A novel aqueous route for the synthesis of high-quality CdTe nanocrystals(NCs) is presented in this article. With both glutathione(GSH) and cysteine[n(GSH):n(cysteine)=1:3] as stabilizers, high-quality CdTe ...A novel aqueous route for the synthesis of high-quality CdTe nanocrystals(NCs) is presented in this article. With both glutathione(GSH) and cysteine[n(GSH):n(cysteine)=1:3] as stabilizers, high-quality CdTe NCs with controllable photoluminescence(PL) wavelength from 500 to 630 nm can be prepared within 4 h. As-prepared CdTe NCs show higher photoluminescence quantum yields(PLQY) compared with CdTe NCs prepared via other aqueous methods. When the fluorescent emission peak appeared in orange-red window, the PLQY reaches 70% or above at room temperature without any post-preparative treatment.展开更多
One of the strategies to tune current-voltage behaviors in organic diodes is to combine field-induced charge transfer processes with schottky barrier.According to this principle,a rectifying diode with hysteresis effe...One of the strategies to tune current-voltage behaviors in organic diodes is to combine field-induced charge transfer processes with schottky barrier.According to this principle,a rectifying diode with hysteresis effect was fabricated utilizing a hybrid of electroactive polystyrene derivative covalently tethered with electron-donor carbazole moieties and electrostatic linked with electron-acceptor CdTe nanocrystals.Current-voltage characteristics show an electrical switching behavior with some hysteresis is only observed under a negative bias,with three orders of On/Off current ratio.The hybrid material based rectifier exhibits a rectification ratio of six and its maximum rectified output current is about 5 × 10-5 A.The asymmetric switching is interpreted as the result of both field induced charge transfer and schottky barrier,capable of reducing the misreading of cross-bar memory.Meanwhile,chemical doping of CdTe nanocrystals instead of physical blend favor their uniform dispersion in matrix and stable operation of device.展开更多
Water-soluble cadmium telluride (CdTe) nanocrystals were synthesized in aqueous solution with thioglycolic acid (TGA) molecules as a stabilizer. A series of TGA-stabilized CdTe nanocrystals were prepared using sod...Water-soluble cadmium telluride (CdTe) nanocrystals were synthesized in aqueous solution with thioglycolic acid (TGA) molecules as a stabilizer. A series of TGA-stabilized CdTe nanocrystals were prepared using sodium tellurite as a tellurium source, which avoids the cumbersome processes associated with H2Te or NaHTe sources. The synthesized TGA-stabilized CdTe were characterized with X-ray diffraction, TEM and fluorescence spectrophotometer. The particles crystallized predominantly in cubic phase with narrow photoluminescence emission. The effects of reaction time, pH value, and precursor concentration on the photoluminescence properties were investigated in detail.展开更多
Thioglycolic acid(TGA)-stabilized CdTe nanocrystals(NCs) were prepared with sodium tellurite as tellurium source,which avoids the cumbersome processes associated with H2Te or NaHTe sources.Fluorescent CdTe/SiO2 co...Thioglycolic acid(TGA)-stabilized CdTe nanocrystals(NCs) were prepared with sodium tellurite as tellurium source,which avoids the cumbersome processes associated with H2Te or NaHTe sources.Fluorescent CdTe/SiO2 composites were synthesized by a sol-gel method without the exchange of surface ligands.The phase structure of CdTe NCs was investigated by X-ray diffractometry.For comparison,some characterizations were done for both the CdTe NCs and the composites.CdTe NCs and CdTe/SiO2 composites were characterized with TEM,digital camera and fluorescence spectrophotometer.The stability of CdTe NCs and the composites were investigated in phosphate-buffered saline(PBS) buffer and the fluorescent properties of the composites were discussed in detail.展开更多
Novel CdTe/CdS quantum dots(QDs)coated with a hybrid of SiO_2 and ZnS were fabricated through a simple two-step approach.The hybrid SiO_2/ZnS coated CdTe/CdS quantum dots was characterized by transmission electron mic...Novel CdTe/CdS quantum dots(QDs)coated with a hybrid of SiO_2 and ZnS were fabricated through a simple two-step approach.The hybrid SiO_2/ZnS coated CdTe/CdS quantum dots was characterized by transmission electron microscopy(TEM),UV and fluorescence spectrometer.Results indicated that the core-shell structure gave the QDs outstanding photoluminescence properties,includinganarrowphotoluminescencespectrum,high photoluminescence(PL)quantum yield and long emission lifetime(average PL lifetime of increased from 26.4 ns to 49.1 ns).Cellular studies showed the QDs had good cytocompatibility with Hela cells as determined by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide(MTT)assay after coating SiO_2/ZnS,and also proved the feasibility of using the hybrid SiO_2/ZnS coated QDs as optical probes for in vitro cell imaging.The synthesis method of QDs is highly promising for the production of robust and functional optical probes for bio-imaging and sensing applications.展开更多
