A series of single-composition emission-tunable CdWO4:Eu^3+ uniform size nanorods were synthesized by polyvinylpyrrolidone(PVP) assisted hydrothermal process. The products were measured by powder X-ray diffraction...A series of single-composition emission-tunable CdWO4:Eu^3+ uniform size nanorods were synthesized by polyvinylpyrrolidone(PVP) assisted hydrothermal process. The products were measured by powder X-ray diffraction(PXRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM), photoluminescence, and fluorescent decay test. The results showed that reaction time, temperature, p H values and Eu^3+ doped concentration played important roles in determining the morphologies and photoluminescent properties. And we also investigated its use in Ga N LED, warm-white-light could be obtained by the combination of the bright blue light originated from the charge transfer transition in the tungstate groups and the near UV light from LED chip with the red emission from 4f-4f transition of Eu^3+, respectively. By properly tuning the doping concentration of Eu^3+, chromaticity coordinates(0.30 0.22) could be achieved under the 380 nm excitation and its color rendering index was 80.6. So it has potential application in warm-WLED and replacing the commercial YAG:Ce phosphor which absence of red band emission.展开更多
基金Project supported by the National Natural Science Foundation of China(21301115)the Shanghai University Innovation Fund(sdcx2012005)Funding Scheme for Training Young Teachers in Colleges and Universities(ZZSD12025)
文摘A series of single-composition emission-tunable CdWO4:Eu^3+ uniform size nanorods were synthesized by polyvinylpyrrolidone(PVP) assisted hydrothermal process. The products were measured by powder X-ray diffraction(PXRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM), photoluminescence, and fluorescent decay test. The results showed that reaction time, temperature, p H values and Eu^3+ doped concentration played important roles in determining the morphologies and photoluminescent properties. And we also investigated its use in Ga N LED, warm-white-light could be obtained by the combination of the bright blue light originated from the charge transfer transition in the tungstate groups and the near UV light from LED chip with the red emission from 4f-4f transition of Eu^3+, respectively. By properly tuning the doping concentration of Eu^3+, chromaticity coordinates(0.30 0.22) could be achieved under the 380 nm excitation and its color rendering index was 80.6. So it has potential application in warm-WLED and replacing the commercial YAG:Ce phosphor which absence of red band emission.