Metal matrix composites tiles based on Ti-6Al-4V(Ti64)alloy,reinforced with 10,20,and 40(vol%)of either TiC or TiB particles were made using press-and-sinter blended elemental powder metallurgy(BEPM)and then bonded to...Metal matrix composites tiles based on Ti-6Al-4V(Ti64)alloy,reinforced with 10,20,and 40(vol%)of either TiC or TiB particles were made using press-and-sinter blended elemental powder metallurgy(BEPM)and then bonded together into 3-layer laminated plates using hot isostatic pressing(HIP).The laminates were ballistically tested and demonstrated superior performance.The microstructure and properties of the laminates were analyzed to determine the effect of the BEPM and HIP processing on the ballistic properties of the layered plates.The effect of porosity in sintered composites on further diffusion bonding of the plates during HIP is analyzed to understand the bonding features at the interfaces between different adjacent layers in the laminate.Exceptional ballistic performance of fabricated structures was explained by a significant reduction in the residual porosity of the BEPM products by their additional processing using HIP,which provides an unprecedented increase in the hardness of the layered composites.It is argued that the combination of the used two technologies,BEPM and HIP is principally complimentary for the materials in question with the abilities to solve the essential problems of each used individually.展开更多
Deformation behaviors of CNTs/Al alloy composite fabricated by the method of flake powder metallurgy were investigated by hot compression tests, which were performed in the temperature range of 300?550 °C and str...Deformation behaviors of CNTs/Al alloy composite fabricated by the method of flake powder metallurgy were investigated by hot compression tests, which were performed in the temperature range of 300?550 °C and strain rate range of 0.001? 10 s?1 with Gleeble?3500 thermal simulator system. Processing maps of the CNTs/Al alloy at different strains were calculated to study the optimum processing domain. Microstructures before and after hot compressions were characterized by electron backscattered diffraction (EBSD) method. Stress?strain curves indicate that the flow stress increases with the increase of strain rate and the decrease of temperature. The processing maps of the CNTs/Al alloy at different strains show that the optimum processing domain is 500?550 °C, 10 s?1 for hot working. EBSD analysis demonstrates that fully dynamic recrystallization occurs in the optimum processing domain (high strainrate 10 s?1), whereas the main soften mechanism is dynamic recovery at low strain rate (0.001 s?1).展开更多
The deformation behaviors of Al2O3/Al composites were investigated by compressive tests conducted at temperature of 300-450 °C and strain rates of 0.001-1.0 s-1 with Gleeble-1500 D thermal simulator system. The r...The deformation behaviors of Al2O3/Al composites were investigated by compressive tests conducted at temperature of 300-450 °C and strain rates of 0.001-1.0 s-1 with Gleeble-1500 D thermal simulator system. The results show that the flow stress increases with increasing strain rate and decreasing temperature. The hyperbolic sine constitutive equation can describe the flow stress behavior of Al2O3/Al composites, and the deformation activation energy and constitutive equations were calculated. The processing maps of Al2O3/Al-2 μm and Al2O3/Al-1 μm composites at strain of 0.6 were obtained and the optimum processing domains are in ranges of 300-330 °C, 0.007-0.03 s-1 and 335-360 °C, 0.015-0.06 s-1 for hot working, respectively. The instability zones of flow behavior can also be recognized by the maps.展开更多
GF/Pb compositeswerefabricated by the method of powder metallurgy, and the density, microstructure and tensile propertywerecharacterized considering the size and content ofglass fibre (GF). The results show that rel...GF/Pb compositeswerefabricated by the method of powder metallurgy, and the density, microstructure and tensile propertywerecharacterized considering the size and content ofglass fibre (GF). The results show that relative densities decrease with increasing GF fraction, and the 50μm-GF reinforced specimens exhibit a better densification than the 300μm-GF reinforced ones. The GF particles distribute quite uniformly inPb matrix, and the composites fabricated at low sintering temperature (〈200℃) possess fine-grain microstructure. The addition of GF significantly improves the strength of the Pb composites, and the ultimate tensile strength of the Pb composite reinforcedwith the addition of 50μm-0.5% GF(mass fraction)is about 30MPa higher than that of GF-free sample. For all composites groups, increasing the reinforcement content from 0.5%to 2%(mass fraction)results in a decrease in both tensile strength and ductility.展开更多
Semi-solid powder rolling(SSPR) is a novel strip manufacturing process,which includes the features of semi-solid rolling and powder rolling.In this work,densification process and deformation mechanisms of B4 C and A...Semi-solid powder rolling(SSPR) is a novel strip manufacturing process,which includes the features of semi-solid rolling and powder rolling.In this work,densification process and deformation mechanisms of B4 C and AA2024 mixed powders in the presence of liquid phase were investigated.The relationships between relative densities and rolling forces were analyzed as well.The results show that liquid fraction plays an important role in the densification process which can be divided into three stages.Rolling deformation is the main densification mechanism in deformation area when the liquid fraction is lower than 20%.When the liquid fraction is equal to or higher than 20%,the flowing and filling of liquid phase are the densification mechanisms in deformation area.The relative densities increase with increasing rolling forces.The relative density–rolling force curves are similar at 550 °C and 585 °C.The characteristics of the curve shapes are apparently different at 605 °C and 625 °C.展开更多
