To better describe the phenomenon of non-Fourier heat conduction, the fractional Cattaneo heat equation is introduced from the generalized Cattaneo model with two fractional derivatives of different orders. The anomal...To better describe the phenomenon of non-Fourier heat conduction, the fractional Cattaneo heat equation is introduced from the generalized Cattaneo model with two fractional derivatives of different orders. The anomalous heat conduction under the Neumann boundary condition in a semi-infinity medium is investigated. Exact solutions are obtained in series form of the H-function by using the Laplace transform method. Finally, numerical examples are presented graphically when different kinds of surface temperature gradient are given. The effects of fractional parameters are also discussed.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11102102, 11072134, and 91130017)the Natural Science Foundation of Shandong Province, China (Grant No. ZR2009AQ014)the Independent Innovation Foundation of Shandong University, China (Grant No. 2010ZRJQ002)
文摘To better describe the phenomenon of non-Fourier heat conduction, the fractional Cattaneo heat equation is introduced from the generalized Cattaneo model with two fractional derivatives of different orders. The anomalous heat conduction under the Neumann boundary condition in a semi-infinity medium is investigated. Exact solutions are obtained in series form of the H-function by using the Laplace transform method. Finally, numerical examples are presented graphically when different kinds of surface temperature gradient are given. The effects of fractional parameters are also discussed.