The Badu Complex is the oldest metamorphic rock in Cathaysia Block which experienced several episodes of metamorphism Especially indosinian metamorphic reworking in the southwestern Zhejiang Province, South China. The...The Badu Complex is the oldest metamorphic rock in Cathaysia Block which experienced several episodes of metamorphism Especially indosinian metamorphic reworking in the southwestern Zhejiang Province, South China. The degree of indosinian metamorphism reaches granulite facies. However, there is still insufficient understanding of the characteristics of the Indosinian granulite metamorphism in the Cathaysia and many interpretations of its tectonic significance. Therefore, we present detailed petrology, mineral chemistry and LA-ICP-MS zircon U-Pb age in this paper from pelitic granulites of the Badu Complex, which is composed of "sillimanite + garnet + cordierite + spinel + biotite + k-feldspar" assemblage and garnet pyroxenite with garnet amphibolite which is consists of "garnet + clinopyroxene + orthopyroxene + amphibole + plagioclase". By comprehensive study we get following new findings: Pelitic granulites record four stages of metamorphic mineral assemblages, including prograde(M1), pressure peak(M2), Peak(M3) and post-peak decompressional and then cooling(M4) stages. The prograde M1 assemblage consists of garnet1(core) + staurolite + kyanite + biotite + quartz ± rutile ± chlorite;The pressure peak M2 assemblage consists of garnet1(mantle) + sudoite + rutile + kyanite + corundum + biotite + quartz;The peak M3 have garnet2(rim-mantle) + biotite + sillimanite + quartz ± K-feldspar ± plagioclase ± ilmenite assemblag;the M4 stage is consist of garnet + cordierite + biotite + sillimanite + quartz + ilmenite ± spine ± K-feldspar. The garnet pyroxenite and garnet amphibolites have experienced three stages of metamorphic evolution. Peak high-pressure granulite facies stage M2 consists of garnet + sahlite ± ilmenite ± quartz;Post-peak near isothermal decompression medium granulite facies stage M3 is characterized by typical decompression reaction textures and assemblage of orthopyroxene + plagioclase(An=90–92);amphibolites facies retrograde metamorphic stage M4 is characterized by amphibole + plagioclase(An=33–35) + ilmenite ± sahlite ± quartz mineral assemblage. By means of phase equilibrium simulation and traditional thermobarometer, P-T conditions of 785–820 ℃ and 8.9–9.9 kbar for M3 stage, 780–860 ℃ and 5.7–6.2 kbar for decompressional M4 stage, 705–720 ℃ and 4.5–4.7 kbar for cooling M4 stage in pelitic granulites were obtained. And also 11.6–12.5 kbar and 780–840 ℃ for M2 stage, 7.4–8.2 kbar and 800–880 ℃ for M3 stage, 6.6–7.5 kbar and 500–560 ℃ for M4 stage were obtained in garnet pyroxenite and garnet amphibolite. A clockwise P-T path is confirmed in the two type rocks of the Badu Complex which reflected a near-isothermal decompressional metamorphic process. The peak metamorphism can reach highpressure granulite facies. In addition, the mineral assemblage of garnet + rutile + kyanite + corundum in the peak metamorphic stage of pelitic granulite indicates that it may underwent ultra-high-pressure metamorphism, and the acidic plagioclase exsolution of clinopyroxene in garnet pyroxenite also suggests that it may be retrograded eclogites, which indicates that the deeper Cathaysian block may have eclogite metamorphism. Analyses of LA-ICP-MS zircon U-Pb dating indicate that the metamorphic age of pelitic granulite is 233.5 Ma–subduction/collision followed by rapid exhumation and cooling events. The events may relate with the amalgamation of the Indochina BlockSouth China Block North China Block in the paleo-Tethyan domain.展开更多
An intrusive dyke is linear in regional scale,tectonic stresses play an important role in controlling the orientation of fractures that form for the dyke when magma rises buoyantly into the lithosphere
