Dear Editor,We read with great interest the article by Tan et al.titled“Accelerated fracture healing by osteogenic Ti45Nb implants through the PI3K-Akt signaling pathway”[1].This research thoroughly examines the bon...Dear Editor,We read with great interest the article by Tan et al.titled“Accelerated fracture healing by osteogenic Ti45Nb implants through the PI3K-Akt signaling pathway”[1].This research thoroughly examines the bone-forming capabilities of the Ti45Nb alloy.The in vitro studies revealed that the Ti45Nb alloy enhances the osteogenic differentiation of MC3T3-E1 cells more effectively than Ti6Al4V alloy controls,showing no noticeable cytotoxic effects.展开更多
The Ti−45Nb(wt.%)alloy properties were investigated in relation to its potential biomedical use.Laser surface modification was utilized to improve its performance in biological systems.As a result of the laser treatme...The Ti−45Nb(wt.%)alloy properties were investigated in relation to its potential biomedical use.Laser surface modification was utilized to improve its performance in biological systems.As a result of the laser treatment,(Ti,Nb)O scale was formed and various morphological features appeared on the alloy surface.The electrochemical behavior of Ti−45Nb alloy in simulated body conditions was evaluated and showed that the alloy was highly resistant to corrosion deterioration regardless of additional laser surface modification treatment.Nevertheless,the improved corrosion resistance after laser treatment was evident(the corrosion current density of the alloy before laser irradiation was 2.84×10^(−8)A/cm^(2),while that after laser treatment with 5 mJ was 0.65×10^(−8)A/cm^(2))and ascribed to the rapid formation of a complex and passivating bi-modal surface oxide layer.Alloy cytotoxicity and effects of the Ti−45Nb alloy laser surface modification on the MRC-5 cell viability,morphology,and proliferation were also investigated.The Ti−45Nb alloy showed no cytotoxic effect.Moreover,cells showed improved viability and adherence to the alloy surface after the laser irradiation treatment.The highest average cell viability of 115.37%was attained for the alloy laser-irradiated with 15 mJ.Results showed that the laser surface modification can be successfully utilized to significantly improve alloy performance in a biological environment.展开更多
The effects of laser shock peening(LSP)on the microstructural evolution and mechanical properties of the Ti6242 alloy,including the residual stress,surface roughness,Vickers microhardness,tensile mechanical response,a...The effects of laser shock peening(LSP)on the microstructural evolution and mechanical properties of the Ti6242 alloy,including the residual stress,surface roughness,Vickers microhardness,tensile mechanical response,and high-cycle fatigue properties,were studied.The results showed that the LSP induced residual compressive stresses on the surface and near surface of the material.The maximum surface residual compressive stress was−661 MPa,and the compressive-stress-affected depth was greater than 1000μm.The roughness and Vickers micro-hardness increased with the number of shocks,and the maximum hardness-affected depth was about 700μm after three LSP treatments.LSP enhanced the fraction of low-angle grain boundaries,changed the grain preferred orientations,and notably increased the pole density ofαphase on the near surface from 2.41 to 3.46.The surface hardness values of the LSP samples increased with the increase of the number of shocks due to work hardening,while the LSP had a limited effect on the tensile properties.The high-cycle fatigue life of the LSP-treated sample was significantly enhanced by more than 20%compared with that of the untreated sample,which was caused by the suppression of the initiation and propagation of fatigue cracks.展开更多
Integrating titanium-based implants with the surrounding bone tissue remains challenging.This study aims to explore the impact of different anodization voltages(20−80 V)on the surface topography of two-phase(α/β)Ti ...Integrating titanium-based implants with the surrounding bone tissue remains challenging.This study aims to explore the impact of different anodization voltages(20−80 V)on the surface topography of two-phase(α/β)Ti alloys and to produce TiO_(2) films with enhanced bone formation abilities.Scanning electron microscopy coupled with energy dispersive spectroscopy(SEM−EDS)and atomic force microscopy(AFM)were applied to investigate the morphological,chemical,and surface topography of the prepared alloys and to confirm the growth of hydroxyapatite(HA)on their surfaces.Results disclosed that the surface roughness of TiO_(2) films formed on Ti−6Al−7Nb alloys was superior to that of Ti−6Al−4V alloys.Ti−6Al−7Nb alloy anodized at 80 V had the highest yields of HA after immersion in simulated body fluid with enhanced HA surface coverage.The developed HA layer had a mean thickness of(128.38±18.13)μm,suggesting its potential use as an orthopedic implantable material due to its promising bone integration and,hence,remarkable stability inside the human body.展开更多
An efficient and safe hydrogen storage method is one of the important links for the large-scale development of hydrogen in the future. Because of its low price and simple design, Ti-based hydrogen storage alloys are c...An efficient and safe hydrogen storage method is one of the important links for the large-scale development of hydrogen in the future. Because of its low price and simple design, Ti-based hydrogen storage alloys are considered to be suitable for practical applications. In this paper, we review the latest research on Ti-based hydrogen storage alloys. Firstly, the machine learning and density functional theory are introduced to provide theoretical guidance for the optimization of Ti-based hydrogen storage alloys. Then, in order to improve the hydrogen storage performance, we briefly introduce the research of AB type and AB2 type Ti-based alloys, focusing on doping elements and adaptive after treatment. Finally, suggestions for the future research and development of Ti-based hydrogen storage alloys are proposed. .展开更多
