As is well known,the definitions of fractional sum and fractional difference of f(z)on non-uniform lattices x(z)=c1z^(2)+c2z+c3 or x(z)=c1q^(z)+c2q^(-z)+c3 are more difficult and complicated.In this article,for the fi...As is well known,the definitions of fractional sum and fractional difference of f(z)on non-uniform lattices x(z)=c1z^(2)+c2z+c3 or x(z)=c1q^(z)+c2q^(-z)+c3 are more difficult and complicated.In this article,for the first time we propose the definitions of the fractional sum and fractional difference on non-uniform lattices by two different ways.The analogue of Euler’s Beta formula,Cauchy’Beta formula on non-uniform lattices are established,and some fundamental theorems of fractional calculas,the solution of the generalized Abel equation on non-uniform lattices are obtained etc.展开更多
A simple method for solving Cauchy’s problem of wave equations in higher space dimensions with initial condition of separated variables, has been given by using D’Alembert’s formula and some examples have been shown.
This article studies on Cauchy’s function f (z) and its integral, (2πi)J[ f (z)] ≡ ■C f (t)dt/(t z) taken along a closed simple contour C, in regard to their comprehensive properties over the entire z =...This article studies on Cauchy’s function f (z) and its integral, (2πi)J[ f (z)] ≡ ■C f (t)dt/(t z) taken along a closed simple contour C, in regard to their comprehensive properties over the entire z = x + iy plane consisted of the simply connected open domain D + bounded by C and the open domain D outside C. (1) With f (z) assumed to be C n (n ∞-times continuously differentiable) z ∈ D + and in a neighborhood of C, f (z) and its derivatives f (n) (z) are proved uniformly continuous in the closed domain D + = [D + + C]. (2) Cauchy’s integral formulas and their derivatives z ∈ D + (or z ∈ D ) are proved to converge uniformly in D + (or in D = [D +C]), respectively, thereby rendering the integral formulas valid over the entire z-plane. (3) The same claims (as for f (z) and J[ f (z)]) are shown extended to hold for the complement function F(z), defined to be C n z ∈ D and about C. (4) The uniform convergence theorems for f (z) and F(z) shown for arbitrary contour C are adapted to find special domains in the upper or lower half z-planes and those inside and outside the unit circle |z| = 1 such that the four general- ized Hilbert-type integral transforms are proved. (5) Further, the singularity distribution of f (z) in D is elucidated by considering the direct problem exemplified with several typ- ical singularities prescribed in D . (6) A comparative study is made between generalized integral formulas and Plemelj’s formulas on their differing basic properties. (7) Physical sig- nificances of these formulas are illustrated with applicationsto nonlinear airfoil theory. (8) Finally, an unsolved inverse problem to determine all the singularities of Cauchy function f (z) in domain D , based on the continuous numerical value of f (z) z ∈ D + = [D + + C], is presented for resolution as a conjecture.展开更多
Based on the Fourier transform, the analytical solution of boundary integral equations formulated for the complex velocity of a 2-D steady linear surface flow is derived. It has been found that before the radiation co...Based on the Fourier transform, the analytical solution of boundary integral equations formulated for the complex velocity of a 2-D steady linear surface flow is derived. It has been found that before the radiation condition is imposed,free waves appear both far upstream and downstream. In order to cancel the free waves in far upstream regions, the eigensolution of a specific eigenvalue, which satisfies the homogeneous boundary integral equation, is found and superposed to the analytical solution. An example, a submerged vortex, is used to demonstrate the derived analytical solution. Furthermore,an analytical approach to imposing the radiation condition in the numerical solution of boundary integral equations for 2-D steady linear wave problems is proposed.展开更多
In this article, we establish the Gauss Green type theorems for Clifford-valued functions in Clifford analysis. The boundary conditions in theorems obtained are very general by using the geometric measure theoretic me...In this article, we establish the Gauss Green type theorems for Clifford-valued functions in Clifford analysis. The boundary conditions in theorems obtained are very general by using the geometric measure theoretic method. The Cauchy-Pompeiu formula for Clifford-valued functions under the weak condition will be derived as their simple application. Furthermore, Cauchy formula for monogenic functions under the weak condition is derived directly from the Cauchy-Pompeiu formula.展开更多
基金Supported by the National Natural Science Foundation Fujian province of China(2016J01032).