The Cathaysia block located at the southeast South China block(SCB)is considered formed by the amalgamation of the east and west Cathaysia blocks along the Gaoyao-Huilai and Zhenghe-Dapu deep faults(here referred as G...The Cathaysia block located at the southeast South China block(SCB)is considered formed by the amalgamation of the east and west Cathaysia blocks along the Gaoyao-Huilai and Zhenghe-Dapu deep faults(here referred as GHF and ZDF,respectively).Although the extension of the ZDF to the northeast,which represents the amalgamation of the two sub-blocks has been confirmed,the development of the GHF to the southwest remains to be verified.To better constrain the detailed deep structure beneath the southwest Cathaysia,which hold great significance for revealing the evolution of the SCB,a linear seismic array with 331 nodal geophones was deployed across the Sanshui basin(SSB).Combining with the regional 10 permanent stations(PA),we obtained two profiles with teleseismic P-wave receiver function stacking.The most obvious feature in our results is the ascending Moho towards the coastal area,which is consistent with the passive margin continental and extensional tectonic setting.The stacking profile from the dense nodal array(DNA)shows that the Moho is offset beneath the transition zone of the Nanling orogeny and SSB.We deduce that this offset may be casued by the deep extension of the GHF,which represents the remnants of the amalgamation of the Cathaysia block.From the other evidences,we infer that the widespread and early erupted felsic magmas in the SSB may have resulted from lithospheric materials that were squeezed out to the surface.The relative higher Bouguer gravity and heat flow support the consolidation of magmas and the residual warm state in the shallow crustal scale beneath the SSB.The sporadic basaltic magmas in the middle SSB may have a close relation to deep extension of the GHF,which serves as a channel for upwelling hot materials.展开更多
The Dajiangbian Formation in South China is a siliciclastic-dominated sedimentary succession with low-grade metamorphism deposited on the western margin of the Cathaysia Block, and is capped by a glaciogenic diamictit...The Dajiangbian Formation in South China is a siliciclastic-dominated sedimentary succession with low-grade metamorphism deposited on the western margin of the Cathaysia Block, and is capped by a glaciogenic diamictite(the Sizhoushan Formation). The Sizhoushan glaciogenic strata can be attributed to the Jiangkou glacial(Sturtian glacial) episode as they share stratigraphic and lithological similarities with Jiangkou strata in South China. Some carbonate, chert and shale units throughout the upper part of the Dajiangbian Formation were sampled for carbonate carbon isotope(δ^(13)C_(carb)) and organic carbon isotope(δ^(13)C_(org)) analyses. A range of geochemical indices including oxygen isotopes(δ^(18)O) and Mn/Sr(Fe/Sr) ratios suggest that primary carbon isotope values were preserved in the upper Dajiangbian Formation. The upper Dajiangbian Formation shows δ^(13)C_(carb) of-0.1‰, upward decreasing towards to-5.4‰. We suggest that the negative δ^(13)C excursion beneath the Sizhoushan diamictite is correlative with the Pre-Sturtian Islay δ^(13)C_(carb) anomaly and allows correlation with the global Neoproterozoic isotope stratigraphy. We find that carbonate and organic carbon isotope data of the upper Dajiangbian Formation are coupled, consistent with the δ^(13)C_(carb)-δ^(13)C_(org) pattern observed on multiple continents.展开更多
A combined study of zircon U-Pb dating, Hf isotopes and trace elements has been carried out for granodioritic neosomes of migmatites from the Tianjingping area in northwestern Fujian Province. Zircons are characterize...A combined study of zircon U-Pb dating, Hf isotopes and trace elements has been carried out for granodioritic neosomes of migmatites from the Tianjingping area in northwestern Fujian Province. Zircons are characterized by zoning, higher Th/U ratios (mostly ≥0.1), HREE enrichment, and positive Ce and negative Eu anomalies, and show features similar to magmatic or anatectic zircons. Apparent 206Pb/238U ages for the zircons are 447±2 Ma (95% conf., MSWD = 0.88), corresponding to a Caledonian event. εHf(t) values are ?13.3 to ?9.7, indicating a crustal source. Two-stage Hf model ages are 1.7 to 1.9 Ga, suggesting that protolith of the migmates was probably formed in the Paleoproterozoic. The granodioritic neosomes have the characteristics of peraluminous calc-alkaline granite, and their REE patterns and trace elements spidergrams show features of middle to upper crustal rocks. Together with previous studies, we conclude that the protolith of the Cathaysia basement in the Tianjingping area was likely formed in the middle-late Paleoproterozoic and experienced partial melting during the Caledonian period. The recognition of Caledonian reworking of the Paleoproterozoic basement in the Cathaysia Block provides a new insight into the tectonic evolution of the Cathaysia Block in the Caledonian pe- riod and the interaction between the Cathaysia Block and the Yangtze Block.展开更多