It has always been challenging work to reconcile the contradiction between the strength and plasticity of titanium materials.Laser powder bed fusion(LPBF) is a convenient method to fabricate innovative composites incl...It has always been challenging work to reconcile the contradiction between the strength and plasticity of titanium materials.Laser powder bed fusion(LPBF) is a convenient method to fabricate innovative composites including those inspired by gradient layered materials.In this work,we used LPBF to selectively prepare Ti N/Ti gradient layered structure(GLSTi)composites by using different N_(2)–Ar ratios during the LPBF process.We systematically investigated the mechanisms of in-situ synthesis Ti N,high strength and ductility of GLSTi composites using microscopic analysis,TEM characterization,and tensile testing with digital image correlation.Besides,a digital correspondence was established between the N_(2) concentration and the volume fraction of LPBF in-situ synthesized Ti N.Our results show that the GLSTi composites exhibit superior mechanical properties compared to pure titanium fabricated by LPBF under pure Ar.Specifically,the tensile strength of GLSTi was more than 1.5times higher than that of LPBF-formed pure titanium,reaching up to 1100 MPa,while maintaining a high elongation at fracture of 17%.GLSTi breaks the bottleneck of high strength but low ductility exhibited by conventional nanoceramic particle-strengthened titanium matrix composites,and the hetero-deformation induced strengthening effect formed by the Ti N/Ti layered structure explained its strength-plasticity balanced principle.The microhardness exhibits a jagged variation of the relatively low hardness of 245 HV0.2 for the pure titanium layer and a high hardness of 408 HV0.2 for the N_(2) in-situ synthesis layer.Our study provides a new concept for the structure-performance digital customization of 3D-printed Ti-based composites.展开更多
Two powder mixing processes, mechanical mixing (MM) and mechanical alloying (MA), were used to prepare mixed Al/diamond powders, which were subsequently consolidated using spark plasma sintering (SPS) to produce...Two powder mixing processes, mechanical mixing (MM) and mechanical alloying (MA), were used to prepare mixed Al/diamond powders, which were subsequently consolidated using spark plasma sintering (SPS) to produce bulk Al/diamond composites. The effects of the powder mixing process on the morphologies of the mixed powders, the microstructure and the thermal conductivity of the composites were investigated. The results show that the powder mixing process can significantly affect the microstructure and the thermal conductivity of the composites. Agglomerations of the particles occurred in mixed powders using MM for 30 min, which led to high pore content and weak interfacial bonding in the composites and resulted in low relative density and low thermal conductivity for the composites. Mixed powders of homogeneous distribution of diamond particles could be obtained using MA for 10 min and MM for 2 h. The composite prepared through MA indicated a high relative density but low thermal conductivity due to its defects, such as damaged particles, Fe impurity, and local interfacial debonding, which were mainly introduced in the MA process. In contrast, the composite made by MM for 2 h demonstrated high relative density and an excellent thermal conductivity of 325 W.m^-1.K^-1, owing to its having few defects and strong inter-facial bonding.展开更多
Cu(NO3)(2) and (NH4)(6)H(2)W(12)O(40)center dot 4H(2)O were used to prepare W/Cu nanosized composite powder by sol-gel technique. The influences of heat treatment process, pH value of the solution and the amount of an...Cu(NO3)(2) and (NH4)(6)H(2)W(12)O(40)center dot 4H(2)O were used to prepare W/Cu nanosized composite powder by sol-gel technique. The influences of heat treatment process, pH value of the solution and the amount of an addition agent on particle size were investigated by DSC, XRD and TEM. The results show that, at a certain heat treatment temperature, the W/Cu nanoparticle size increases with the pH value or the amount of the addition agent increasing.展开更多
Graphene-reinforced aluminum (AI) matrix composites were successfully prepared via solution mixing and powder metallurgy in this study. The mechanical properties of the composites were studied using microhardness an...Graphene-reinforced aluminum (AI) matrix composites were successfully prepared via solution mixing and powder metallurgy in this study. The mechanical properties of the composites were studied using microhardness and tensile tests. Compared to the pure Al alloy, the graphene/Al composites showed increased strength and hardness. A tensile strength of 255 MPa was achieved for the graphene/Al com- posite with only 0.3wt% graphene, which has a 25% increase over the tensile strength of the pure Al matrix. Raman spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy were used to investigate the morphol- ogies, chemical compositions, and microstructures of the graphene and the graphene/A1 composites. On the basis of fractographic evidence, a relevant fracture mechanism is proposed.展开更多
Effects of metal (Ni, Cu, Al) and composite metal (NiB, NiCu, NiCuB) nanopowders on the thermal decomposition of ammonium perchlorate (AP) and composite solid propellant ammonium perchlorate/hydroxyterminated polybuta...Effects of metal (Ni, Cu, Al) and composite metal (NiB, NiCu, NiCuB) nanopowders on the thermal decomposition of ammonium perchlorate (AP) and composite solid propellant ammonium perchlorate/hydroxyterminated polybutadiene (AP/HTPB) were studied by thermal analysis (DTA). The results show that metal and composite metal nanopowders all have good catalytic effects on the thermal decomposition of AP and AP/HTPB composite solid propellant. The effects of metal nanopowders on the thermal decomposition of AP are less than those of the composite metal nanopowders. The effects of metal and composite metal nanopowders on the thermal decomposition of AP are different from those on the thermal decomposition of the AP/HTPB composite solid propellant.展开更多
The electromagnetic and microwave absorbing properties of FeCoB powder composites prepared by sin- gle-roller melt-spinning and mechanical milling processes were investigated in this paper. The result indicates that t...The electromagnetic and microwave absorbing properties of FeCoB powder composites prepared by sin- gle-roller melt-spinning and mechanical milling processes were investigated in this paper. The result indicates that the flake-like powders are obtained. As milling time increases, the flake-like powder particles tend to agglomerate, causing the flake-like powders decrease gradually. The milling time plays an important role in the electromagnetic parameters which relates to the shape and size of the powder particles. The calculation shows that the sample milled for 6 h could achieve an optimal reflection loss of -11.5 dB at 5.8 GHz, with mass fraction of 83 % and a matching thickness of 1.8 mm. The result also indicates that the microwave absorbing properties of the FeCoB powder composites are adjustable by changing their thickness, and can be applied as a thinner microwave absorbing material in the range of 2-8 GHz.展开更多