Microstructure evolution of Ti14 (α+Ti2Cu) alloy during semi-solid isothermal process at different temperatures was investigated. The results reveal that both the temperature and holding time have effect on the gr...Microstructure evolution of Ti14 (α+Ti2Cu) alloy during semi-solid isothermal process at different temperatures was investigated. The results reveal that both the temperature and holding time have effect on the grain growth behavior. The grains grow obviously and the degree of globularity increases with the increase of holding time. According to the statistic analysis of experimental data, the grain growth indices are 0.88 and 0.97 at 1 000 ℃ and 1 050 ℃, respectively, which indicates that increasing isothermal temperature would accelerate microstructural evolution.展开更多
The corrosion and tribocorrosion behaviors of AISI 316 stainless steel and Ti6Al4V alloys sliding against Al2O3 in artificial seawater using a pin-on-disk test rig were investigated. And the synergistic effect between...The corrosion and tribocorrosion behaviors of AISI 316 stainless steel and Ti6Al4V alloys sliding against Al2O3 in artificial seawater using a pin-on-disk test rig were investigated. And the synergistic effect between corrosion and wear was emphatically evaluated. The results show that the open circuit potentials of both alloys drop down to more negative value due to friction. The corrosion current densities obtained under tribocorrosion condition are much higher than those under corrosion-only condition. Friction obviously accelerates the corrosion of the alloys. The wear loss for both alloys is larger in seawater than that in pure water. Wear loss is obviously accelerated by corrosion. And AISI 316 stainless steel is less resistant to sliding damage than Ti6Al4V alloy. The synergistic effect between wear and corrosion is a significant factor for the materials loss in tribocorrosion. In this surface-on-surface contact geometry friction system, the material loss is large but the ratio of wear-accelerated-corrosion to the total wear loss is very low.展开更多
A Y2O3 particle enhanced Ni/TiC composite coating was fabricated in-situ on a TC4 Ti alloy by laser surface cladding. The phase component, microstructure, composition distribution and properties of the composite layer...A Y2O3 particle enhanced Ni/TiC composite coating was fabricated in-situ on a TC4 Ti alloy by laser surface cladding. The phase component, microstructure, composition distribution and properties of the composite layer were investigated. The composite layer has graded microstructures and compositions, due to the fast melting followed by rapid solidification and cooling during laser cladding. The TiC powders are completely dissolved into the melted layer during melting and segregated as fine dendrites when solidified. The size of TiC dendrites decreases with increasing depth. Y2O3 fine particles distribute in the whole clad layer. The Y2O3 particle enhanced Ni/TiC composite layer has a quite uniform hardness along depth with a maximum value of HV1380, which is 4 times higher than the initial hardness. The wear resistance of the Ti alloy is significantly improved after laser cladding due to the high hardness of the composite coating.展开更多
To clarify the high temperature flow stress behavior and microstructures evolution of a V-5Cr-5Ti (mass fraction, %) alloy, the isothermal hot compression tests were conducted in the temperature range of 1423-1573 K...To clarify the high temperature flow stress behavior and microstructures evolution of a V-5Cr-5Ti (mass fraction, %) alloy, the isothermal hot compression tests were conducted in the temperature range of 1423-1573 K with strain rates of 0.01, 0.1, and 1 s-1. The results show that the measured flow stress should be revised by friction and the calculated values of friction coefficient m are in the range of 0.45-0.56. Arrhenius-type constitutive equation was developed by regression analysis. The comparison between the experimental and predicted flow stress shows that the R~ and the average absolute relative error (AARE) are 0.948 and 5.44%, respectively. The measured apparent activation energy Qa is in the range of 540-890 kJ/mol. Both dis-continuous dynamic recrystallization (DDRX) and continuous dynamic recrystallization (CDRX) mechanisms are observed in the deformed alloy, but dynamic recovery (DRV) is the dominant softening mechanism up to a true strain of 1.5.展开更多
A detailed investigation for the influence of post weld heat treatment (PWHT) on the microstructure of TC4 and TC17 dissimilar joints was analyzed. The fully transformed microstructure in the as-welded zone indicate...A detailed investigation for the influence of post weld heat treatment (PWHT) on the microstructure of TC4 and TC17 dissimilar joints was analyzed. The fully transformed microstructure in the as-welded zone indicated that the peak temperature exceeded theβ-transus temperature at the weld interface during linear friction welding. TC4 side was mainly composed of martensiteα′phase with random distribution and it was singleβfor that of TC17. In the thermomechanically affected zones of TC4 and TC17, the structure undergoes severe plastic deformation and re-orientation, yet without altering the phase fractions. After PWHT, in the weld zone of TC4 alloy, the phase transformationα′→α+βoccurred and the acicularαwas coarsened, which resulted in a decrease in hardness. In the weld zone of TC17 alloy, fineαphase precipitated at the grain boundary and withinβgrains, which resulted in a sharp increase in hardness.展开更多