Metamorphic basement rocks in the Cathaysia Block are composed mainly of meta-sediments with different ages. New zircon U-Pb geochronological results from the meta-sedimentary rocks exposed in the Zengcheng and Hezi a...Metamorphic basement rocks in the Cathaysia Block are composed mainly of meta-sediments with different ages. New zircon U-Pb geochronological results from the meta-sedimentary rocks exposed in the Zengcheng and Hezi areas, southern Cathaysia Block, show that they consist dominantly of early Neoproterozoic (1.0―0.9 Ga) materials with minor Paleo- to Mesoproterozoic and late Neoproterozoic (0.8―0.6 Ga) components, suggesting that the detritus mostly come from a Grenvillian orogen. The youngest detrital zircon ages place a constraint on the deposition time of these sediments in Late Neoproterozoic. Zircon Hf isotopic compositions indicate that the Grenvillian zircons were derived from the reworking of Mesoproterozoic arc magmatic rocks and Paleoproterozoic continental crust, implying an arc-continent collisional setting. Single-peak age spectra and the presence of abundant euhedral Grenvillian zircons suggest that the sedimentary provenance is not far away from the sample location. Thus, the Grenvillian orogen probably preexisted along the southern margin of the Cathaysia Block, or very close to the south. Similarity in the ages of Grenvillian orogeny and the influence of the assembly of Gondwana in South China with India and East Antarctic are discussed, with suggestion that South China was more likely linked with the India-East Antarctica continents in Early Neoproterozoic rather than between western Laurentia and eastern Australia.展开更多
基金financially supported by Geological Survey Project(No.D1434-3)of China Geological Surveythe National Natural Science Foundation of China(No.41472164,41872192)
文摘The Badu Complex is the oldest metamorphic rock in Cathaysia Block which experienced several episodes of metamorphism Especially indosinian metamorphic reworking in the southwestern Zhejiang Province, South China. The degree of indosinian metamorphism reaches granulite facies. However, there is still insufficient understanding of the characteristics of the Indosinian granulite metamorphism in the Cathaysia and many interpretations of its tectonic significance. Therefore, we present detailed petrology, mineral chemistry and LA-ICP-MS zircon U-Pb age in this paper from pelitic granulites of the Badu Complex, which is composed of "sillimanite + garnet + cordierite + spinel + biotite + k-feldspar" assemblage and garnet pyroxenite with garnet amphibolite which is consists of "garnet + clinopyroxene + orthopyroxene + amphibole + plagioclase". By comprehensive study we get following new findings: Pelitic granulites record four stages of metamorphic mineral assemblages, including prograde(M1), pressure peak(M2), Peak(M3) and post-peak decompressional and then cooling(M4) stages. The prograde M1 assemblage consists of garnet1(core) + staurolite + kyanite + biotite + quartz ± rutile ± chlorite;The pressure peak M2 assemblage consists of garnet1(mantle) + sudoite + rutile + kyanite + corundum + biotite + quartz;The peak M3 have garnet2(rim-mantle) + biotite + sillimanite + quartz ± K-feldspar ± plagioclase ± ilmenite assemblag;the M4 stage is consist of garnet + cordierite + biotite + sillimanite + quartz + ilmenite ± spine ± K-feldspar. The garnet pyroxenite and garnet amphibolites have experienced three stages of metamorphic evolution. Peak high-pressure granulite facies stage M2 consists of garnet + sahlite ± ilmenite ± quartz;Post-peak near isothermal decompression medium granulite facies stage M3 is characterized by typical decompression reaction textures and assemblage of orthopyroxene + plagioclase(An=90–92);amphibolites facies