β-SiC nanoparticle reinforced A1 matrix (nano-SiCp/A1) composite was prepared by a multi- step powder metallurgy strategy including presureless sintering, hot compacting process and hot extrusion. The microstructur...β-SiC nanoparticle reinforced A1 matrix (nano-SiCp/A1) composite was prepared by a multi- step powder metallurgy strategy including presureless sintering, hot compacting process and hot extrusion. The microstructures of the as-prepared composites were observed by scanning electronic microscopy (SEM), and the mechanical properties were characterized by tensile strength measurement and Brinell hardness test. The experimental results revealed that the tensile strength of the composite with the addition of 5wt%/3-SIC nanoprtieles could be increased to 215 MPa, increasing by 110% compared with pure A1 matrix. Comparative experiments reflected that theβ-SIC nanoprticles showed significant reinforcement effect than traditional a-SiC micro-sized particles. The preparation process and sintering procedure were investigated to develop a cost effective preparation strategy to fabricate nano-SiCp/A1 composite.展开更多
Al−2CNTs−xAl2O3 nanocomposites were manufactured by a hybrid powder metallurgy and microwave sintering process.The correlation between process-induced microstructural features and the material properties including phy...Al−2CNTs−xAl2O3 nanocomposites were manufactured by a hybrid powder metallurgy and microwave sintering process.The correlation between process-induced microstructural features and the material properties including physical and mechanical properties as well as ultrasonic parameters was measured.It was found that physical properties including densification and physical dimensional changes were closely associated with the morphology and particle size of nanocomposite powders.The maximum density was obtained by extensive particle refinement at milling time longer than 8 h and Al2O3 content of 10 wt.%.Mechanical properties were controlled by Al2O3 content,dispersion of nano reinforcements and grain size.The optimum hardness and strength properties were achieved through incorporation of 10 wt.%Al2O3 and homogenous dispersion of CNTs and Al2O3 nanoparticles(NPs)at 12 h of milling which resulted in the formation of high density of dislocations and extensive grain size refinement.Also both longitudinal and shear velocities and attenuation increase linearly by increasing Al2O3 content and milling time.The variation of ultrasonic velocity and attenuation was attributed to the degree of dispersion of CNTs and Al2O3 and also less inter-particle spacing in the matrix.The larger Al2O3 content and more homogenous dispersion of CNTs and Al2O3 NPs at longer milling time exerted higher velocity and attenuation of ultrasonic wave.展开更多
Indium tin oxide (ITO) nano-particles were prepared directly using waste ITO target, which had been coated by magnetron controlled sputtering. The waste ITO target was cleaned with de-ionized water, and then dissolv...Indium tin oxide (ITO) nano-particles were prepared directly using waste ITO target, which had been coated by magnetron controlled sputtering. The waste ITO target was cleaned with de-ionized water, and then dissolved in acid, filtrated, neutralized, manipulated through azeotropic distillation and finally dried, and in this way the precursor of indium tin hydroxide was obtained. The nanosized rio composite powder was prepared after the precursor heat-treated at 500℃ for 2 h. TEM images show a narrow distribution of particle size is 5-20 nm and the particle size can be controlled. Its granule has a spherical shape and the dispersion of the particle is well. X-ray diffraction (XRD) patterns indicate the only cubic In2O3 phase in the ITO powder hot-treated at 500℃. The purity of ITO composite powder is 99.9907%. The content of radium within filtrate was detected by using the EDTA titration of determination of indium in the ITO powder and ITO target. Appropriate amount of SnCl4.5H2O was dissolved in the filtrate, and then ITO powder containing 10 wt.% SnO2 was successfully prepared by heat-treating.展开更多
Fe73.5Cu1Nb3Si13.5B9 (or FeCuNbSiB) powder/ S-glass fiber-reinforced epoxy composite panels were pre- pared by mold pressing method. Metallographic analysis shows that the amorphous powders are evenly distributed be...Fe73.5Cu1Nb3Si13.5B9 (or FeCuNbSiB) powder/ S-glass fiber-reinforced epoxy composite panels were pre- pared by mold pressing method. Metallographic analysis shows that the amorphous powders are evenly distributed between the layers of S-glass fibers. The effects of the Fe- CuNbSiB powder mass fraction on the complex permittivity, complex permeability, and microwave absorption of the composite panels have been studied in the frequency range of 2.6-18.0 GHz. The complex permittivity of the composite panels with different mass fractions of the FeCuNbSiB powders shows several peaks in the 2.6-18.0 GHz fre- quency range. The complex permeability of the composites decreases with the increasing frequency in the frequency range of 8-18 GHz. The composite with FeCuNbSiB/epoxy mass ratio of 2.5:1.0 has excellent microwave absorption properties of a minimum reflection loss value -30.5 dB at 10.93 GHz for a thickness of 2 mm. A reflection loss exceeding -10 dB can be obtained in a broad frequency range of 3.2-18.0 GHz with a thickness of 1.15-5.00 mm. For the FeCuNbSiB composites, the magnetic loss is the dominant term for microwave absorption. The FeCuNbSiB powders are a possible candidate for high-performance microwave absorption filler.展开更多
The effects of microwave sintering on the properties, phases and microstructure of W-2OCu alloy, using composite powder fabricated by spray pyrolysis-continuous reduction technology, were investigated. Compared with t...The effects of microwave sintering on the properties, phases and microstructure of W-2OCu alloy, using composite powder fabricated by spray pyrolysis-continuous reduction technology, were investigated. Compared with the conventional hot-press sintering, microwave sintering to W-2OCu composites could be achieved with lower sintering temperature and shorter sintering time. Furthermore, microwave sintered W-Cu composites with high densification, homogenous microstructure and excellent properties were obtained. Microwave sintering could also result in finer microstructures. :~展开更多
