期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Additive effects of alkaline-earth metals and nickel on the performance of Co/γ-Al_2O_3 in methane catalytic partial oxidation 被引量:8
1
作者 Changlin Yu Weizheng Weng +4 位作者 Qing Shu Xiangjie Meng Bin Zhang Xirong Chen Xiaochun Zhou 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2011年第2期135-139,共5页
Nano-sized γ-alumina (γ-Al2O3) was first prepared by a precipitation method. Then, active component of cobalt and a series of alkaline- earth metal promoters or nickel (Ni) with different contents were loaded on... Nano-sized γ-alumina (γ-Al2O3) was first prepared by a precipitation method. Then, active component of cobalt and a series of alkaline- earth metal promoters or nickel (Ni) with different contents were loaded on the γ-Al2O3 support. The catalysts were characterized by N2 adsorption-desorption, X-ray diffraction (XRD) and thermogravimetry analysis (TGA). The activity and selectivity of the catalysts in catalytic partial oxidation (CPO) of methane have been compared with Co/γ-Al2O3, and it is found that the catalytic activity, selectivity, and stability are enhanced by the addition of alkaline-earth metals and nickel. The optimal loadings of strontium (Sr) and Ni were 6 and 4 wt%, respectively. This finding will be helpful in designing the trimetallic Co-Ni-Sr/γ-Al2O3 catalysts with high performance in CPO of methane 展开更多
关键词 alkaline-earth metal cobalt-based catalyst Γ-ALUMINA catalytic partial oxidation methane
下载PDF
Catalytic Partial Oxidation of Methane over Ni/CeO_2-ZrO_2-Al_2O_3 被引量:7
2
作者 梅大江 陈耀强 +3 位作者 钟俊波 魏振玲 马迪 龚茂初 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第3期311-315,共5页
Nickel catalysts supported on CeO2-ZrO2-CeO2,ZrO2-Al2O3 and Al2O3 were prepared and characterized by means of X-ray diffraction(XRD),BET areas,H2 temperature-programmed reduction(H2-TPR),and X-ray photoelectron sp... Nickel catalysts supported on CeO2-ZrO2-CeO2,ZrO2-Al2O3 and Al2O3 were prepared and characterized by means of X-ray diffraction(XRD),BET areas,H2 temperature-programmed reduction(H2-TPR),and X-ray photoelectron spectroscopy(XPS).Through the test of catalytic partial oxidation of methane(CPOM),Ni/CeO2-ZrO2-Al2O3 displayed the highest activity,which resulted from its largest BET area and best NiO dispersion.Furthermore,Ni/CeO2-ZrO2-Al2O3 maintained a long-time stability in CPOM,which was attributed to its best coking resistance among all the prepared catalysts. 展开更多
关键词 Ni/CeO2-ZrO2-Al2O3 catalyst catalytic partial oxidation of methane carbon deposition rare earths
下载PDF
Catalytic Partial Oxidation of Methane with Air to Syngas in a Pilot-Plant-Scale Spouted Bed Reactor 被引量:2
3
作者 魏伟胜 徐建 +1 位作者 方大伟 鲍晓军 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2003年第6期643-648,共6页
On the basis of hydrodynamic and scaling-up studies, a pilot-plant-scale thermal spouted bed reactor (50 mm in ID and 1500 mm in height) was designed and fabricated by scaling-down cold simulators. It was tested for m... On the basis of hydrodynamic and scaling-up studies, a pilot-plant-scale thermal spouted bed reactor (50 mm in ID and 1500 mm in height) was designed and fabricated by scaling-down cold simulators. It was tested for making syngas via catalytic partial oxidation (CPO) of methane by air. The effects of various operating conditions such as operating pressure and temperature, feed composition, and gas flowrate etc. on the CPO process were investigated. CH4 conversion of 92.2% and selectivity of 92.3% and 83.3% to CO and H2, respectively, were achieved at the pressure of 2.1 MPa. It was found that when the spouted bed reactor was operated within the stable spouting flow regime, the temperature profiles along the bed axis were much more uniform than those operated within the fixed-bed regime. The CH4 conversion and syngas selectivity were found to be close to thermodynamic equilibrium limits. The results of the present investigation showed that spouted bed could be considered as a potential type of chemical reactor for the CPO process of methane. 展开更多
关键词 spouted bed METHANE catalytic partial oxidation SYNGAS
下载PDF
Microreactor for the Catalytic Partial Oxidation of Methane 被引量:2
4
作者 Widodo Wahyu Puwanto Yuswan Muharam 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2006年第4期271-274,共4页