Eu3+ doped-CdTe(CdTe:Eu3+)nanocrystals were prepared via a facile hydrothermal method,and Eu3+ was successfully incorporated into the crystal lattice of CdTe and measured by X-ray powder diffraction(XRD),transmission ...Eu3+ doped-CdTe(CdTe:Eu3+)nanocrystals were prepared via a facile hydrothermal method,and Eu3+ was successfully incorporated into the crystal lattice of CdTe and measured by X-ray powder diffraction(XRD),transmission electron microscopy(TEM),ultraviolet-visible(UV-Vis) absorption spectroscopy and fluorescence emission.The CdTe:Eu^3+ nanocrystals still have a cubic crystal structure,and the corresponding XRD peaks of CdTe:Eu3+nanocrystals shift to larger angles compared with those of pure CdTe.The CdTe:Eu3+ nanocrystals are monodisperse and the particles size is about 2-4 nm.Compared with pure CdTe,the CdTe:Eu^3+ nanocrystals have larger band gap and thus exhibit blueshift in the emission spectra,which could be accounted for by the energy transfer between Eu^3+ and CdTe.To enhance the stability and functionality of CdTe:Eu3+nanocrystals,the CdTe:Eu3+nanocrystals were coated with SiO2 and the core-shell SiO2-coated CdTe:Eu3+nanocrystals(CdTe:Eu^3+@SiO2) were prepared via microemulsion method.TEM results show that CdTe:Eu3+nanocrystals are uniformly dispersed in the shell,and CdTe:Eu3+@SiO2 nanospheres are uniformly spherical with an average diameter of about 75 nm.The fluorescence emission of CdTe:Eu3+@SiO2(567 nm) shows a blueshift compared with that of CdTe:Eu^3+nanocrystals(632 nm),possibly because of altered surface properties after SiO2 coating.CdTe:Eu^3+and CdTe:Eu^3+@SiO2 with tunable photoluminescence are potentially useful in fabricating optical and bioimaging devices.展开更多
基金National Key Technologies Research & Development Program of China(No.2006BAK03A09)National Basic Research Program of China(No.2007CB714503)Science and Technology Development Program of Jilin Pro- vince(No.20060706)
文摘A novel aqueous route for the synthesis of high-quality CdTe nanocrystals(NCs) is presented in this article. With both glutathione(GSH) and cysteine[n(GSH):n(cysteine)=1:3] as stabilizers, high-quality CdTe NCs with controllable photoluminescence(PL) wavelength from 500 to 630 nm can be prepared within 4 h. As-prepared CdTe NCs show higher photoluminescence quantum yields(PLQY) compared with CdTe NCs prepared via other aqueous methods. When the fluorescent emission peak appeared in orange-red window, the PLQY reaches 70% or above at room temperature without any post-preparative treatment.
基金supported by the National Basic Research Pro-gram of China (973 projeet) (2009CB930600)National Natural Science Foundation of China (Grants 90406021,20704023,60876010,60706017,and 20774043)+3 种基金the Key Project of Chinese Ministry of Education (No. 104246, 208050, 707032, NCET-07-0446)the NSF of Jiangsu Province (Grants BK2008053, 08KJB510013, SJ209003and TJ207035)Research Fund for Postgraduate Innovation Project of Jiangsu Province (No. CX08B_083Z)STITP (No. 2009120)
文摘One of the strategies to tune current-voltage behaviors in organic diodes is to combine field-induced charge transfer processes with schottky barrier.According to this principle,a rectifying diode with hysteresis effect was fabricated utilizing a hybrid of electroactive polystyrene derivative covalently tethered with electron-donor carbazole moieties and electrostatic linked with electron-acceptor CdTe nanocrystals.Current-voltage characteristics show an electrical switching behavior with some hysteresis is only observed under a negative bias,with three orders of On/Off current ratio.The hybrid material based rectifier exhibits a rectification ratio of six and its maximum rectified output current is about 5 × 10-5 A.The asymmetric switching is interpreted as the result of both field induced charge transfer and schottky barrier,capable of reducing the misreading of cross-bar memory.Meanwhile,chemical doping of CdTe nanocrystals instead of physical blend favor their uniform dispersion in matrix and stable operation of device.