This work aimed to fabricate B4C reinforced aluminum matrix composites via blended powder semisolid forming that is an implementation of the benefits of semisolid forming to the powder metallurgy. Al7075 elements were...This work aimed to fabricate B4C reinforced aluminum matrix composites via blended powder semisolid forming that is an implementation of the benefits of semisolid forming to the powder metallurgy. Al7075 elements were incrementally added to ethanol solution under mechanical mixing. Al7075 constituents and B4C particles were blended in a high energy ball mill. Cold compacted Al7075/B4C blends were pressed at semisolid state. The effects of the size of the matrix(20, 45 and 63 μm), reinforcing volume fraction(5%, 10% and 20%) and semisolid compaction pressure(50 and 100 MPa) on the morphology, microstructure, density, hardness, compression and bending strength were thoroughly analyzed. Experimental results revealed that the highest microstructural uniformity was achieved when large B4C particles(45 μm) were distributed within the small particles(20 μm) of the matrix phase. Composites with matrix particles larger than reinforcing phase indicated agglomerations in loadings more than 10%(volume fraction). Agglomerated regions resisted against penetration of the liquid phase to the pores and lowered the density and strength of these composites. Composites with 20 μm Al7075 and 20%(volume fraction) 45 μm B4C powder pressed under 100 MPa exhibited the highest values of hardness(HV 190) and compressive strength(336 MPa).展开更多
Magnesium-based biomaterials have recently gained great attention as promising candidates for the new generation of biodegradable implants.This study investigated the mechanical performance and biodegradation behaviou...Magnesium-based biomaterials have recently gained great attention as promising candidates for the new generation of biodegradable implants.This study investigated the mechanical performance and biodegradation behaviour of magnesium-zinc/hydroxyapatite(Mg-Zn/HA)composites fabricated by different powder mixing techniques.A single step mixing process involved mechanical alloying or mechanical milling techniques,while double step processing involved a combination of both mechanical alloying and mechanical milling.Optimum mechanical properties of the composite were observed when the powders were prepared using single step processing via mechanical alloying technique.However,Mg-Zn/HA composite fabricated through single step processing via mechanical milling technique was found to have the most desirable low degradation rate coupled with highest bioactivity.The composite achieved the lowest degradation rate of 0.039×10^−3 mm/year as measured by immersion test and 0.0230 mm/year as measured by electrochemical polarization.Ca:P ratio of the composite also slightly more than enough to aid the initial bone mineralization,that is 1:1.76,as the required Ca:P ratio for initial bone mineralization is between 1:1 and 1:1.67.展开更多
Copper matrix composites doped with ceramic particles are known to effectively enhance the mechanical properties,thermal expansion behavior and high-temperature stability of copper while maintaining high thermal and e...Copper matrix composites doped with ceramic particles are known to effectively enhance the mechanical properties,thermal expansion behavior and high-temperature stability of copper while maintaining high thermal and electrical conductivity.This greatly expands the applications of copper as a functional material in thermal and conductive components,including electronic packaging materials and heat sinks,brushes,integrated circuit lead frames.So far,endeavors have been focusing on how to choose suitable ceramic components and fully exert strengthening effect of ceramic particles in the copper matrix.This article reviews and analyzes the effects of preparation techniques and the characteristics of ceramic particles,including ceramic particle content,size,morphology and interfacial bonding,on the diathermancy,electrical conductivity and mechanical behavior of copper matrix composites.The corresponding models and influencing mechanisms are also elaborated in depth.This review contributes to a deep understanding of the strengthening mechanisms and microstructural regulation of ceramic particle reinforced copper matrix composites.By more precise design and manipulation of composite microstructure,the comprehensive properties could be further improved to meet the growing demands of copper matrix composites in a wide range of application fields.展开更多
The dielectric properties of nano Si/C/N composite powder and nano SiC powder at high frequencies have been studied. The nano Si/C/N composite powder and nano SiC powder were synthesized from hexamethyldisilazane ((Me...The dielectric properties of nano Si/C/N composite powder and nano SiC powder at high frequencies have been studied. The nano Si/C/N composite powder and nano SiC powder were synthesized from hexamethyldisilazane ((Me 3Si) 2NH) (Me:CH 3) and SiH 4 C 2H 2 respectively by a laser induced gas phase reaction. The complex permittivities of the nano Si/C/N composite powder and nano SiC powder were measured between 8 2GHz and 12 4GHz. The real and imaginary parts of the complex permittivities of nano Si/C/N composite powder are much higher than those of nano SiC powder. The SiC microcrystalline in the nano Si/C/N composite powder dissolved a great deal of nitrogen. The local structure around Si atoms changed by introducing N into SiC. Carbon atoms around Si were substituted by N atoms. So charged defects and quasi free electrons moved in response to the electric field, diffusion or polarization current resulted from the field propagation. The high ε″and loss factor tgδ(ε″/ε′) of Si/C/N composite powder were due to the dielectric relaxation.展开更多
基金funding from the NATO Agency Science for Peace and Security (#G5787)Ballistic investigations were co-financed by Military University of Technology in Warsaw under research project UGB 829/2023/WATSeparate works made in G.V.Kurdyumov Institute for Metal Physics of N.A.S.of Ukraine were partially financially supported by N.A.S.of Ukraine within the frames of project#III09-18。
文摘Metal matrix composites tiles based on Ti-6Al-4V(Ti64)alloy,reinforced with 10,20,and 40(vol%)of either TiC or TiB particles were made using press-and-sinter blended elemental powder metallurgy(BEPM)and then bonded together into 3-layer laminated plates using hot isostatic pressing(HIP).The laminates were ballistically tested and demonstrated superior performance.The microstructure and properties of the laminates were analyzed to determine the effect of the BEPM and HIP processing on the ballistic properties of the layered plates.The effect of porosity in sintered composites on further diffusion bonding of the plates during HIP is analyzed to understand the bonding features at the interfaces between different adjacent layers in the laminate.Exceptional ballistic performance of fabricated structures was explained by a significant reduction in the residual porosity of the BEPM products by their additional processing using HIP,which provides an unprecedented increase in the hardness of the layered composites.It is argued that the combination of the used two technologies,BEPM and HIP is principally complimentary for the materials in question with the abilities to solve the essential problems of each used individually.