The grindability of alloy Ti6AI4V with zireonia alumina and silicon carbide flap wheels, and the effect of process parameters on grinding forces, grinding temperature and surface integrity are studied. The grinding fo...The grindability of alloy Ti6AI4V with zireonia alumina and silicon carbide flap wheels, and the effect of process parameters on grinding forces, grinding temperature and surface integrity are studied. The grinding forces are measured by KISTLER 9265B dynamometer. The grinding temperature response is obtained by NI USB-621X signal collection system. Ground surface morphology and the metallographic structure are observed by the Hirox KN-7700 stereoscopic microcope and the Quanta200 scanning electron microscope (SEM). Surface roughnesses are measured by Mahr Perthometer M1 instrument. The surface microhardnesses are detected by HXS-1000 microhardness tester.展开更多
Based on the experimental data of Ti40 alloy obtained from Gleeble-1500 thermal simulator,an artificial neural network model of high temperature flow stress as a function of strain,strain rate and temperature was esta...Based on the experimental data of Ti40 alloy obtained from Gleeble-1500 thermal simulator,an artificial neural network model of high temperature flow stress as a function of strain,strain rate and temperature was established.In the network model,the input parameters of the model are strain,logarithm strain rate and temperature while flow stress is the output parameter.Multilayer perceptron(MLP) architecture with back-propagation algorithm is utilized.The present study achieves a good performance of the artificial neural network(ANN) model,and the predicted results are in agreement with experimental values.A processing map of Ti40 alloy is obtained with the flow stress predicted by the trained neural network model.The processing map developed by ANN model can efficiently track dynamic recrystallization and flow localization regions of Ti40 alloy during deforming.Subsequently,the safe and instable domains of hot working of Ti40 alloy are identified and validated through microstructural investigations.展开更多
The corrosion resistance of Ti?25Nb?10Ta?1Zr?0.2Fe (mass fraction, %) (TNTZF) alloy in Ringer’s solution at 37 °C was investigated by potentiodynamic polarization measurement. Ti?6Al?4V ELI (Extra low...The corrosion resistance of Ti?25Nb?10Ta?1Zr?0.2Fe (mass fraction, %) (TNTZF) alloy in Ringer’s solution at 37 °C was investigated by potentiodynamic polarization measurement. Ti?6Al?4V ELI (Extra low interstitial) alloy was also investigated to make a comparison. The results show that TNTZF alloy has higher corrosion potential, lower corrosion current density, more stable passive current density and wider passive region compared with Ti–6Al–4V ELI alloy, which indicates that TNTZF alloy has better corrosion resistance. In addition, pitting corrosion is observed on the surface passive film of Ti–6Al–4V ELI alloy but is not found on that of TNTZF alloy. The XPS analysis results reveal that the passive film formed on TNTZF alloy is composed of Nb2O5, NbO2, Ta2O5, ZrO2, TiO and Ti2O3oxides in the matrix of TiO2, which makes the passive film more stable and protective than that formed on Ti?6Al?4V ELI alloy and contributes much to its superior corrosion resistance.展开更多
Lap joints of TC1 Ti alloy and LF6 A1 alloy dissimilar materials were fabricated by friction stir welding and corresponding interface characteristics were investigated. Using the selected welding parameters, excellent...Lap joints of TC1 Ti alloy and LF6 A1 alloy dissimilar materials were fabricated by friction stir welding and corresponding interface characteristics were investigated. Using the selected welding parameters, excellent surface appearance forms, but the interface macrograph for each lap joint cross-section is different. With the increase of welding speed or the decrease of tool rotation rate, the amount of Ti alloy particles stirred into the stir zone by the force of tool pin decreases continuously. Moreover, the failure loads of the lap joints also decrease with increasing welding speed and the largest value is achieved at welding speed of 60 mm/min and tool rotation rate of 1500 r/min, where the interracial zone can be divided into 3 kinds of layers. The microhardness of the lap joint shows an uneven distribution and the maximum hardness of HV 502 is found in the middle of the stir zone.展开更多
Hot deformation behavior of extrusion preform of the spray-formed Al-9.0Mg-0.5Mn-0.1Ti alloy was studied using hot compression tests over deformation temperature range of 300-450 ℃ and strain rate range of 0.01...Hot deformation behavior of extrusion preform of the spray-formed Al-9.0Mg-0.5Mn-0.1Ti alloy was studied using hot compression tests over deformation temperature range of 300-450 ℃ and strain rate range of 0.01-10 s-1. On the basis of experiments and dynamic material model, 2D processing maps and 3D power dissipation maps were developed for identification of exact instability regions and optimization of hot processing parameters. The experimental results indicated that the efficiency factor of energy dissipate (η) lowered to the minimum value when the deformation conditions located at the strain of 0.4, temperature of 300 ° C and strain rate of 1 s-1. The softening mechanism was dynamic recovery, the grain shape was mainly flat, and the portion of high angle grain boundary (〉15°) was 34%. While increasing the deformation temperature to 400 ° C and decreasing the strain rate to 0.1 s-1, a maximum value of η was obtained. It can be found that the main softening mechanism was dynamic recrystallization, the structures were completely recrystallized, and the portion of high angle grain boundary accounted for 86.5%. According to 2D processing maps and 3D power dissipation maps, the optimum processing conditions for the extrusion preform of the spray-formed Al?9.0Mg?0.5Mn?0.1Ti alloy were in the deformation temperature range of 340-450 ° C and the strain rate range of 0.01-0.1 s-1 with the power dissipation efficiency range of 38%?43%.展开更多
