Understanding three-dimensional(3D)in situ stress field is of key importance for estimating the stability of large deep underground cavern groups near valleys.However,the complete 3D in situ stress fields around large...Understanding three-dimensional(3D)in situ stress field is of key importance for estimating the stability of large deep underground cavern groups near valleys.However,the complete 3D in situ stress fields around large deep underground cavern groups are difficult to determine based on in situ stress data from a limited number of measuring points due to the insufficient representativeness and unreliability of such measurements.In this study,an integrated approach for estimating the 3D in situ stress field around a large deep underground cavern group near a valley is developed based on incomplete in situ stress measurements and the stress-induced failures of tunnels excavated prior to the step excavation of the cavern group.This integrated approach is implemented via four interrelated and progressive basic steps,i.e.inference of the regional tectonic stress field direction,analyses of in situ stress characteristics and measurement reliability,regression-based in situ stress field analysis and reliability assessment,and modified in situ stress field analysis and reliability verification.The orientations and magnitudes of the 3D in situ stress field can be analyzed and obtained at a strategic level following these four basic steps.First,the tectonic stress field direction around the cavern group is deduced in accordance with the regional tectonic framework and verified using a regional crustal deformation velocity map.Second,the reliability of the in situ stress measurements is verified based on the locations and depths of stressinduced brittle failures in small tunnels(such as exploratory tunnels and pilot tunnels)within the excavation range of the cavern group.Third,considering the influences of the valley topography and major geological structures,the 3D in situ stress field is regressed using numerical simulation and multiple linear regression techniques based on the in situ stress measurements.Finally,the regressed in situ stress field is further modified and reverified based on the stress-induced brittle failures of small tunnels and the initial excavation of the cavern group.A case study of the Shuangjiangkou underground cavern group demonstrates that the proposed approach is reliable for estimating the 3D in situ stress fields of large deep underground cavern groups near valleys,thus contributing to the optimization of practical excavation and design of mitigating the instability of the surrounding rock masses during step excavations.展开更多
It is imperative to understand the spatial and temporal coordination deformation mechanism and develop targeted deformation control technologies for high sidewall—bottom transfixion(HSBT)zones to guarantee the stabil...It is imperative to understand the spatial and temporal coordination deformation mechanism and develop targeted deformation control technologies for high sidewall—bottom transfixion(HSBT)zones to guarantee the stability of rock surrounding underground hydro-powerhouses under complex geological conditions.In this study,the spatial and temporal coordinated deformation control of HSBT zones was addressed from the aspects of the deformation mechanism,failure characteristics,and control requirements,and some coordinated deformation control technologies were proposed.On this basis,a case study was conducted on the deformation control of the HSBT zone of the underground powerhouse at the Wudongde hydropower station,China.The results showed that the relationship between excavation and support,and the mismatch of deformation and support of the surrounding rock mass in the HSBT zone of underground caverns with a large span and high in-situ stress can be appropriately handled.The solution requires proper excavation and construction procedures,fine blasting control,composite and timely support,and real-time monitoring and dynamic feedback.The technologies proposed in this study will ensure the safe,high-quality,and orderly construction of the Baihetan and Wudongde underground caverns,and can be applied to other similar projects.展开更多
基金This research was funded by the National Science Foundation of China(Grant Nos.U1765206 and 51979268)Innovation Research Group Project of Natural Science Foundation of Hubei Province(Grant No.ZRQT2020000114).
文摘Understanding three-dimensional(3D)in situ stress field is of key importance for estimating the stability of large deep underground cavern groups near valleys.However,the complete 3D in situ stress fields around large deep underground cavern groups are difficult to determine based on in situ stress data from a limited number of measuring points due to the insufficient representativeness and unreliability of such measurements.In this study,an integrated approach for estimating the 3D in situ stress field around a large deep underground cavern group near a valley is developed based on incomplete in situ stress measurements and the stress-induced failures of tunnels excavated prior to the step excavation of the cavern group.This integrated approach is implemented via four interrelated and progressive basic steps,i.e.inference of the regional tectonic stress field direction,analyses of in situ stress characteristics and measurement reliability,regression-based in situ stress field analysis and reliability assessment,and modified in situ stress field analysis and reliability verification.The orientations and magnitudes of the 3D in situ stress field can be analyzed and obtained at a strategic level following these four basic steps.First,the tectonic stress field direction around the cavern group is deduced in accordance with the regional tectonic framework and verified using a regional crustal deformation velocity map.Second,the reliability of the in situ stress measurements is verified based on the locations and depths of stressinduced brittle failures in small tunnels(such as exploratory tunnels and pilot tunnels)within the excavation range of the cavern group.Third,considering the influences of the valley topography and major geological structures,the 3D in situ stress field is regressed using numerical simulation and multiple linear regression techniques based on the in situ stress measurements.Finally,the regressed in situ stress field is further modified and reverified based on the stress-induced brittle failures of small tunnels and the initial excavation of the cavern group.A case study of the Shuangjiangkou underground cavern group demonstrates that the proposed approach is reliable for estimating the 3D in situ stress fields of large deep underground cavern groups near valleys,thus contributing to the optimization of practical excavation and design of mitigating the instability of the surrounding rock masses during step excavations.
基金This work is supported by the National Natural Science Foundation of China(Nos.51979146 and 12102230)the China Three Gorges Corporation Research Program(Nos.WDD/0490,WDD/0578,and BHT/0774)the China Postdoctoral Science Foundation(No.2022M711862).
文摘It is imperative to understand the spatial and temporal coordination deformation mechanism and develop targeted deformation control technologies for high sidewall—bottom transfixion(HSBT)zones to guarantee the stability of rock surrounding underground hydro-powerhouses under complex geological conditions.In this study,the spatial and temporal coordinated deformation control of HSBT zones was addressed from the aspects of the deformation mechanism,failure characteristics,and control requirements,and some coordinated deformation control technologies were proposed.On this basis,a case study was conducted on the deformation control of the HSBT zone of the underground powerhouse at the Wudongde hydropower station,China.The results showed that the relationship between excavation and support,and the mismatch of deformation and support of the surrounding rock mass in the HSBT zone of underground caverns with a large span and high in-situ stress can be appropriately handled.The solution requires proper excavation and construction procedures,fine blasting control,composite and timely support,and real-time monitoring and dynamic feedback.The technologies proposed in this study will ensure the safe,high-quality,and orderly construction of the Baihetan and Wudongde underground caverns,and can be applied to other similar projects.