基金Project(2012AA030311)supported by the National High-tech Research and Development Program of ChinaProject(51421001)supported by the National Natural Science Foundation of ChinaProject(106112015CDJXY130002)supported by the Fundamental Research Funds for the Central Universities,China
文摘Deformation behaviors of CNTs/Al alloy composite fabricated by the method of flake powder metallurgy were investigated by hot compression tests, which were performed in the temperature range of 300?550 °C and strain rate range of 0.001? 10 s?1 with Gleeble?3500 thermal simulator system. Processing maps of the CNTs/Al alloy at different strains were calculated to study the optimum processing domain. Microstructures before and after hot compressions were characterized by electron backscattered diffraction (EBSD) method. Stress?strain curves indicate that the flow stress increases with the increase of strain rate and the decrease of temperature. The processing maps of the CNTs/Al alloy at different strains show that the optimum processing domain is 500?550 °C, 10 s?1 for hot working. EBSD analysis demonstrates that fully dynamic recrystallization occurs in the optimum processing domain (high strainrate 10 s?1), whereas the main soften mechanism is dynamic recovery at low strain rate (0.001 s?1).
基金Project(2012AA030311)supported by the National High-tech Research and Development Program of ChinaProject(2010BB4074)supported by the Natural Science Foundation of Chongqing Municipality,ChinaProject(2010ZD-02)supported by the State Key Laboratory for Advanced Metals and Materials,China
文摘The deformation behaviors of Al2O3/Al composites were investigated by compressive tests conducted at temperature of 300-450 °C and strain rates of 0.001-1.0 s-1 with Gleeble-1500 D thermal simulator system. The results show that the flow stress increases with increasing strain rate and decreasing temperature. The hyperbolic sine constitutive equation can describe the flow stress behavior of Al2O3/Al composites, and the deformation activation energy and constitutive equations were calculated. The processing maps of Al2O3/Al-2 μm and Al2O3/Al-1 μm composites at strain of 0.6 were obtained and the optimum processing domains are in ranges of 300-330 °C, 0.007-0.03 s-1 and 335-360 °C, 0.015-0.06 s-1 for hot working, respectively. The instability zones of flow behavior can also be recognized by the maps.
文摘GF/Pb compositeswerefabricated by the method of powder metallurgy, and the density, microstructure and tensile propertywerecharacterized considering the size and content ofglass fibre (GF). The results show that relative densities decrease with increasing GF fraction, and the 50μm-GF reinforced specimens exhibit a better densification than the 300μm-GF reinforced ones. The GF particles distribute quite uniformly inPb matrix, and the composites fabricated at low sintering temperature (〈200℃) possess fine-grain microstructure. The addition of GF significantly improves the strength of the Pb composites, and the ultimate tensile strength of the Pb composite reinforcedwith the addition of 50μm-0.5% GF(mass fraction)is about 30MPa higher than that of GF-free sample. For all composites groups, increasing the reinforcement content from 0.5%to 2%(mass fraction)results in a decrease in both tensile strength and ductility.
基金Project(2013KJCX0014)supported by the Key Project of Department of Education of Guangdong Province,China
文摘Semi-solid powder rolling(SSPR) is a novel strip manufacturing process,which includes the features of semi-solid rolling and powder rolling.In this work,densification process and deformation mechanisms of B4 C and AA2024 mixed powders in the presence of liquid phase were investigated.The relationships between relative densities and rolling forces were analyzed as well.The results show that liquid fraction plays an important role in the densification process which can be divided into three stages.Rolling deformation is the main densification mechanism in deformation area when the liquid fraction is lower than 20%.When the liquid fraction is equal to or higher than 20%,the flowing and filling of liquid phase are the densification mechanisms in deformation area.The relative densities increase with increasing rolling forces.The relative density–rolling force curves are similar at 550 °C and 585 °C.The characteristics of the curve shapes are apparently different at 605 °C and 625 °C.