Fixed-bed reactors for the partial oxidation of methane to produce synthetic gas still pose hotspot problems. An alternative reactor, which is known as the shell-and-tube-typed microreactor, has been developed to reso... Fixed-bed reactors for the partial oxidation of methane to produce synthetic gas still pose hotspot problems. An alternative reactor, which is known as the shell-and-tube-typed microreactor, has been developed to resolve these problems. The microreactor consists of a 1 cm outside-diameter, 0.8 cm insidediameter and 11 cm length tube, and a 1.8 cm inside-diameter shell. The tube is made of dense alumina and the shell is made of quartz. Two different methods dip and spray coating were performed to line the tube side with the LaNixOy catalyst. Combustion and reforming reactions take place simultaneously in this reactor. Methane is oxidized in the tube side to produce flue gases (CO2 and H2O) which flow counter-currently and react with the remaining methane in the shell side to yield synthesis gas. The methane conversion using the higher-loading catalyst spray-coated tube reaches 97% at 700 ℃, whereas that using the lower-loading catalyst dip-coated tube reaches only 7.78% because of poor adhesion between the catalyst film and the alumina support. The turnover frequencies (TOFs) using the catalyst spray-and dip-coated tubes are 5.75×10^-5 and 2.24×10^-5 mol/gcat· s, respectively. The catalyst spray-coated at 900 ℃ provides better performance than that at 1250 ℃ because sintering reduces the surface-area. The hydrogen to carbon monoxide ratio produced by the spray-coated catalyst is greater than the stoichiometric ratio, which is caused by carbon deposition through methane cracking or the Boudouard reaction. 展开更多
关键词 MICROREACTOR catalytic partial oxidation METHANE coating method
下载PDF
Novel Ni/CeO_2-Al_2O_3 composite catalysts synthesized by one-step citric acid complex and their performance in catalytic partial oxidation of methane 被引量:1
5
作者 Changlin Yu Jiubiao Hu +1 位作者 Wanqin Zhou Qizhe Fan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第2期235-243,共9页
A series of novel Ni/CeOe-Al2O3 composite catalysts were synthesized by one-step citric acid complex method, The as-synthesized catalysts were characterized by N2 physical adsorption/desorption, X-ray diffraction (XR... A series of novel Ni/CeOe-Al2O3 composite catalysts were synthesized by one-step citric acid complex method, The as-synthesized catalysts were characterized by N2 physical adsorption/desorption, X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, hydrogen temperature-programmed reduction (Hz-TPR), X-ray photoelectron spectroscopy (XPS) and thermogravimetry analysis (TGA). The effects of nickel content, calcination and reaction temperatures, gas hourly space velocity (GHSV) and inert gas dilution of N2 on their performance of catalytic partial oxidation of methane (CPOM) were investigated. Catalytic activity test results show that the highest methane conversion (〉85%), the best selectivities to carbon monoxide (〉87%) and to hydrogen (〉95%), the excellent stability and perfect Hz/CO ratio (2.0) can be obtained over Ni/CeO2-Al2O3 with 8 wt% Ni content calcined at 700 ℃ under the reaction condition of 750 ℃, CH4/O2 ratio of 2 : 1 and gas hourly space velocity of 12000 mL.h-1 .g-1. Characterization results show that the good catalytic performance of this composite catalyst can be contributed to its large specific surface area (~108 m2.g-1), small crystallite size, easy reducibility and low coking rate. 展开更多
关键词 citric acid complex ceria-alumina composite oxide nickel reduction catalytic partial oxidation or methane
下载PDF
Modeling of microreactor for syngas production by catalytic partial oxidation of methane
6
作者 Akbar Zamaniyan Alireza Behroozsarand +1 位作者 Hamid Mehdizadeh Hussein Ali Ghadirian 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2010年第6期660-668,共9页
Fixed-bed reactors for the catalytic partial oxidation of methane (CPOM) to produce synthesis gas still pose hot spots problems.Microreactor is a good alternative reactor proposed to resolve these problems.In this p... Fixed-bed reactors for the catalytic partial oxidation of methane (CPOM) to produce synthesis gas still pose hot spots problems.Microreactor is a good alternative reactor proposed to resolve these problems.In this paper,synthesis gas (hydrogen and carbon monoxide) production was investigated by a two-dimensional numerical model of single microchannel.Computational fluid dynamic (CFD) modeling with detailed chemistry was conducted to understand the CPOM on platinum (Pt) catalyst.Gas inlet velocity,microchannel pressure,and fuel to air ratio (F/A) are selected as the effective parameters on microchannel performance.Study results show that Reynolds number has considerable effect on methane conversion,hydrogen to carbon monoxide ratio (H2/CO),and product distribution.Increasing gas inlet velocity causes all the above parameters to decrease.It is noted that increasing microchannel pressure and decreasing the ratio of fuel to air cause the decrease of the H2/CO ratio. 展开更多