文摘As is well known,the definitions of fractional sum and fractional difference of f(z)on non-uniform lattices x(z)=c1z^(2)+c2z+c3 or x(z)=c1q^(z)+c2q^(-z)+c3 are more difficult and complicated.In this article,for the first time we propose the definitions of the fractional sum and fractional difference on non-uniform lattices by two different ways.The analogue of Euler’s Beta formula,Cauchy’Beta formula on non-uniform lattices are established,and some fundamental theorems of fractional calculas,the solution of the generalized Abel equation on non-uniform lattices are obtained etc.
基金Supported by the Natural Science Foundation of Hubei Province!(992P0 30 7) the National Natural Science Foun-dation of Chi
文摘A simple method for solving Cauchy’s problem of wave equations in higher space dimensions with initial condition of separated variables, has been given by using D’Alembert’s formula and some examples have been shown.
文摘This article studies on Cauchy’s function f (z) and its integral, (2πi)J[ f (z)] ≡ ■C f (t)dt/(t z) taken along a closed simple contour C, in regard to their comprehensive properties over the entire z = x + iy plane consisted of the simply connected open domain D + bounded by C and the open domain D outside C. (1) With f (z) assumed to be C n (n ∞-times continuously differentiable) z ∈ D + and in a neighborhood of C, f (z) and its derivatives f (n) (z) are proved uniformly continuous in the closed domain D + = [D + + C]. (2) Cauchy’s integral formulas and their derivatives z ∈ D + (or z ∈ D ) are proved to converge uniformly in D + (or in D = [D +C]), respectively, thereby rendering the integral formulas valid over the entire z-plane. (3) The same claims (as for f (z) and J[ f (z)]) are shown extended to hold for the complement function F(z), defined to be C n z ∈ D and about C. (4) The uniform convergence theorems for f (z) and F(z) shown for arbitrary contour C are adapted to find special domains in the upper or lower half z-planes and those inside and outside the unit circle |z| = 1 such that the four general- ized Hilbert-type integral transforms are proved. (5) Further, the singularity distribution of f (z) in D is elucidated by considering the direct problem exemplified with several typ- ical singularities prescribed in D . (6) A comparative study is made between generalized integral formulas and Plemelj’s formulas on their differing basic properties. (7) Physical sig- nificances of these formulas are illustrated with applicationsto nonlinear airfoil theory. (8) Finally, an unsolved inverse problem to determine all the singularities of Cauchy function f (z) in domain D , based on the continuous numerical value of f (z) z ∈ D + = [D + + C], is presented for resolution as a conjecture.
文摘Based on the Fourier transform, the analytical solution of boundary integral equations formulated for the complex velocity of a 2-D steady linear surface flow is derived. It has been found that before the radiation condition is imposed,free waves appear both far upstream and downstream. In order to cancel the free waves in far upstream regions, the eigensolution of a specific eigenvalue, which satisfies the homogeneous boundary integral equation, is found and superposed to the analytical solution. An example, a submerged vortex, is used to demonstrate the derived analytical solution. Furthermore,an analytical approach to imposing the radiation condition in the numerical solution of boundary integral equations for 2-D steady linear wave problems is proposed.
基金supported by NNSF of China(11171260)RFDP of Higher Education of China(20100141110054)
文摘In this article, we establish the Gauss Green type theorems for Clifford-valued functions in Clifford analysis. The boundary conditions in theorems obtained are very general by using the geometric measure theoretic method. The Cauchy-Pompeiu formula for Clifford-valued functions under the weak condition will be derived as their simple application. Furthermore, Cauchy formula for monogenic functions under the weak condition is derived directly from the Cauchy-Pompeiu formula.