In order to optimize the ductility of orthorhombic Ti2AlNb-based alloys sheet,Ti22Al27Nb sheet was treated by high density electropulsing(J max =6.80 7.09 kA/mm2,tp =110 μs) under ambient condition.Microstructures ...In order to optimize the ductility of orthorhombic Ti2AlNb-based alloys sheet,Ti22Al27Nb sheet was treated by high density electropulsing(J max =6.80 7.09 kA/mm2,tp =110 μs) under ambient condition.Microstructures were observed by SEM,and the tensile properties were also studied using uniaxial tension tests.The experimental results show that electropulsing can refine the microstructures of Ti22Al27Nb sheets.The specimen with the fine and homogeneous microstructures has good plasticity,and its elongation reaches 19.4%.The mechanism about the effect of electropulsing treatment on the microstructure of Ti22Al27Nb sheets was discussed.It was thought that the increase in nucleation rate during phase transformation and a very short treating time were regarded as the main reasons of producing smaller grains and increase in the plasticity by electropulsing.展开更多
The microstructures of as-extruded and stabilizing heat-treated Zn-10Al-2Cu-0.02Ti alloys were observed by scanning electron microscopy,transmission electron microscopy,electron probe microanalysis and X-ray diffracti...The microstructures of as-extruded and stabilizing heat-treated Zn-10Al-2Cu-0.02Ti alloys were observed by scanning electron microscopy,transmission electron microscopy,electron probe microanalysis and X-ray diffraction analysis techniques.The change in structure after heat treatment and its effects on room temperature creep behavior were investigated by creep experiments at constant stress and slow strain rate tensile tests.The results show that after stabilizing heat treatment((350℃,30 min,water-cooling)+(100℃,12 h,air-cooling)),the amount of α+η lamellar structure decreases,while the amount of cellular and granular structure increases.The heat-treated Zn-10Al-2Cu-0.02Ti alloy exhibits better creep resistance than the as-extruded alloy,and the rate of steady state creep decreases by 96.9% after stabilizing heat treatment.展开更多
Microstructure and texture evolution during hot compression of Ti6Al4 V alloy with an initial equiaxed microstructure were studied in the temperature range of 850-930 °C, strain rate range of 0.01-1 s-1 and engin...Microstructure and texture evolution during hot compression of Ti6Al4 V alloy with an initial equiaxed microstructure were studied in the temperature range of 850-930 °C, strain rate range of 0.01-1 s-1 and engineering compressive strain of 70%. The results indicate that when temperature is below 900 °C and strain rate is higher than 0.1 s-1, the microstructure is mainly composed of elongated α grains. While deforming at higher temperatures and lower strain rates, dynamic recrystallization takes place. Electron back scattered diffraction(EBSD) result shows that during dynamic recrystallization, subgrain boundaries absorb dislocations and the recrystallized grains with high angle grain boundary form. At 930 °C dynamic recrystallization has basically completed, and needlelike α phase forms after water quenching. Pole figure analysis indicates that compared with the initial specimen, textures below 930 °C are weaker, while at 930 °C they are stronger.展开更多
Alkali treatments with three concentrations were used to modify a microarc-oxidized(MAO) coating on titanium alloy surface in order to further improve its surface bioactivity. Morphology, chemical compositions and pha...Alkali treatments with three concentrations were used to modify a microarc-oxidized(MAO) coating on titanium alloy surface in order to further improve its surface bioactivity. Morphology, chemical compositions and phase constitues, roughness, contact angle and apatite induction of the alkali-treated coatings were studied and compared. Scanning electron microscope(SEM) was applied to observe the morphologies, X-ray diffraction(XRD) and X-ray photoelectron spectroscopy(XPS) were used to detect the phase constitutes and chemical compositions, a surface topography profilometer was used to analyze the surface roughness, and contact angle was measured by liquid drop method. Alkali treatements result in the formation of Na2Ti6O13 and Na2Ti3O7 phase on the MAO coating, which leads to the increase of surface roughness and the decrease of contact angle. Experimental results showed that the apatite induction of the alkali-treated coatings was dependent on the applied alkali concentrations during treatments, and Na+concentration can promote the formation of apatite phase.展开更多
The oxidation behavior of Ti?22Al?(27?x)Nb?xZr (x=0, 1, 6) alloys at 800 °C for exposure time up to 100 h was examined. It is shown that oxidation rate of experimental alloys obeys the parabolic kinetics. Ti?22Al...The oxidation behavior of Ti?22Al?(27?x)Nb?xZr (x=0, 1, 6) alloys at 800 °C for exposure time up to 100 h was examined. It is shown that oxidation rate of experimental alloys obeys the parabolic kinetics. Ti?22Al?26Nb?1Zr alloy demonstrates more excellent oxidation resistance than the other two alloys. The main oxidation products are TiO2, Al2O3 and AlNbO4 phases for all these alloys. For the Ti?22Al?26Nb?1Zr alloy, Zr addition can modify the growth mechanism of oxide scale, which can effectively hinder the diffusion of oxygen. Whereas, reaction of Zr with oxygen leads to the formation of ZrO2 precipitates for the Ti?22Al?21Nb?6Zr alloy, which promotes the oxygen ingress into the substrate. Meanwhile, oxidation affected zones, including internal-oxidation layer and oxygen-enriched zone, are present beneath the outmost oxide scale. The difference in these zones is derived from the phase constitution in the starting Ti?22Al?(27?x)Nb?xZr (x=0, 1, 6) alloys.展开更多
文摘Dear Editor,We read with great interest the article by Tan et al.titled“Accelerated fracture healing by osteogenic Ti45Nb implants through the PI3K-Akt signaling pathway”[1].This research thoroughly examines the bone-forming capabilities of the Ti45Nb alloy.The in vitro studies revealed that the Ti45Nb alloy enhances the osteogenic differentiation of MC3T3-E1 cells more effectively than Ti6Al4V alloy controls,showing no noticeable cytotoxic effects.
