The structure and characteristics of CdTe thin filrns are closely dependent on the whole deposition process in close-space sublimation (CSS). The physical mechanism of CSS was analyzed aud the temperature distributi...The structure and characteristics of CdTe thin filrns are closely dependent on the whole deposition process in close-space sublimation (CSS). The physical mechanism of CSS was analyzed aud the temperature distribution in CSS system was measured, and the influences of the increasing-temperature process and pressure on the preliminary nucleus creation were studied. The resuits indicate : tire samples deposited at different pressures hare a cubical structure of CdTe and the diffraction peaks of CdS and SnO2 : F. As the atmosphere pressure increases, the crystal size of CdTe decreases, the rate of the transparency of the thin film decreases and the absorption side moves towards the short-wave direction. After a 4-minute depositing process with a substrate teraw.rature of 500℃ and a source temperature of 620 ℃, the polycostallinc thin films can be mmade , so the production of high-quality integrated cell with StrO2: F/ CdS/ CdTe/ Au structure is hopeful.展开更多
Silicon solar cells continue to dominate the market,due to the abundance of silicon and their acceptable efficiency.The heterojunction with intrinsic thin layer(HIT)structure is now the dominant technology.Increasing ...Silicon solar cells continue to dominate the market,due to the abundance of silicon and their acceptable efficiency.The heterojunction with intrinsic thin layer(HIT)structure is now the dominant technology.Increasing the efficiency of these cells could expand the development choices for HIT solar cells.We presented a detailed investigation of the emitter a-Si:H(n)lay-er of a p-type bifacial HIT solar cell in terms of characteristic parameters which include layer doping concentration,thickness,band gap width,electron affinity,hole mobility,and so on.Solar cell composition:(ZnO/nc-Si:H(n)/a-Si:H(i)/c-Si(p)/a-Si:H(i)/nc-Si:H(p)/ZnO).The results reveal optimal values for the investigated parameters,for which the highest computed efficiency is 26.45%when lighted from the top only and 21.21%when illuminated from the back only.展开更多
CdS/CdTe solar cells with ZnTe/ZnTe: Cu buffer layers were fabricated and studied. The energy band structure of it was analyzed. The C-V, I-V characteristics and the spectral response show that the ZnTe/ZnTe:Cu buff...CdS/CdTe solar cells with ZnTe/ZnTe: Cu buffer layers were fabricated and studied. The energy band structure of it was analyzed. The C-V, I-V characteristics and the spectral response show that the ZnTe/ZnTe:Cu buffer layers improve the back contact characteristic properties, the diode characteristics of the forward junction and the short-wave spectral response of the CdTe solar cells. The ZnTe/ZnTe-Cu buffer layers affect the solar cell conversion efficiencv and its fill factor.展开更多
The photovoltaic performance (efficiency η) of an ITO/CdS/CdTe structure cell is studied in this article according to its electrical properties. The study is carried out by simulation with SCAPS (Solar Cell Capacitan...The photovoltaic performance (efficiency η) of an ITO/CdS/CdTe structure cell is studied in this article according to its electrical properties. The study is carried out by simulation with SCAPS (Solar Cell Capacitance Simulator) whose mathematical model is based on solving the equations of Poisson and continuity of electrons and holes. An electrical conversion efficiency of 23.58% is obtained by optimizing the mobility of the electrons (100 cm2/Vs), that of the holes (25 cm2/Vs), the density of electrons (1015 cm-3), the density of the effective states in the conduction band (7.9 × 1017 cm-3) and the electronic affinity (3.85 eV) of the CdTe absorbent layer.展开更多
We present a detailed study on CuxS polycrystalline thin films prepared by chemical bath method and utilized as back contact material for CdTe solar cells.The characteristics of the films deposited on Si-substrate are...We present a detailed study on CuxS polycrystalline thin films prepared by chemical bath method and utilized as back contact material for CdTe solar cells.The characteristics of the films deposited on Si-substrate are studied by XRD.The results show that as-deposited CuxS thin film is in an amorphous phase while after annealing,samples are in polycrystalline phases with increasing temperature.The thickness of CuxS thin films has great impact on the performance of CdS/CdTe solar cells.When the thickness of the film is about 75 nm the performance of CdS/CdTe thin film solar cells is found to be the best.The energy conversion efficiency can be higher than 12.19%,the filling factor is higher than 68.82% and the open-circuit voltage is more than 820 mV.展开更多