关键词 synthesis gas MICROCHANNEL catalytic partial oxidation of methane reynolds number
下载PDF
Catalytic Partial Oxidation of Biomass/Oil Mixture
7
作者 VaclavVesely Jiri Hanika +2 位作者 Vratislav Tukae Jaromir Lederer Dusan Kovae 《Journal of Energy and Power Engineering》 2013年第10期1940-1945,共6页
Investigation was focussed to application of waste POX (partial oxidation), e.g., meal rape in form of suspension in high boiling hydrocarbons from crude oil distillation. There is an opportunity for utilization of ... Investigation was focussed to application of waste POX (partial oxidation), e.g., meal rape in form of suspension in high boiling hydrocarbons from crude oil distillation. There is an opportunity for utilization of biomass waste resulted from fuels bio-components production. A decrease of oxygen and water steam demand in feed for POX process was observed in this variant. Catalytic effect of iron nanoparticles or nickel nitrate as catalysts in improvement of the pilot plant biomass/oil partial oxidation was investigated as well. Presence of catalyst in the feed supports formation of carbon monoxide and suppression content of methane in the gas product. Experimental data were well compared with process simulation based on eauilibrium reactor model. 展开更多
关键词 Hydrocarbon oil BIOMASS catalytic partial oxidation NICKEL iron nanoparticles.
下载PDF
Partial oxidation of methane over SiO2 supported Ni and NiCe catalysts 被引量:3
8
作者 A.Emamdoust V.La Parola +3 位作者 G.Pantaleo M.L.Testa S.Farjami Shayesteh A.M.Venezia 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第8期1-9,I0001,共10页
Nickel and nickel-ceria catalysts supported on high surface area silica, with 6 wt% Ni and 20 wt% CeO2 were prepared by microwave assisted(co) precipitation method. The catalysts were investigated by XRD,TPR and XPS a... Nickel and nickel-ceria catalysts supported on high surface area silica, with 6 wt% Ni and 20 wt% CeO2 were prepared by microwave assisted(co) precipitation method. The catalysts were investigated by XRD,TPR and XPS analyses and they were tested in partial oxidation of methane(CPO). The catalytic reaction was carried out at atmospheric pressure in a temperature range of 400–800℃ with a feed gas mixture containing methane and oxygen in a molecular ratio CH4/O2=2. The Ni catalyst exhibited 60% methane conversion with 60% selectivity to CO already at 500℃. On the contrary, the Ni–Ce catalyst was inert to CPO up to 700℃. Moreover, the former catalyst reproduced its activity at the descending temperatures maintaining a good stability at 600℃, over a reaction time of 80 h, whereas the latter one completely deactivated. Test of CH4 temperature programmed surface reaction(CH4-TPSR) revealed a higher methane activation temperature(> 100℃) for the Ni–Ce catalyst as compared to the Ni one. Noticeable improvement of the ceria containing catalyst occurred when the reaction test started at a temperature higher than the methane decomposition temperature. In this case, the sample achieved the same catalytic behavior of the Ni catalyst. As confirmed by XPS analyses, the distinct electronic state of the supported nickel was responsible for the differences in catalytic behavior. 展开更多
关键词 Methane catalytic partial oxidation(CPO) Ni catalyst NICE SiO2 supported catalysts
下载PDF
Recent Progress in Direct Partial Oxidation of Methane to Methanol 被引量:1
9
作者 QijianZhang DehuaHe QimingZhu 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2003年第2期81-89,共9页
The direct conversion of methane to methanol has attracted a great deal ofattention for nearly a century since it was first found possible in 1902, and it is still achallenging task. This review article describes rece... The direct conversion of methane to methanol has attracted a great deal ofattention for nearly a century since it was first found possible in 1902, and it is still achallenging task. This review article describes recent advancements in the direct partial oxidationof methane to methanol. The history of direct oxidation of methane and the difficulties encounteredin the partial oxidation of methane to methanol are briefly summarized. Recently reporteddevelopments in gas-phase homogeneous oxidation, heterogeneous catalytic oxidation and liquid phasehomogeneous catalytic oxidation of methane are reviewed. 展开更多
