ZnO nanorods were synthesized using the sol-gel method, and the effects of annealing temperature and Ce doping on the morphologies and optical properties of ZnO nanostructures were investigated in detail. The XRD meas...ZnO nanorods were synthesized using the sol-gel method, and the effects of annealing temperature and Ce doping on the morphologies and optical properties of ZnO nanostructures were investigated in detail. The XRD measurements showed that the as-synthesized ZnO nanostructures had a hexagonal wurtzite structure. SEM images showed that uniform nanorods formed at 900 °C. Photoluminescence measurements showed an ultraviolet emission peak and a relatively broad visible light emission peak for the samples sintered at different temperatures. The UV emission peak bathochromically shifted when the annealing temperature rose from 850 to 1000 °C. Ce doping decreased the synthesized temperature of the ZnO nanorods to 500 °C, and the UV peaks hypsochromically shifted.展开更多
Ce-doped ZnO microspheres were solvothermally prepared, and their microstructure, morphology, photoluminescence, and gas sensing were investigated by X-ray diffractometer, field emission scanning electron microscopy, ...Ce-doped ZnO microspheres were solvothermally prepared, and their microstructure, morphology, photoluminescence, and gas sensing were investigated by X-ray diffractometer, field emission scanning electron microscopy, transmission electron microscopy, fluorescence spectrometer and gas sensing analysis system. The results showed that the Ce-doped ZnO microspheres were composed of numerous nanorods with a diameter of 70 nm and a wurtzite structure. Ce-doping could cause a morphological transition from loose nanorods assembly to a tightly assembly in the microspheres. Compared with pure ZnO, the photoluminescence of the Ce-doped microspheres showed red-shifted UV emission and an enhanced blue emission. Particularly, the Ce-doped ZnO sensors exhibited much higher sensitivity and selectivity to ethanol than that of pure ZnO sensor at 320 °C. The ZnO microspheres doped with 6% Ce (mole fraction) exhibited the highest sensitivity (about 30) with rapid response (2 s) and recovery time (16 s) to 50×10?6 ethanol gas.展开更多
基金the National Natural Science Foundation of China(No.60778040)the Hi-tech Research and Development Program of China(No.2007AA032400448)+3 种基金the Science and Technology Bureau of Jilin Province(No.20060518)Gifted Youth Program of Jilin Province(No.20060123)the Science and Technology Office of Education of Jilin Province(No.2007162)the Science and Technology Bureau of Key Program for Ministry of Education(No.207025).
文摘ZnO nanorods were synthesized using the sol-gel method, and the effects of annealing temperature and Ce doping on the morphologies and optical properties of ZnO nanostructures were investigated in detail. The XRD measurements showed that the as-synthesized ZnO nanostructures had a hexagonal wurtzite structure. SEM images showed that uniform nanorods formed at 900 °C. Photoluminescence measurements showed an ultraviolet emission peak and a relatively broad visible light emission peak for the samples sintered at different temperatures. The UV emission peak bathochromically shifted when the annealing temperature rose from 850 to 1000 °C. Ce doping decreased the synthesized temperature of the ZnO nanorods to 500 °C, and the UV peaks hypsochromically shifted.
基金Project(61079010)supported by the National Natural Science Foundation of China and the Civil Aviation Administration of ChinaProject(3122013P001)supported by the Significant Pre-research Funds of Civil Aviation University of ChinaProject(MHRD20140209)supported by the Science and Technology Innovation Guide Funds of Civil Aviation Administration of China
文摘Ce-doped ZnO microspheres were solvothermally prepared, and their microstructure, morphology, photoluminescence, and gas sensing were investigated by X-ray diffractometer, field emission scanning electron microscopy, transmission electron microscopy, fluorescence spectrometer and gas sensing analysis system. The results showed that the Ce-doped ZnO microspheres were composed of numerous nanorods with a diameter of 70 nm and a wurtzite structure. Ce-doping could cause a morphological transition from loose nanorods assembly to a tightly assembly in the microspheres. Compared with pure ZnO, the photoluminescence of the Ce-doped microspheres showed red-shifted UV emission and an enhanced blue emission. Particularly, the Ce-doped ZnO sensors exhibited much higher sensitivity and selectivity to ethanol than that of pure ZnO sensor at 320 °C. The ZnO microspheres doped with 6% Ce (mole fraction) exhibited the highest sensitivity (about 30) with rapid response (2 s) and recovery time (16 s) to 50×10?6 ethanol gas.