基金supported by the Guangdong Basic and Applied Basic Research Foundation (2020B1515120013,2022B1515120066)National Natural Science Foundation of China (Nos.U2001218, 51875215)+1 种基金Key-Area Research and Development Program of Guangdong Province (2020B090923001)Special Support Foundation of Guangdong Province (No.2019TQ05Z110)。
文摘It has always been challenging work to reconcile the contradiction between the strength and plasticity of titanium materials.Laser powder bed fusion(LPBF) is a convenient method to fabricate innovative composites including those inspired by gradient layered materials.In this work,we used LPBF to selectively prepare Ti N/Ti gradient layered structure(GLSTi)composites by using different N_(2)–Ar ratios during the LPBF process.We systematically investigated the mechanisms of in-situ synthesis Ti N,high strength and ductility of GLSTi composites using microscopic analysis,TEM characterization,and tensile testing with digital image correlation.Besides,a digital correspondence was established between the N_(2) concentration and the volume fraction of LPBF in-situ synthesized Ti N.Our results show that the GLSTi composites exhibit superior mechanical properties compared to pure titanium fabricated by LPBF under pure Ar.Specifically,the tensile strength of GLSTi was more than 1.5times higher than that of LPBF-formed pure titanium,reaching up to 1100 MPa,while maintaining a high elongation at fracture of 17%.GLSTi breaks the bottleneck of high strength but low ductility exhibited by conventional nanoceramic particle-strengthened titanium matrix composites,and the hetero-deformation induced strengthening effect formed by the Ti N/Ti layered structure explained its strength-plasticity balanced principle.The microhardness exhibits a jagged variation of the relatively low hardness of 245 HV0.2 for the pure titanium layer and a high hardness of 408 HV0.2 for the N_(2) in-situ synthesis layer.Our study provides a new concept for the structure-performance digital customization of 3D-printed Ti-based composites.
基金supported by the Civil Matching Research Project (No. 28300007)the National Natural Science Foundation of China (No. 50274014)
文摘Two powder mixing processes, mechanical mixing (MM) and mechanical alloying (MA), were used to prepare mixed Al/diamond powders, which were subsequently consolidated using spark plasma sintering (SPS) to produce bulk Al/diamond composites. The effects of the powder mixing process on the morphologies of the mixed powders, the microstructure and the thermal conductivity of the composites were investigated. The results show that the powder mixing process can significantly affect the microstructure and the thermal conductivity of the composites. Agglomerations of the particles occurred in mixed powders using MM for 30 min, which led to high pore content and weak interfacial bonding in the composites and resulted in low relative density and low thermal conductivity for the composites. Mixed powders of homogeneous distribution of diamond particles could be obtained using MA for 10 min and MM for 2 h. The composite prepared through MA indicated a high relative density but low thermal conductivity due to its defects, such as damaged particles, Fe impurity, and local interfacial debonding, which were mainly introduced in the MA process. In contrast, the composite made by MM for 2 h demonstrated high relative density and an excellent thermal conductivity of 325 W.m^-1.K^-1, owing to its having few defects and strong inter-facial bonding.
基金This Project was financially supported by the National Natural Science Foundation of China (No. 50471033).
文摘Cu(NO3)(2) and (NH4)(6)H(2)W(12)O(40)center dot 4H(2)O were used to prepare W/Cu nanosized composite powder by sol-gel technique. The influences of heat treatment process, pH value of the solution and the amount of an addition agent on particle size were investigated by DSC, XRD and TEM. The results show that, at a certain heat treatment temperature, the W/Cu nanoparticle size increases with the pH value or the amount of the addition agent increasing.
基金financially supported by the National Natural Science Foundation of China (Nos. 51574118, 51571087, 51674292)the Natural Science Foundation of Hunan Province (No. 2015JJ4017)+1 种基金the Project of Innovation-driven Plan in Central South University (No. 2016CX007)the Hunan Provincial Science and Technology Plan Project, China (No. 2016TP1007)
文摘Graphene-reinforced aluminum (AI) matrix composites were successfully prepared via solution mixing and powder metallurgy in this study. The mechanical properties of the composites were studied using microhardness and tensile tests. Compared to the pure Al alloy, the graphene/Al composites showed increased strength and hardness. A tensile strength of 255 MPa was achieved for the graphene/Al com- posite with only 0.3wt% graphene, which has a 25% increase over the tensile strength of the pure Al matrix. Raman spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy were used to investigate the morphol- ogies, chemical compositions, and microstructures of the graphene and the graphene/A1 composites. On the basis of fractographic evidence, a relevant fracture mechanism is proposed.
文摘Effects of metal (Ni, Cu, Al) and composite metal (NiB, NiCu, NiCuB) nanopowders on the thermal decomposition of ammonium perchlorate (AP) and composite solid propellant ammonium perchlorate/hydroxyterminated polybutadiene (AP/HTPB) were studied by thermal analysis (DTA). The results show that metal and composite metal nanopowders all have good catalytic effects on the thermal decomposition of AP and AP/HTPB composite solid propellant. The effects of metal nanopowders on the thermal decomposition of AP are less than those of the composite metal nanopowders. The effects of metal and composite metal nanopowders on the thermal decomposition of AP are different from those on the thermal decomposition of the AP/HTPB composite solid propellant.