基金the Ministry of Science,Technological Development and Innovation of the Republic of Serbia(No.451-03-47/2023-01/200017)the PhD fellowship of Slađana LAKETIĆ.Authors would also like to acknowledge the help of Dr.Anton HOHENWARTER from the Department of Materials Science,Montanuniversitat Leoben,Austria,during the Ti−45Nb alloy microstructural analysis.
文摘The Ti−45Nb(wt.%)alloy properties were investigated in relation to its potential biomedical use.Laser surface modification was utilized to improve its performance in biological systems.As a result of the laser treatment,(Ti,Nb)O scale was formed and various morphological features appeared on the alloy surface.The electrochemical behavior of Ti−45Nb alloy in simulated body conditions was evaluated and showed that the alloy was highly resistant to corrosion deterioration regardless of additional laser surface modification treatment.Nevertheless,the improved corrosion resistance after laser treatment was evident(the corrosion current density of the alloy before laser irradiation was 2.84×10^(−8)A/cm^(2),while that after laser treatment with 5 mJ was 0.65×10^(−8)A/cm^(2))and ascribed to the rapid formation of a complex and passivating bi-modal surface oxide layer.Alloy cytotoxicity and effects of the Ti−45Nb alloy laser surface modification on the MRC-5 cell viability,morphology,and proliferation were also investigated.The Ti−45Nb alloy showed no cytotoxic effect.Moreover,cells showed improved viability and adherence to the alloy surface after the laser irradiation treatment.The highest average cell viability of 115.37%was attained for the alloy laser-irradiated with 15 mJ.Results showed that the laser surface modification can be successfully utilized to significantly improve alloy performance in a biological environment.
基金the National Natural Science Foundation of China(No.52205240).
文摘The effects of laser shock peening(LSP)on the microstructural evolution and mechanical properties of the Ti6242 alloy,including the residual stress,surface roughness,Vickers microhardness,tensile mechanical response,and high-cycle fatigue properties,were studied.The results showed that the LSP induced residual compressive stresses on the surface and near surface of the material.The maximum surface residual compressive stress was−661 MPa,and the compressive-stress-affected depth was greater than 1000μm.The roughness and Vickers micro-hardness increased with the number of shocks,and the maximum hardness-affected depth was about 700μm after three LSP treatments.LSP enhanced the fraction of low-angle grain boundaries,changed the grain preferred orientations,and notably increased the pole density ofαphase on the near surface from 2.41 to 3.46.The surface hardness values of the LSP samples increased with the increase of the number of shocks due to work hardening,while the LSP had a limited effect on the tensile properties.The high-cycle fatigue life of the LSP-treated sample was significantly enhanced by more than 20%compared with that of the untreated sample,which was caused by the suppression of the initiation and propagation of fatigue cracks.
基金financial support from the Science and Technology Development Fund of Egypt (No.5540)。
文摘Integrating titanium-based implants with the surrounding bone tissue remains challenging.This study aims to explore the impact of different anodization voltages(20−80 V)on the surface topography of two-phase(α/β)Ti alloys and to produce TiO_(2) films with enhanced bone formation abilities.Scanning electron microscopy coupled with energy dispersive spectroscopy(SEM−EDS)and atomic force microscopy(AFM)were applied to investigate the morphological,chemical,and surface topography of the prepared alloys and to confirm the growth of hydroxyapatite(HA)on their surfaces.Results disclosed that the surface roughness of TiO_(2) films formed on Ti−6Al−7Nb alloys was superior to that of Ti−6Al−4V alloys.Ti−6Al−7Nb alloy anodized at 80 V had the highest yields of HA after immersion in simulated body fluid with enhanced HA surface coverage.The developed HA layer had a mean thickness of(128.38±18.13)μm,suggesting its potential use as an orthopedic implantable material due to its promising bone integration and,hence,remarkable stability inside the human body.
文摘An efficient and safe hydrogen storage method is one of the important links for the large-scale development of hydrogen in the future. Because of its low price and simple design, Ti-based hydrogen storage alloys are considered to be suitable for practical applications. In this paper, we review the latest research on Ti-based hydrogen storage alloys. Firstly, the machine learning and density functional theory are introduced to provide theoretical guidance for the optimization of Ti-based hydrogen storage alloys. Then, in order to improve the hydrogen storage performance, we briefly introduce the research of AB type and AB2 type Ti-based alloys, focusing on doping elements and adaptive after treatment. Finally, suggestions for the future research and development of Ti-based hydrogen storage alloys are proposed. .
