CeO2-TiO2 films and CeO2-TiO/SnO2:Sb (6 mol%) double films were deposited on glass substrates by radio-frequency magnetron sputtering (R.F. Sputtering), using SnO2:Sb(6 mol%) target, and CeO2- TiO2 targets wit...CeO2-TiO2 films and CeO2-TiO/SnO2:Sb (6 mol%) double films were deposited on glass substrates by radio-frequency magnetron sputtering (R.F. Sputtering), using SnO2:Sb(6 mol%) target, and CeO2- TiO2 targets with different molar ratio of CeO2 to TiO2 (CeO2:TiO2-0:1.0; 0.1:0.9; 0.2:0.8; 0.3:0.7; 0.4:0.6; 0.5:0.5; 0.6:0.4; 0.7:0.3; 0.8:0.2; 0.9:0.1; 1.0:0). The films are characterized by UV-visible transmission and infrared reflection spectra, scanning electron microscopy (SEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), respectively. The obtained results show that the amorphous phases composed of CeO2-TiO2 play an important role in absorbing UV, there are Ce^3-, Ce^4- and Ti^4- on the surface of the films; the glass substrates coated with CeO2-TiO2 (Ce/Ti=0.5:0.5; 0.6:0.4)/SnO2:Sb(6 mol%) double films show high absorbing UV(〉99), high visible light transmission (75%) and good infrared reflection (〉70%). The sheet resistance of the films is 30-50 Ω/□. The glass substrates coated with the double functional films can be used as window glass of buildings, automobile and so on.展开更多
60CeO2-40TiO2 thin films were deposited on soda-lime silicate glass substrates by R.F. magnetron sputtering. The effects of heat-treatment on the UV-absorption of the thin films were studied on the 60CeO2-40TiO2 thin ...60CeO2-40TiO2 thin films were deposited on soda-lime silicate glass substrates by R.F. magnetron sputtering. The effects of heat-treatment on the UV-absorption of the thin films were studied on the 60CeO2-40TiO2 thin film with the largest UV cut-off wavelength. The sample films with CeO2:TiO2=60:40 were heated at 773 K, 873 K, 973 K for 30 min. These films are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy and spectrometer (XPS). XRD analysis proves that the addition of TiO2 to CeO2 changed the crystalline state of CeO2. But the UV absorption effect of CeO2-TiO2 films with CeO2 crystallite phase is inferior to that of the amorphous phase CeO2-TiO2 films. XPS analysis also indicates that the amorphous phase CeO2-TiO2 films have the most Ce3+ content in these films. Amorphous phase and crystalline phase of the CeO2-TiO2 films have different effects on UV absorption of the thin films.展开更多
The golden and ultraviolet-absorbed CeO2-TiO2 film was prepared on soda-lime glass substrate with the thickness of 2 mm via the sol-gel method. The transmission spectra in range of 200 nm-800 nm were measured, and the...The golden and ultraviolet-absorbed CeO2-TiO2 film was prepared on soda-lime glass substrate with the thickness of 2 mm via the sol-gel method. The transmission spectra in range of 200 nm-800 nm were measured, and the crystallization, the abrasion and acid resistance were also investigated. The appropriate sol contents and heat-treatment schedule were determined. The results indicate that the appropriate molar ratio of Ce/Ti was 3:5 to 5:6. The ultraviolet-absorbance ability increased with the increase of the Ce/Ti molar ratio, but when the Ce/Ti molar ratio was higher than 1.5, the homogeneity of the film was deteriorated. With the increase of heat-treatment temperature, the main wavelengths of the color of the coated glasses were equal, but the color' s saturation decreased; the transmission peaks were the same, while the intensity of the peaks decreased. The roughness, abrasion and acid resistance of the film were also enhanced at the same time. The appropriate heat- treatment temperature may be 340℃.展开更多
Sb-doped SnO2(ATO)-(CeO2-TiO2) thin Films were deposited on glass substrates using the mixed solution including CeO2-TiO2 precursor and ATO particles by sol-gel dip coating process.ATO particles were prepared using lo...Sb-doped SnO2(ATO)-(CeO2-TiO2) thin Films were deposited on glass substrates using the mixed solution including CeO2-TiO2 precursor and ATO particles by sol-gel dip coating process.ATO particles were prepared using low-temperature hydrothermal process.The mixed molar ratio of ATO to(CeO2-TiO2) vs the properties of CeO2-TiO2 thin film was investigated.The optical properties of the films were characterized by UV-visible transmission and infrared reflection spectra,the sheet resistance of ATO particles and films were measured by rubber sheeter(MYI-50) and four-point probe(HisuperGroup Inc,SDY-5),the surface morphology and structure of the films were analyzed using 3D Digitale Mikroskop and X-ray diffraction(XRD),respectively.The results showed that the ATO precursor solution lost weight completely at about 500 oC,and the ATO particles was obtained,which indicated the same rutile lattice structure as SnO2.The glass substrates coated with ATO-(CeO2-TiO2) thin films showed better properties in antistatic electricity(104-106 Ω/),shielding UV(almost 100%),visible light transmission(70%) and infrared reflection(】30%).展开更多
CeO\-2 films have been grown on biaxially textured Ni substrates at various temperatures. The results show that CeO\-2 films without IBAD are dominated by (111) orientation from room temperature to 800℃ while the pre...CeO\-2 films have been grown on biaxially textured Ni substrates at various temperatures. The results show that CeO\-2 films without IBAD are dominated by (111) orientation from room temperature to 800℃ while the preferential orientation of CeO\-2 films with IBAD is (001) at lower deposition temperature and (111) at deposition temperature higher than 450℃. CeO\-2 films with better in_plane texture and out_of_plane orientation can be grown at 360℃ with 240 eV ion energy and 200 μA/cm\+2 ion current density.展开更多