retrograde metamorphic stage M4 is characterized by amphibole + plagioclase(An=33–35) + ilmenite ± sahlite ± quartz mineral assemblage. By means of phase equilibrium simulation and traditional thermobarometer, P-T conditions of 785–820 ℃ and 8.9–9.9 kbar for M3 stage, 780–860 ℃ and 5.7–6.2 kbar for decompressional M4 stage, 705–720 ℃ and 4.5–4.7 kbar for cooling M4 stage in pelitic granulites were obtained. And also 11.6–12.5 kbar and 780–840 ℃ for M2 stage, 7.4–8.2 kbar and 800–880 ℃ for M3 stage, 6.6–7.5 kbar and 500–560 ℃ for M4 stage were obtained in garnet pyroxenite and garnet amphibolite. A clockwise P-T path is confirmed in the two type rocks of the Badu Complex which reflected a near-isothermal decompressional metamorphic process. The peak metamorphism can reach highpressure granulite facies. In addition, the mineral assemblage of garnet + rutile + kyanite + corundum in the peak metamorphic stage of pelitic granulite indicates that it may underwent ultra-high-pressure metamorphism, and the acidic plagioclase exsolution of clinopyroxene in garnet pyroxenite also suggests that it may be retrograded eclogites, which indicates that the deeper Cathaysian block may have eclogite metamorphism. Analyses of LA-ICP-MS zircon U-Pb dating indicate that the metamorphic age of pelitic granulite is 233.5 Ma–subduction/collision followed by rapid exhumation and cooling events. The events may relate with the amalgamation of the Indochina BlockSouth China Block North China Block in the paleo-Tethyan domain.
基金Financially supported by the program SINOPROBE-04-02the Special Funds for Sciences and Technology Research of Public Welfare Trades 201011054the research grant of Guangxi Key Laboratory of Hidden Metallic Ore Deposits Exploration 15-140-27-13
文摘An intrusive dyke is linear in regional scale,tectonic stresses play an important role in controlling the orientation of fractures that form for the dyke when magma rises buoyantly into the lithosphere
基金the National Natural Science Foun-dation of China(Grant Nos.41874052 and 41730212)the Guangdong Province Introduced Innovative R&D Team(Grant No.2017ZT072066)+2 种基金the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(Grant No.2019QZKK0701)the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(Grant No.311021002)the Guangdong Collaborative Innovation Center for Earthquake Prevention and Mitigation(Grant No.2018B020207011).
文摘The Cathaysia block located at the southeast South China block(SCB)is considered formed by the amalgamation of the east and west Cathaysia blocks along the Gaoyao-Huilai and Zhenghe-Dapu deep faults(here referred as GHF and ZDF,respectively).Although the extension of the ZDF to the northeast,which represents the amalgamation of the two sub-blocks has been confirmed,the development of the GHF to the southwest remains to be verified.To better constrain the detailed deep structure beneath the southwest Cathaysia,which hold great significance for revealing the evolution of the SCB,a linear seismic array with 331 nodal geophones was deployed across the Sanshui basin(SSB).Combining with the regional 10 permanent stations(PA),we obtained two profiles with teleseismic P-wave receiver function stacking.The most obvious feature in our results is the ascending Moho towards the coastal area,which is consistent with the passive margin continental and extensional tectonic setting.The stacking profile from the dense nodal array(DNA)shows that the Moho is offset beneath the transition zone of the Nanling orogeny and SSB.We deduce that this offset may be casued by the deep extension of the GHF,which represents the remnants of the amalgamation of the Cathaysia block.From the other evidences,we infer that the widespread and early erupted felsic magmas in the SSB may have resulted from lithospheric materials that were squeezed out to the surface.The relative higher Bouguer gravity and heat flow support the consolidation of magmas and the residual warm state in the shallow crustal scale beneath the SSB.The sporadic basaltic magmas in the middle SSB may have a close relation to deep extension of the GHF,which serves as a channel for upwelling hot materials.
基金supported by the Chinese National "973" Project (No. 2013CB835005) to X. H. Li(Nos. 40603021, 41072145) to L. F.