基金financially supported by the National Hi-tech R&D Project Supporting Programs Funded by Ministry of Science&Technology of China(No.2012AA063202)the National Natural Science Foundation of China(Nos.50972013,50802008,and 51004011)+1 种基金the National Key Project of Scientific and Technical Supporting Programs Funded by Ministry of Science&Technology of China(Nos.2012BAC02B01,2012BAC12B05,2011BAE13B07,and 2011BAC10B02)the Guangdong Province&Ministry of Education Industry-Study-Research United Project(No.2009A090100017)
文摘The electromagnetic and microwave absorbing properties of FeCoB powder composites prepared by sin- gle-roller melt-spinning and mechanical milling processes were investigated in this paper. The result indicates that the flake-like powders are obtained. As milling time increases, the flake-like powder particles tend to agglomerate, causing the flake-like powders decrease gradually. The milling time plays an important role in the electromagnetic parameters which relates to the shape and size of the powder particles. The calculation shows that the sample milled for 6 h could achieve an optimal reflection loss of -11.5 dB at 5.8 GHz, with mass fraction of 83 % and a matching thickness of 1.8 mm. The result also indicates that the microwave absorbing properties of the FeCoB powder composites are adjustable by changing their thickness, and can be applied as a thinner microwave absorbing material in the range of 2-8 GHz.
基金Funded by the Research Collaborative Innovation Project of Jiangsu Province,China(BY2009129)the Science and Technology Project of Suzhou,China(SYG0905)
文摘β-SiC nanoparticle reinforced A1 matrix (nano-SiCp/A1) composite was prepared by a multi- step powder metallurgy strategy including presureless sintering, hot compacting process and hot extrusion. The microstructures of the as-prepared composites were observed by scanning electronic microscopy (SEM), and the mechanical properties were characterized by tensile strength measurement and Brinell hardness test. The experimental results revealed that the tensile strength of the composite with the addition of 5wt%/3-SIC nanoprtieles could be increased to 215 MPa, increasing by 110% compared with pure A1 matrix. Comparative experiments reflected that theβ-SIC nanoprticles showed significant reinforcement effect than traditional a-SiC micro-sized particles. The preparation process and sintering procedure were investigated to develop a cost effective preparation strategy to fabricate nano-SiCp/A1 composite.
文摘Al−2CNTs−xAl2O3 nanocomposites were manufactured by a hybrid powder metallurgy and microwave sintering process.The correlation between process-induced microstructural features and the material properties including physical and mechanical properties as well as ultrasonic parameters was measured.It was found that physical properties including densification and physical dimensional changes were closely associated with the morphology and particle size of nanocomposite powders.The maximum density was obtained by extensive particle refinement at milling time longer than 8 h and Al2O3 content of 10 wt.%.Mechanical properties were controlled by Al2O3 content,dispersion of nano reinforcements and grain size.The optimum hardness and strength properties were achieved through incorporation of 10 wt.%Al2O3 and homogenous dispersion of CNTs and Al2O3 nanoparticles(NPs)at 12 h of milling which resulted in the formation of high density of dislocations and extensive grain size refinement.Also both longitudinal and shear velocities and attenuation increase linearly by increasing Al2O3 content and milling time.The variation of ultrasonic velocity and attenuation was attributed to the degree of dispersion of CNTs and Al2O3 and also less inter-particle spacing in the matrix.The larger Al2O3 content and more homogenous dispersion of CNTs and Al2O3 NPs at longer milling time exerted higher velocity and attenuation of ultrasonic wave.
基金This work was financially supported by the National "863 " program of China (No. 2004AA303542).
文摘Indium tin oxide (ITO) nano-particles were prepared directly using waste ITO target, which had been coated by magnetron controlled sputtering. The waste ITO target was cleaned with de-ionized water, and then dissolved in acid, filtrated, neutralized, manipulated through azeotropic distillation and finally dried, and in this way the precursor of indium tin hydroxide was obtained. The nanosized rio composite powder was prepared after the precursor heat-treated at 500℃ for 2 h. TEM images show a narrow distribution of particle size is 5-20 nm and the particle size can be controlled. Its granule has a spherical shape and the dispersion of the particle is well. X-ray diffraction (XRD) patterns indicate the only cubic In2O3 phase in the ITO powder hot-treated at 500℃. The purity of ITO composite powder is 99.9907%. The content of radium within filtrate was detected by using the EDTA titration of determination of indium in the ITO powder and ITO target. Appropriate amount of SnCl4.5H2O was dissolved in the filtrate, and then ITO powder containing 10 wt.% SnO2 was successfully prepared by heat-treating.
基金financially supported by the National Natural Science Foundation of China (No. 60961001)the National Natural Science Fund Committee and the China Academy of Engineering Physics United Fund (No. 11076016)
文摘Fe73.5Cu1Nb3Si13.5B9 (or FeCuNbSiB) powder/ S-glass fiber-reinforced epoxy composite panels were pre- pared by mold pressing method. Metallographic analysis shows that the amorphous powders are evenly distributed between the layers of S-glass fibers. The effects of the Fe- CuNbSiB powder mass fraction on the complex permittivity, complex permeability, and microwave absorption of the composite panels have been studied in the frequency range of 2.6-18.0 GHz. The complex permittivity of the composite panels with different mass fractions of the FeCuNbSiB powders shows several peaks in the 2.6-18.0 GHz fre- quency range. The complex permeability of the composites decreases with the increasing frequency in the frequency range of 8-18 GHz. The composite with FeCuNbSiB/epoxy mass ratio of 2.5:1.0 has excellent microwave absorption properties of a minimum reflection loss value -30.5 dB at 10.93 GHz for a thickness of 2 mm. A reflection loss exceeding -10 dB can be obtained in a broad frequency range of 3.2-18.0 GHz with a thickness of 1.15-5.00 mm. For the FeCuNbSiB composites, the magnetic loss is the dominant term for microwave absorption. The FeCuNbSiB powders are a possible candidate for high-performance microwave absorption filler.