基金Projects (2005CCA06400, 2007CB613807) supported by the National Basic Research Program of China Project (CHD2010JC115) supported by the Special Fund for Basic Scientific Research of Central Colleges,China
文摘Microstructure evolution of Ti14 (α+Ti2Cu) alloy during semi-solid isothermal process at different temperatures was investigated. The results reveal that both the temperature and holding time have effect on the grain growth behavior. The grains grow obviously and the degree of globularity increases with the increase of holding time. According to the statistic analysis of experimental data, the grain growth indices are 0.88 and 0.97 at 1 000 ℃ and 1 050 ℃, respectively, which indicates that increasing isothermal temperature would accelerate microstructural evolution.
基金Project (LSL-1310) supported by the Open Project of State Key Laboratory of Solid Lubrication,Collaborative Innovation Center of Nonferrous Metals of Henan Province,ChinaProject (51171059) supported by the National Natural Science Foundation of China
文摘The corrosion and tribocorrosion behaviors of AISI 316 stainless steel and Ti6Al4V alloys sliding against Al2O3 in artificial seawater using a pin-on-disk test rig were investigated. And the synergistic effect between corrosion and wear was emphatically evaluated. The results show that the open circuit potentials of both alloys drop down to more negative value due to friction. The corrosion current densities obtained under tribocorrosion condition are much higher than those under corrosion-only condition. Friction obviously accelerates the corrosion of the alloys. The wear loss for both alloys is larger in seawater than that in pure water. Wear loss is obviously accelerated by corrosion. And AISI 316 stainless steel is less resistant to sliding damage than Ti6Al4V alloy. The synergistic effect between wear and corrosion is a significant factor for the materials loss in tribocorrosion. In this surface-on-surface contact geometry friction system, the material loss is large but the ratio of wear-accelerated-corrosion to the total wear loss is very low.
基金Projects (51101096, 51002093) supported by the National Natural Science Foundation of ChinaProject (1052nm05000) supported by Special Foundation of the Shanghai Science and Technology Commission for Nano-Materials ResearchProject (J51042) supported by Leading Academic Discipline Project of the Shanghai Education Commission, China
文摘A Y2O3 particle enhanced Ni/TiC composite coating was fabricated in-situ on a TC4 Ti alloy by laser surface cladding. The phase component, microstructure, composition distribution and properties of the composite layer were investigated. The composite layer has graded microstructures and compositions, due to the fast melting followed by rapid solidification and cooling during laser cladding. The TiC powders are completely dissolved into the melted layer during melting and segregated as fine dendrites when solidified. The size of TiC dendrites decreases with increasing depth. Y2O3 fine particles distribute in the whole clad layer. The Y2O3 particle enhanced Ni/TiC composite layer has a quite uniform hardness along depth with a maximum value of HV1380, which is 4 times higher than the initial hardness. The wear resistance of the Ti alloy is significantly improved after laser cladding due to the high hardness of the composite coating.
基金Project(11105127) supported by the National Natural Science Foundation of China
文摘To clarify the high temperature flow stress behavior and microstructures evolution of a V-5Cr-5Ti (mass fraction, %) alloy, the isothermal hot compression tests were conducted in the temperature range of 1423-1573 K with strain rates of 0.01, 0.1, and 1 s-1. The results show that the measured flow stress should be revised by friction and the calculated values of friction coefficient m are in the range of 0.45-0.56. Arrhenius-type constitutive equation was developed by regression analysis. The comparison between the experimental and predicted flow stress shows that the R~ and the average absolute relative error (AARE) are 0.948 and 5.44%, respectively. The measured apparent activation energy Qa is in the range of 540-890 kJ/mol. Both dis-continuous dynamic recrystallization (DDRX) and continuous dynamic recrystallization (CDRX) mechanisms are observed in the deformed alloy, but dynamic recovery (DRV) is the dominant softening mechanism up to a true strain of 1.5.
文摘A detailed investigation for the influence of post weld heat treatment (PWHT) on the microstructure of TC4 and TC17 dissimilar joints was analyzed. The fully transformed microstructure in the as-welded zone indicated that the peak temperature exceeded theβ-transus temperature at the weld interface during linear friction welding. TC4 side was mainly composed of martensiteα′phase with random distribution and it was singleβfor that of TC17. In the thermomechanically affected zones of TC4 and TC17, the structure undergoes severe plastic deformation and re-orientation, yet without altering the phase fractions. After PWHT, in the weld zone of TC4 alloy, the phase transformationα′→α+βoccurred and the acicularαwas coarsened, which resulted in a decrease in hardness. In the weld zone of TC17 alloy, fineαphase precipitated at the grain boundary and withinβgrains, which resulted in a sharp increase in hardness.
