via chemical,physical,and other methods before enzymatic conversion to enhance the accessibility between substrates and enzyme molecules.Consequently,there has been considerable interest in exploring the direct biological degradation of crystalline chitin as a cost-effective and environment-friendly technology.This review endeavors to present several biological methods for the direct degradation of chitin.We primarily focused on the importance of chitinase containing chitin-binding domain(CBD).Additionally,various modification strategies for increasing the degradation efficiency of crystalline chitin were introduced.Subsequently,the review systematically elucidated critical components of multi-enzyme catalytic systems,highlighting their potential for chitin degradation.Furthermore,the application of microorganisms in the degradation of crystalline chitin was also discussed.The insights in this review contribute to the explorations and investigations of enzymatic and microbial approaches for the direct degradation of crystalline chitin,thereby fostering advancements in biomass conversion. 展开更多
关键词 crystalline chitin CHITINASE biological degradation engineering MICROORGANISMS
下载PDF
Green synthesis of ZSM-5 using silica fume and catalytic co-cracking of lignin and plastics for production of monocyclic aromatics
19
作者 Hongbing Fu Yufei Gu +7 位作者 Tianhua Gao Fuwei Li Hengshuo Gu Hucheng Ge Yuke Liu Zhixia Li Hongfei Lin Jiangfei Cao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期92-105,共14页
ZSM-5 with hierarchical pore structure was synthesized by a simple two-step hydrothermal crystallization from silica fume without using any organic ammonium templates.The synthesized ZSM-5 were oval shaped particles w... ZSM-5 with hierarchical pore structure was synthesized by a simple two-step hydrothermal crystallization from silica fume without using any organic ammonium templates.The synthesized ZSM-5 were oval shaped particles with a particle size about 2.0 μm and weak acid-dominated with proper Brønsted(B)and Lewis(L)acid sites.The ZSM-5 was used for catalytic co-cracking of n-octane and guaiacol,lowdensity polyethylene(LDPE)and alkali lignin(AL)to enhance the production of benzene,toluene,ethylbenzene and xylene(BTEX).The most significant synergistic effect occurred at n-octane/guaiacol at 1:1 and LDPE/AL at 1:3,under the condition,the achieved BTEX selectivity were 24%and 33%(mass)higher than the calculated values(weighted average).The highest BTEX selectivity reached 88.5%,which was 3.7%and 54.2%higher than those from individual cracking LDPE and AL.The synthesized ZSM-5 exhibited superior catalytic performance compared to the commercial ZSM-5,indicating potential application prospect. 展开更多
关键词 Silica fume ZSM-5 catalytic co-cracking PLASTICS LIGNIN
下载PDF
Photocatalytic application of magnesium spinel ferrite in wastewater remediation:A review
20
作者 Rohit Jasrotia Nikhil Jaswal +3 位作者 Jyoti Prakash Chan Choon Kit Jagpreet Singh Abhishek Kandwal 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期490-505,共16页
This review paper explores the efficacy of magnesium ferrite-based catalysts in photocatalytic degradation of organic contaminates(antibiotic and dyes).We report the influence of different doping strategies,synthesis ... This review paper explores the efficacy of magnesium ferrite-based catalysts in photocatalytic degradation of organic contaminates(antibiotic and dyes).We report the influence of different doping strategies,synthesis methods,and composite materials on the degradation efficiency of these pollutants.Our analysis reveals the versatile and promising nature of magnesium ferrite-based catalysts,offering the valuable insights into their practical application for restoring the environment.Due to the smaller band gap and magnetic nature of magnesium ferrite,it holds the benefit of utilising the broader spectrum of light while also being recoverable.The in-depth analysis of magnesium ferrites'photocatalytic mechanism could lead to the development of cheap and reliable photocatalyst for the wastewater treatment.This concise review offers a thorough summary of the key advancements in this field,highlighting the pivotal role of the magnesium ferrite based photocatalysts in addressing the pressing global issue of organic pollutants in wastewater. 展开更多
关键词 Magnesium ferrite WASTEWATER DYES ANTIBIOTICS Photocatalytic degradation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部