文摘Water-soluble cadmium telluride (CdTe) nanocrystals were synthesized in aqueous solution with thioglycolic acid (TGA) molecules as a stabilizer. A series of TGA-stabilized CdTe nanocrystals were prepared using sodium tellurite as a tellurium source, which avoids the cumbersome processes associated with H2Te or NaHTe sources. The synthesized TGA-stabilized CdTe were characterized with X-ray diffraction, TEM and fluorescence spectrophotometer. The particles crystallized predominantly in cubic phase with narrow photoluminescence emission. The effects of reaction time, pH value, and precursor concentration on the photoluminescence properties were investigated in detail.
文摘Thioglycolic acid(TGA)-stabilized CdTe nanocrystals(NCs) were prepared with sodium tellurite as tellurium source,which avoids the cumbersome processes associated with H2Te or NaHTe sources.Fluorescent CdTe/SiO2 composites were synthesized by a sol-gel method without the exchange of surface ligands.The phase structure of CdTe NCs was investigated by X-ray diffractometry.For comparison,some characterizations were done for both the CdTe NCs and the composites.CdTe NCs and CdTe/SiO2 composites were characterized with TEM,digital camera and fluorescence spectrophotometer.The stability of CdTe NCs and the composites were investigated in phosphate-buffered saline(PBS) buffer and the fluorescent properties of the composites were discussed in detail.
基金The Fundamental Research Funds for the Central Universities,China(No.2232015D3-15)Shanghai Natural Science Foundation,China(No.14ZR1401300)“111 Project”Biomedical Textile Materials Science and Technology,China(No.B07024)
文摘Novel CdTe/CdS quantum dots(QDs)coated with a hybrid of SiO_2 and ZnS were fabricated through a simple two-step approach.The hybrid SiO_2/ZnS coated CdTe/CdS quantum dots was characterized by transmission electron microscopy(TEM),UV and fluorescence spectrometer.Results indicated that the core-shell structure gave the QDs outstanding photoluminescence properties,includinganarrowphotoluminescencespectrum,high photoluminescence(PL)quantum yield and long emission lifetime(average PL lifetime of increased from 26.4 ns to 49.1 ns).Cellular studies showed the QDs had good cytocompatibility with Hela cells as determined by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide(MTT)assay after coating SiO_2/ZnS,and also proved the feasibility of using the hybrid SiO_2/ZnS coated QDs as optical probes for in vitro cell imaging.The synthesis method of QDs is highly promising for the production of robust and functional optical probes for bio-imaging and sensing applications.
基金financially supported by the National Natural Science Foundation of China (No.21364007)the Natural Science Foundation of Inner Mongolia (No.2016MS0201)the Program for Young Talents of Science and Technology of Baotou Teachers College (No.01135003)
文摘Eu3+ doped-CdTe(CdTe:Eu3+)nanocrystals were prepared via a facile hydrothermal method,and Eu3+ was successfully incorporated into the crystal lattice of CdTe and measured by X-ray powder diffraction(XRD),transmission electron microscopy(TEM),ultraviolet-visible(UV-Vis) absorption spectroscopy and fluorescence emission.The CdTe:Eu^3+ nanocrystals still have a cubic crystal structure,and the corresponding XRD peaks of CdTe:Eu3+nanocrystals shift to larger angles compared with those of pure CdTe.The CdTe:Eu3+ nanocrystals are monodisperse and the particles size is about 2-4 nm.Compared with pure CdTe,the CdTe:Eu^3+ nanocrystals have larger band gap and thus exhibit blueshift in the emission spectra,which could be accounted for by the energy transfer between Eu^3+ and CdTe.To enhance the stability and functionality of CdTe:Eu3+nanocrystals,the CdTe:Eu3+nanocrystals were coated with SiO2 and the core-shell SiO2-coated CdTe:Eu3+nanocrystals(CdTe:Eu^3+@SiO2) were prepared via microemulsion method.TEM results show that CdTe:Eu3+nanocrystals are uniformly dispersed in the shell,and CdTe:Eu3+@SiO2 nanospheres are uniformly spherical with an average diameter of about 75 nm.The fluorescence emission of CdTe:Eu3+@SiO2(567 nm) shows a blueshift compared with that of CdTe:Eu^3+nanocrystals(632 nm),possibly because of altered surface properties after SiO2 coating.CdTe:Eu^3+and CdTe:Eu^3+@SiO2 with tunable photoluminescence are potentially useful in fabricating optical and bioimaging devices.