基金Supported by the Natural Science Foundation of Jiangsu Province (BK2006723)New Century Ex-cellent Talents in University from Ministry of Education of China (NCET-07-0435)~~
文摘The grindability of alloy Ti6AI4V with zireonia alumina and silicon carbide flap wheels, and the effect of process parameters on grinding forces, grinding temperature and surface integrity are studied. The grinding forces are measured by KISTLER 9265B dynamometer. The grinding temperature response is obtained by NI USB-621X signal collection system. Ground surface morphology and the metallographic structure are observed by the Hirox KN-7700 stereoscopic microcope and the Quanta200 scanning electron microscope (SEM). Surface roughnesses are measured by Mahr Perthometer M1 instrument. The surface microhardnesses are detected by HXS-1000 microhardness tester.
基金Project(2007CB613807)supported by the National Basic Research Program of ChinaProject(NCET-07-0696)supported by the New Century Excellent Talents in University,ChinaProject(35-TP-2009)supported by the Fund of the State Key Laboratory of Solidification Processing in Northwestern Polytechnical University,China
文摘Based on the experimental data of Ti40 alloy obtained from Gleeble-1500 thermal simulator,an artificial neural network model of high temperature flow stress as a function of strain,strain rate and temperature was established.In the network model,the input parameters of the model are strain,logarithm strain rate and temperature while flow stress is the output parameter.Multilayer perceptron(MLP) architecture with back-propagation algorithm is utilized.The present study achieves a good performance of the artificial neural network(ANN) model,and the predicted results are in agreement with experimental values.A processing map of Ti40 alloy is obtained with the flow stress predicted by the trained neural network model.The processing map developed by ANN model can efficiently track dynamic recrystallization and flow localization regions of Ti40 alloy during deforming.Subsequently,the safe and instable domains of hot working of Ti40 alloy are identified and validated through microstructural investigations.
基金Project(51401175)supported by the National Natural Science Foundation of ChinaProject(13C902)supported by the Scientific Research Fund of Education Department of Hunan Province,ChinaProject(2015JJ3123)supported by the Natural Science Foundation of Hunan Province,China
文摘The corrosion resistance of Ti?25Nb?10Ta?1Zr?0.2Fe (mass fraction, %) (TNTZF) alloy in Ringer’s solution at 37 °C was investigated by potentiodynamic polarization measurement. Ti?6Al?4V ELI (Extra low interstitial) alloy was also investigated to make a comparison. The results show that TNTZF alloy has higher corrosion potential, lower corrosion current density, more stable passive current density and wider passive region compared with Ti–6Al–4V ELI alloy, which indicates that TNTZF alloy has better corrosion resistance. In addition, pitting corrosion is observed on the surface passive film of Ti–6Al–4V ELI alloy but is not found on that of TNTZF alloy. The XPS analysis results reveal that the passive film formed on TNTZF alloy is composed of Nb2O5, NbO2, Ta2O5, ZrO2, TiO and Ti2O3oxides in the matrix of TiO2, which makes the passive film more stable and protective than that formed on Ti?6Al?4V ELI alloy and contributes much to its superior corrosion resistance.
基金Project (2011BAB206006) supported by the Natural Science Foundation of Jiangxi Province,ChinaProject (2009ZE56011) supported by the Aviation Science Funds of ChinaProject (GJJ12411) supported by the Education Department of Jiangxi Province,China
文摘Lap joints of TC1 Ti alloy and LF6 A1 alloy dissimilar materials were fabricated by friction stir welding and corresponding interface characteristics were investigated. Using the selected welding parameters, excellent surface appearance forms, but the interface macrograph for each lap joint cross-section is different. With the increase of welding speed or the decrease of tool rotation rate, the amount of Ti alloy particles stirred into the stir zone by the force of tool pin decreases continuously. Moreover, the failure loads of the lap joints also decrease with increasing welding speed and the largest value is achieved at welding speed of 60 mm/min and tool rotation rate of 1500 r/min, where the interracial zone can be divided into 3 kinds of layers. The microhardness of the lap joint shows an uneven distribution and the maximum hardness of HV 502 is found in the middle of the stir zone.
基金Project(51301065)supported by the National Natural Science Foundation of ChinaProject(15B063)supported by the Youth Research Foundation of Education Bureau of Hunan Province,China
文摘Hot deformation behavior of extrusion preform of the spray-formed Al-9.0Mg-0.5Mn-0.1Ti alloy was studied using hot compression tests over deformation temperature range of 300-450 ℃ and strain rate range of 0.01-10 s-1. On the basis of experiments and dynamic material model, 2D processing maps and 3D power dissipation maps were developed for identification of exact instability regions and optimization of hot processing parameters. The experimental results indicated that the efficiency factor of energy dissipate (η) lowered to the minimum value when the deformation conditions located at the strain of 0.4, temperature of 300 ° C and strain rate of 1 s-1. The softening mechanism was dynamic recovery, the grain shape was mainly flat, and the portion of high angle grain boundary (〉15°) was 34%. While increasing the deformation temperature to 400 ° C and decreasing the strain rate to 0.1 s-1, a maximum value of η was obtained. It can be found that the main softening mechanism was dynamic recrystallization, the structures were completely recrystallized, and the portion of high angle grain boundary accounted for 86.5%. According to 2D processing maps and 3D power dissipation maps, the optimum processing conditions for the extrusion preform of the spray-formed Al?9.0Mg?0.5Mn?0.1Ti alloy were in the deformation temperature range of 340-450 ° C and the strain rate range of 0.01-0.1 s-1 with the power dissipation efficiency range of 38%?43%.