文摘The structure and characteristics of CdTe thin filrns are closely dependent on the whole deposition process in close-space sublimation (CSS). The physical mechanism of CSS was analyzed aud the temperature distribution in CSS system was measured, and the influences of the increasing-temperature process and pressure on the preliminary nucleus creation were studied. The resuits indicate : tire samples deposited at different pressures hare a cubical structure of CdTe and the diffraction peaks of CdS and SnO2 : F. As the atmosphere pressure increases, the crystal size of CdTe decreases, the rate of the transparency of the thin film decreases and the absorption side moves towards the short-wave direction. After a 4-minute depositing process with a substrate teraw.rature of 500℃ and a source temperature of 620 ℃, the polycostallinc thin films can be mmade , so the production of high-quality integrated cell with StrO2: F/ CdS/ CdTe/ Au structure is hopeful.
文摘Silicon solar cells continue to dominate the market,due to the abundance of silicon and their acceptable efficiency.The heterojunction with intrinsic thin layer(HIT)structure is now the dominant technology.Increasing the efficiency of these cells could expand the development choices for HIT solar cells.We presented a detailed investigation of the emitter a-Si:H(n)lay-er of a p-type bifacial HIT solar cell in terms of characteristic parameters which include layer doping concentration,thickness,band gap width,electron affinity,hole mobility,and so on.Solar cell composition:(ZnO/nc-Si:H(n)/a-Si:H(i)/c-Si(p)/a-Si:H(i)/nc-Si:H(p)/ZnO).The results reveal optimal values for the investigated parameters,for which the highest computed efficiency is 26.45%when lighted from the top only and 21.21%when illuminated from the back only.
基金the High Technology Research and Development Programme of China(No.2003AA513010)the National Natural Science Foundation of China(No.50079030).
文摘CdS/CdTe solar cells with ZnTe/ZnTe: Cu buffer layers were fabricated and studied. The energy band structure of it was analyzed. The C-V, I-V characteristics and the spectral response show that the ZnTe/ZnTe:Cu buffer layers improve the back contact characteristic properties, the diode characteristics of the forward junction and the short-wave spectral response of the CdTe solar cells. The ZnTe/ZnTe-Cu buffer layers affect the solar cell conversion efficiencv and its fill factor.
文摘The photovoltaic performance (efficiency η) of an ITO/CdS/CdTe structure cell is studied in this article according to its electrical properties. The study is carried out by simulation with SCAPS (Solar Cell Capacitance Simulator) whose mathematical model is based on solving the equations of Poisson and continuity of electrons and holes. An electrical conversion efficiency of 23.58% is obtained by optimizing the mobility of the electrons (100 cm2/Vs), that of the holes (25 cm2/Vs), the density of electrons (1015 cm-3), the density of the effective states in the conduction band (7.9 × 1017 cm-3) and the electronic affinity (3.85 eV) of the CdTe absorbent layer.
文摘We present a detailed study on CuxS polycrystalline thin films prepared by chemical bath method and utilized as back contact material for CdTe solar cells.The characteristics of the films deposited on Si-substrate are studied by XRD.The results show that as-deposited CuxS thin film is in an amorphous phase while after annealing,samples are in polycrystalline phases with increasing temperature.The thickness of CuxS thin films has great impact on the performance of CdS/CdTe solar cells.When the thickness of the film is about 75 nm the performance of CdS/CdTe thin film solar cells is found to be the best.The energy conversion efficiency can be higher than 12.19%,the filling factor is higher than 68.82% and the open-circuit voltage is more than 820 mV.