基金the Project for Science and Technology Plan of Wuhan City (No. 200910321092)the Youth Science Plan for Light of the Morning Sun of Wuhan City (No. 200750731270)the Fundamental Research Funds for the Central Universities (No. 2010-Ⅱ-020)
文摘The effects of microwave sintering on the properties, phases and microstructure of W-2OCu alloy, using composite powder fabricated by spray pyrolysis-continuous reduction technology, were investigated. Compared with the conventional hot-press sintering, microwave sintering to W-2OCu composites could be achieved with lower sintering temperature and shorter sintering time. Furthermore, microwave sintered W-Cu composites with high densification, homogenous microstructure and excellent properties were obtained. Microwave sintering could also result in finer microstructures. :~
基金Tabriz Branch,Islamic Azad University for the financial support of this research,which is based on a research project contract
文摘This work aimed to fabricate B4C reinforced aluminum matrix composites via blended powder semisolid forming that is an implementation of the benefits of semisolid forming to the powder metallurgy. Al7075 elements were incrementally added to ethanol solution under mechanical mixing. Al7075 constituents and B4C particles were blended in a high energy ball mill. Cold compacted Al7075/B4C blends were pressed at semisolid state. The effects of the size of the matrix(20, 45 and 63 μm), reinforcing volume fraction(5%, 10% and 20%) and semisolid compaction pressure(50 and 100 MPa) on the morphology, microstructure, density, hardness, compression and bending strength were thoroughly analyzed. Experimental results revealed that the highest microstructural uniformity was achieved when large B4C particles(45 μm) were distributed within the small particles(20 μm) of the matrix phase. Composites with matrix particles larger than reinforcing phase indicated agglomerations in loadings more than 10%(volume fraction). Agglomerated regions resisted against penetration of the liquid phase to the pores and lowered the density and strength of these composites. Composites with 20 μm Al7075 and 20%(volume fraction) 45 μm B4C powder pressed under 100 MPa exhibited the highest values of hardness(HV 190) and compressive strength(336 MPa).
基金The authors would like thank to Universiti Sains Malaysia for FRGS Grant No.203/PBAHAN/6071386 and financial scholarship from Ministry of Higher Education of Malaysia.
文摘Magnesium-based biomaterials have recently gained great attention as promising candidates for the new generation of biodegradable implants.This study investigated the mechanical performance and biodegradation behaviour of magnesium-zinc/hydroxyapatite(Mg-Zn/HA)composites fabricated by different powder mixing techniques.A single step mixing process involved mechanical alloying or mechanical milling techniques,while double step processing involved a combination of both mechanical alloying and mechanical milling.Optimum mechanical properties of the composite were observed when the powders were prepared using single step processing via mechanical alloying technique.However,Mg-Zn/HA composite fabricated through single step processing via mechanical milling technique was found to have the most desirable low degradation rate coupled with highest bioactivity.The composite achieved the lowest degradation rate of 0.039×10^−3 mm/year as measured by immersion test and 0.0230 mm/year as measured by electrochemical polarization.Ca:P ratio of the composite also slightly more than enough to aid the initial bone mineralization,that is 1:1.76,as the required Ca:P ratio for initial bone mineralization is between 1:1 and 1:1.67.
基金supported by National Natural Science Foundation of China(No.51971101)Science and Technology Development Program of Jilin Province,China(20230201146G X)Exploration Foundation of State Key Laboratory of Automotive Simulation and Control(asclzytsxm-202015)。
文摘Copper matrix composites doped with ceramic particles are known to effectively enhance the mechanical properties,thermal expansion behavior and high-temperature stability of copper while maintaining high thermal and electrical conductivity.This greatly expands the applications of copper as a functional material in thermal and conductive components,including electronic packaging materials and heat sinks,brushes,integrated circuit lead frames.So far,endeavors have been focusing on how to choose suitable ceramic components and fully exert strengthening effect of ceramic particles in the copper matrix.This article reviews and analyzes the effects of preparation techniques and the characteristics of ceramic particles,including ceramic particle content,size,morphology and interfacial bonding,on the diathermancy,electrical conductivity and mechanical behavior of copper matrix composites.The corresponding models and influencing mechanisms are also elaborated in depth.This review contributes to a deep understanding of the strengthening mechanisms and microstructural regulation of ceramic particle reinforced copper matrix composites.By more precise design and manipulation of composite microstructure,the comprehensive properties could be further improved to meet the growing demands of copper matrix composites in a wide range of application fields.
文摘The dielectric properties of nano Si/C/N composite powder and nano SiC powder at high frequencies have been studied. The nano Si/C/N composite powder and nano SiC powder were synthesized from hexamethyldisilazane ((Me 3Si) 2NH) (Me:CH 3) and SiH 4 C 2H 2 respectively by a laser induced gas phase reaction. The complex permittivities of the nano Si/C/N composite powder and nano SiC powder were measured between 8 2GHz and 12 4GHz. The real and imaginary parts of the complex permittivities of nano Si/C/N composite powder are much higher than those of nano SiC powder. The SiC microcrystalline in the nano Si/C/N composite powder dissolved a great deal of nitrogen. The local structure around Si atoms changed by introducing N into SiC. Carbon atoms around Si were substituted by N atoms. So charged defects and quasi free electrons moved in response to the electric field, diffusion or polarization current resulted from the field propagation. The high ε″and loss factor tgδ(ε″/ε′) of Si/C/N composite powder were due to the dielectric relaxation.