基金Project(50875061) supported by the National Natural Science Foundation of ChinaProject(20092302110016) supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘In order to optimize the ductility of orthorhombic Ti2AlNb-based alloys sheet,Ti22Al27Nb sheet was treated by high density electropulsing(J max =6.80 7.09 kA/mm2,tp =110 μs) under ambient condition.Microstructures were observed by SEM,and the tensile properties were also studied using uniaxial tension tests.The experimental results show that electropulsing can refine the microstructures of Ti22Al27Nb sheets.The specimen with the fine and homogeneous microstructures has good plasticity,and its elongation reaches 19.4%.The mechanism about the effect of electropulsing treatment on the microstructure of Ti22Al27Nb sheets was discussed.It was thought that the increase in nucleation rate during phase transformation and a very short treating time were regarded as the main reasons of producing smaller grains and increase in the plasticity by electropulsing.
基金Project(2009BAE71B00) supported by the National Key Technology R&D Program during the Eleventh Five-Year Plan Period
文摘The microstructures of as-extruded and stabilizing heat-treated Zn-10Al-2Cu-0.02Ti alloys were observed by scanning electron microscopy,transmission electron microscopy,electron probe microanalysis and X-ray diffraction analysis techniques.The change in structure after heat treatment and its effects on room temperature creep behavior were investigated by creep experiments at constant stress and slow strain rate tensile tests.The results show that after stabilizing heat treatment((350℃,30 min,water-cooling)+(100℃,12 h,air-cooling)),the amount of α+η lamellar structure decreases,while the amount of cellular and granular structure increases.The heat-treated Zn-10Al-2Cu-0.02Ti alloy exhibits better creep resistance than the as-extruded alloy,and the rate of steady state creep decreases by 96.9% after stabilizing heat treatment.
基金Projects(51071122,51271147)supported by the National Natural Science Foundation of ChinaProject(B08040)supported by Program of Introducing Talents of Discipline to Universities("111"Project),China
文摘Microstructure and texture evolution during hot compression of Ti6Al4 V alloy with an initial equiaxed microstructure were studied in the temperature range of 850-930 °C, strain rate range of 0.01-1 s-1 and engineering compressive strain of 70%. The results indicate that when temperature is below 900 °C and strain rate is higher than 0.1 s-1, the microstructure is mainly composed of elongated α grains. While deforming at higher temperatures and lower strain rates, dynamic recrystallization takes place. Electron back scattered diffraction(EBSD) result shows that during dynamic recrystallization, subgrain boundaries absorb dislocations and the recrystallized grains with high angle grain boundary form. At 930 °C dynamic recrystallization has basically completed, and needlelike α phase forms after water quenching. Pole figure analysis indicates that compared with the initial specimen, textures below 930 °C are weaker, while at 930 °C they are stronger.
基金Projects(51172050,51102060,51302050)supported by the National Natural Science Foundation of ChinaProject(HIT.ICRST.2010009)supported by the Fundamental Research Funds for Central Universities,ChinaProject(HIT.NSRIF.2014129)supported by the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology,China
文摘Alkali treatments with three concentrations were used to modify a microarc-oxidized(MAO) coating on titanium alloy surface in order to further improve its surface bioactivity. Morphology, chemical compositions and phase constitues, roughness, contact angle and apatite induction of the alkali-treated coatings were studied and compared. Scanning electron microscope(SEM) was applied to observe the morphologies, X-ray diffraction(XRD) and X-ray photoelectron spectroscopy(XPS) were used to detect the phase constitutes and chemical compositions, a surface topography profilometer was used to analyze the surface roughness, and contact angle was measured by liquid drop method. Alkali treatements result in the formation of Na2Ti6O13 and Na2Ti3O7 phase on the MAO coating, which leads to the increase of surface roughness and the decrease of contact angle. Experimental results showed that the apatite induction of the alkali-treated coatings was dependent on the applied alkali concentrations during treatments, and Na+concentration can promote the formation of apatite phase.
基金Project(2011CB605503)supported by the National Basic Research Program of China
文摘The oxidation behavior of Ti?22Al?(27?x)Nb?xZr (x=0, 1, 6) alloys at 800 °C for exposure time up to 100 h was examined. It is shown that oxidation rate of experimental alloys obeys the parabolic kinetics. Ti?22Al?26Nb?1Zr alloy demonstrates more excellent oxidation resistance than the other two alloys. The main oxidation products are TiO2, Al2O3 and AlNbO4 phases for all these alloys. For the Ti?22Al?26Nb?1Zr alloy, Zr addition can modify the growth mechanism of oxide scale, which can effectively hinder the diffusion of oxygen. Whereas, reaction of Zr with oxygen leads to the formation of ZrO2 precipitates for the Ti?22Al?21Nb?6Zr alloy, which promotes the oxygen ingress into the substrate. Meanwhile, oxidation affected zones, including internal-oxidation layer and oxygen-enriched zone, are present beneath the outmost oxide scale. The difference in these zones is derived from the phase constitution in the starting Ti?22Al?(27?x)Nb?xZr (x=0, 1, 6) alloys.