关键词 METHANE METHANOL catalytic partial oxidation gas-phase homogeneousoxidation CATALYST
下载PDF
Partial oxidation of methane to syngas catalyzed by a nickel nanowire catalyst
10
作者 Xuebin Hong YaquanWang 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2009年第1期98-103,共6页
A nickel nanowire catalyst was prepared by a hard template method, and characterized by transmission electron microscopy (TEM), N2 physical adsorption, X-ray photoelectron spectrometry (XPS), X-ray diffraction (... A nickel nanowire catalyst was prepared by a hard template method, and characterized by transmission electron microscopy (TEM), N2 physical adsorption, X-ray photoelectron spectrometry (XPS), X-ray diffraction (XRD) and H2 temperature-programmed reduction (H2-TPR). The catalytic properties of the nanowire catalyst in the partial oxidation of methane to syngas were compared with a metallic Ni catalyst which was prepared with nickel sponge. The characterization results showed that the nickel nanowire catalyst had high specific surface area and there was more NiO phase in the nickel nanowire catalyst than in the metallic Ni catalyst. The reaction results showed that the nickel nanowire catalyst had high CH4 conversion and selectivities for H2 and CO under low space velocity. 展开更多
关键词 metallic nickel NANOWIRE catalytic partial oxidation of methane SYNGAS
下载PDF
Yttria promoted metallic nickel catalysts for the partial oxidation of methane to synthesis gas
11
作者 Yaquan Wang Xuebin Hong +2 位作者 Bingbing Li Wenju Wang Dalin Wang 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2008年第4期344-350,共7页
A metallic Ni catalyst was prepared with nickel sponge, followed by acid treatment. It was further promoted with yttria by an impregnation method. The catalysts were characterized by SEM, BET, XRD, TPR, XPS, etc., and... A metallic Ni catalyst was prepared with nickel sponge, followed by acid treatment. It was further promoted with yttria by an impregnation method. The catalysts were characterized by SEM, BET, XRD, TPR, XPS, etc., and studied in the partial oxidation of methane to syngas. The characterization results showed that the yttria promoted metallic Ni catalysts had high specific surface area and more NiO. The reaction results showed that the yttria promoter increased the CH4 conversion and the selectivity for H2 and CO. 展开更多
关键词 metallic nickel YTTRIA catalytic partial oxidation of methane SYNGAS
下载PDF
Modeling of high-temperature reforming reactor based on interactive thermal control with a tail gas combustor
12
作者 Dan Zhang Zhong Shao +1 位作者 Ji-Ping Xin Ai-Jun Li 《Advances in Manufacturing》 SCIE CAS CSCD 2016年第1期47-54,共8页
This paper proposes a method to model hydrocarbon reforming by coupling detailed chemical kinetics with complex computational fluid dynamics. The entire chemistry of catalyzed reactions was confined within the geometr... This paper proposes a method to model hydrocarbon reforming by coupling detailed chemical kinetics with complex computational fluid dynamics. The entire chemistry of catalyzed reactions was confined within the geometrically simple channels and modeled using the low-dimensional plug model, into which the interactive thermal control of the multi-channel reforming reactor has been implemented with a tail-gas combustor around the external surface of these catalytic channels. The geomet- rically complex flow in the tail gas combustor was simu- lated using FLUENT without involving any chemical reactions. The influences of the conditions at the reactor inlet such as the inlet gas velocity, the inlet gas composi- tion and the variety of hydrocarbons of each channel on gas conversions were investigated numerically. The impact of the tail gas combustor setup on the efficiency of the reforming reactor was also analyzed. Methane catalytic partial oxidation (CPOx) and propane steam reforming (SR) were used to illustrate the approach reported in the present work. 展开更多
关键词 Computational fluid dynamics Reactionkinetics catalytic partial oxidation Steam reforming
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部