Firstly,some properties for(p,q)-monogenic functions withα-weight in Clifford analysis are given.Then,the Cauchy-Pompeiu formula is proved.Finally,the Cauchy integral formula and the Cauchy integral theorem for(p,q)-...Firstly,some properties for(p,q)-monogenic functions withα-weight in Clifford analysis are given.Then,the Cauchy-Pompeiu formula is proved.Finally,the Cauchy integral formula and the Cauchy integral theorem for(p,q)-monogenic functions withα-weight are given.展开更多
In this work,we apply the Brzdȩk and Ciepliński's fixed point theorem to investigate new stability results for the generalized Cauchy functional equation of the form f(ax+by)=af(x)+bf(y),where a,b∈N and f is a m...In this work,we apply the Brzdȩk and Ciepliński's fixed point theorem to investigate new stability results for the generalized Cauchy functional equation of the form f(ax+by)=af(x)+bf(y),where a,b∈N and f is a mapping from a commutative group(G,+)to a 2-Banach space(Y,||·,·||).Our results are generalizations of main results of Brzdȩk and Ciepliński[J Brzdȩk,K Ciepliński.On a fixed point theorem in 2-normed spaces and some of its applications.Acta Mathematica Scientia,2018,38B(2):377-390].展开更多
The paper surveys interactions between complex and functional-analytic methods in the CauchyKovalevskaya theory. For instance, the behaviour of the derivative of a bounded holomorphic function led to abstract versions...The paper surveys interactions between complex and functional-analytic methods in the CauchyKovalevskaya theory. For instance, the behaviour of the derivative of a bounded holomorphic function led to abstract versions of the Cauchy-Kovalevskaya Theorem.Recent trends in the Cauchy-Kovalevskaya theory are based on the concept of associated differential operators. Since an evolution operator may posses several associated operators, initial data may be decomposed into components belonging to different associated spaces.This technique makes it also possible to solve ill-posed initial value problems.展开更多
讨论Cauchy中值定理"中间点函数"的可微性与渐近性,并给出例子说明本文结果的有效性与广泛性,从而改进和推广了Duca和Pop(On the intermediate point in Cauchy’s mean-value theorem,Math Inequal Appl,2006(3):375-389)中...讨论Cauchy中值定理"中间点函数"的可微性与渐近性,并给出例子说明本文结果的有效性与广泛性,从而改进和推广了Duca和Pop(On the intermediate point in Cauchy’s mean-value theorem,Math Inequal Appl,2006(3):375-389)中的相应结果.展开更多
基金Supported by the National Natural Science Foundation of China(11871191)the Science Foundation of Hebei Province(A2023205006,A2019106037)+2 种基金the Key Development Foundation of Hebei Normal University in2024(L2024ZD08)the Graduate Student Innovation Project Fund of Hebei Province(CXZZBS2022066)the Key Foundation of Hebei Normal University(L2018Z01)。
文摘Firstly,some properties for(p,q)-monogenic functions withα-weight in Clifford analysis are given.Then,the Cauchy-Pompeiu formula is proved.Finally,the Cauchy integral formula and the Cauchy integral theorem for(p,q)-monogenic functions withα-weight are given.
基金This work was supported by Research Professional Development Project under the Science Achievement Scholarship of Thailand(SAST)and Thammasat University Research Fund,Contract No.TUGG 33/2562The second author would like to thank the Thailand Research Fund and Office of the Higher Education Commission under grant no.MRG6180283 for financial support during the preparation of this manuscript.
文摘In this work,we apply the Brzdȩk and Ciepliński's fixed point theorem to investigate new stability results for the generalized Cauchy functional equation of the form f(ax+by)=af(x)+bf(y),where a,b∈N and f is a mapping from a commutative group(G,+)to a 2-Banach space(Y,||·,·||).Our results are generalizations of main results of Brzdȩk and Ciepliński[J Brzdȩk,K Ciepliński.On a fixed point theorem in 2-normed spaces and some of its applications.Acta Mathematica Scientia,2018,38B(2):377-390].
文摘The paper surveys interactions between complex and functional-analytic methods in the CauchyKovalevskaya theory. For instance, the behaviour of the derivative of a bounded holomorphic function led to abstract versions of the Cauchy-Kovalevskaya Theorem.Recent trends in the Cauchy-Kovalevskaya theory are based on the concept of associated differential operators. Since an evolution operator may posses several associated operators, initial data may be decomposed into components belonging to different associated spaces.This technique makes it also possible to solve ill-posed initial value problems.
文摘讨论Cauchy中值定理"中间点函数"的可微性与渐近性,并给出例子说明本文结果的有效性与广泛性,从而改进和推广了Duca和Pop(On the intermediate point in Cauchy’s mean-value theorem,Math Inequal Appl,2006(3):375-389)中的相应结果.