文摘The Dajiangbian Formation in South China is a siliciclastic-dominated sedimentary succession with low-grade metamorphism deposited on the western margin of the Cathaysia Block, and is capped by a glaciogenic diamictite(the Sizhoushan Formation). The Sizhoushan glaciogenic strata can be attributed to the Jiangkou glacial(Sturtian glacial) episode as they share stratigraphic and lithological similarities with Jiangkou strata in South China. Some carbonate, chert and shale units throughout the upper part of the Dajiangbian Formation were sampled for carbonate carbon isotope(δ^(13)C_(carb)) and organic carbon isotope(δ^(13)C_(org)) analyses. A range of geochemical indices including oxygen isotopes(δ^(18)O) and Mn/Sr(Fe/Sr) ratios suggest that primary carbon isotope values were preserved in the upper Dajiangbian Formation. The upper Dajiangbian Formation shows δ^(13)C_(carb) of-0.1‰, upward decreasing towards to-5.4‰. We suggest that the negative δ^(13)C excursion beneath the Sizhoushan diamictite is correlative with the Pre-Sturtian Islay δ^(13)C_(carb) anomaly and allows correlation with the global Neoproterozoic isotope stratigraphy. We find that carbonate and organic carbon isotope data of the upper Dajiangbian Formation are coupled, consistent with the δ^(13)C_(carb)-δ^(13)C_(org) pattern observed on multiple continents.
基金the National Natural Science Foundation of China (Grant No. 40372094)the Opening Foundation of State Key Laboratory of Continental Dy-namics, Northwest University (Grant No. 06LCD12)the project of Land and Resources Bureau of Zhejiang Province (Grant No. 2004005)
文摘A combined study of zircon U-Pb dating, Hf isotopes and trace elements has been carried out for granodioritic neosomes of migmatites from the Tianjingping area in northwestern Fujian Province. Zircons are characterized by zoning, higher Th/U ratios (mostly ≥0.1), HREE enrichment, and positive Ce and negative Eu anomalies, and show features similar to magmatic or anatectic zircons. Apparent 206Pb/238U ages for the zircons are 447±2 Ma (95% conf., MSWD = 0.88), corresponding to a Caledonian event. εHf(t) values are ?13.3 to ?9.7, indicating a crustal source. Two-stage Hf model ages are 1.7 to 1.9 Ga, suggesting that protolith of the migmates was probably formed in the Paleoproterozoic. The granodioritic neosomes have the characteristics of peraluminous calc-alkaline granite, and their REE patterns and trace elements spidergrams show features of middle to upper crustal rocks. Together with previous studies, we conclude that the protolith of the Cathaysia basement in the Tianjingping area was likely formed in the middle-late Paleoproterozoic and experienced partial melting during the Caledonian period. The recognition of Caledonian reworking of the Paleoproterozoic basement in the Cathaysia Block provides a new insight into the tectonic evolution of the Cathaysia Block in the Caledonian pe- riod and the interaction between the Cathaysia Block and the Yangtze Block.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 40634022, 40221301 and 40672125)publication No. 511 from the National Key Centre for Geochemical Evolution and Metallogeny of Continents
文摘Metamorphic basement rocks in the Cathaysia Block are composed mainly of meta-sediments with different ages. New zircon U-Pb geochronological results from the meta-sedimentary rocks exposed in the Zengcheng and Hezi areas, southern Cathaysia Block, show that they consist dominantly of early Neoproterozoic (1.0―0.9 Ga) materials with minor Paleo- to Mesoproterozoic and late Neoproterozoic (0.8―0.6 Ga) components, suggesting that the detritus mostly come from a Grenvillian orogen. The youngest detrital zircon ages place a constraint on the deposition time of these sediments in Late Neoproterozoic. Zircon Hf isotopic compositions indicate that the Grenvillian zircons were derived from the reworking of Mesoproterozoic arc magmatic rocks and Paleoproterozoic continental crust, implying an arc-continent collisional setting. Single-peak age spectra and the presence of abundant euhedral Grenvillian zircons suggest that the sedimentary provenance is not far away from the sample location. Thus, the Grenvillian orogen probably preexisted along the southern margin of the Cathaysia Block, or very close to the south. Similarity in the ages of Grenvillian orogeny and the influence of the assembly of Gondwana in South China with India and East Antarctic are discussed, with suggestion that South China was more likely linked with the India-East Antarctica continents in Early Neoproterozoic rather than between western Laurentia and eastern Australia.