CeO2 film plays an essential role in nucleation and growth of YBa2 Cu3 O(7-x)(YBCO) films. In this work,the dependence of superconducting properties of YBCO on CeO2 films with different thicknesses was investigate...CeO2 film plays an essential role in nucleation and growth of YBa2 Cu3 O(7-x)(YBCO) films. In this work,the dependence of superconducting properties of YBCO on CeO2 films with different thicknesses was investigated,in order to achieve fabrication of high-performance YBCO coated conductors in industrial scale. The crystalline structure and morphology of CeO2 films with thickness ranging from 21 to 563 nm were systematically characterized by means of X-ray diffraction(XRD), atomic force microscope(AFM) and reflection high-energy electron diffraction(RHEED). Additional focus was addressed on evolution of the surface quality of CeO2 films with thickness increasing. The results show that at the optimal thickness of 221 nm, CeO2 film exhibits sharp in-plane and out-of-plane texture with full width of half maximum(FWHM) values of 5.9° and 1.8°, respectively, and smooth surface with a mean root-mean-square(RMS) roughness value as low as 0.6 nm. Combing RHEED and transmission electron microscope(TEM) cross-sectional analysis, it is found that nucleation and growth of CeO2 films at early stage remain in island growth mode with rougher surface,while further increasing the thickness beyond the optimal thickness leads to weak surface quality, consequently resulting in degradation of superconductor layers deposited subsequently. Eventually, a critical current density(Jc) as high as 4.6×10-6 A·cm-(-2)(77 K, self-field) is achieved on a YBCO film on a thickness-modulated CeO2/MgO/Y2 O3/Al2 O3/C276 architecture, demonstrating the advantages of CeO2 films as buffer layer in high-throughput manufacture of coated conductors.展开更多
Highly epitaxial and pure(001)-oriented CeO2 films were grown on SrTiO3(001) substrates by laser molecular beam epitaxy method without any gas ambient.Layer-by-layer epitaxial growth mode of CeO2 was confirmed by ...Highly epitaxial and pure(001)-oriented CeO2 films were grown on SrTiO3(001) substrates by laser molecular beam epitaxy method without any gas ambient.Layer-by-layer epitaxial growth mode of CeO2 was confirmed by in situ reflection high-energy electron diffraction(RHEED) observations.High-resolution X-ray diffraction(HRXRD) and high-resolution transmission electron microscopy(HRTEM) results indicated the STO(100)//CeO2(100),STO[100]//CeO2 [110] epitaxial relationship for out-of-plane and in-plane,respectively.The formation mechanism of the epitaxial film was also discussed in the light of a theoretical model.Chemical states of the LMBE ceria films were evaluated and evidences for the existence of Ce3+and oxygen vacancies were presented.展开更多
Ultraviolet-shielding and conductive double functional films were composed of CeO2-TiO2 film and SnO2:Sb film deposited on glass substrates using sol-gel process.Ce(NO3)3·6H2O and Ti(C4H9O4),SnCl4 and SbCl3 were ...Ultraviolet-shielding and conductive double functional films were composed of CeO2-TiO2 film and SnO2:Sb film deposited on glass substrates using sol-gel process.Ce(NO3)3·6H2O and Ti(C4H9O4),SnCl4 and SbCl3 were used as precursors of the two different functional films respectively.The CeO2-TiO2 films were deposited on glass substrates by sol-gel dip coating method,and then the SnO2:Sb films with different thickness were deposited on the pre-coated CeO2-TiO2 thin film glass substrates,finally,the substrates coated with double functional films were annealed at different temperatures.The optical and electrical properties of the CeO2-TiO2 films and the double films were measured by UV-Vis spectrometer and four probe resistance measuring instrument.The crystal structures and surface morphology of the films were characterized using XRD and optical microscope,respectively.The obtained results show that the ultraviolet-shielding rate of the glass substrates with CeO2-TiO2 films is not less than 90%,and transmittance in visible lights can reach 65%.With the thickness of the SnO2:Sb film increasing,its conductivity became better,and the surface resistance is about 260 Ω/ when the SnO2:Sb films were deposited 11 cycles of the dip on the pre-coated CeO2-TiO2 glass.The ultraviolet-shielding rate of the glass substrates with double functional films is higher than 97%,and the peak transmittance in the visible lights is 72%.Additionally,with increasing the heat treatment time,the Na+ of the glass substrates diffuses into the films,resulting in the particle size of SnO2 crystal smaller.展开更多
基金the program for Changjiang Scholars and Innovative Research Team in University (No.IRT0547
文摘CeO2-TiO2 films and CeO2-TiO/SnO2:Sb (6 mol%) double films were deposited on glass substrates by radio-frequency magnetron sputtering (R.F. Sputtering), using SnO2:Sb(6 mol%) target, and CeO2- TiO2 targets with different molar ratio of CeO2 to TiO2 (CeO2:TiO2-0:1.0; 0.1:0.9; 0.2:0.8; 0.3:0.7; 0.4:0.6; 0.5:0.5; 0.6:0.4; 0.7:0.3; 0.8:0.2; 0.9:0.1; 1.0:0). The films are characterized by UV-visible transmission and infrared reflection spectra, scanning electron microscopy (SEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), respectively. The obtained results show that the amorphous phases composed of CeO2-TiO2 play an important role in absorbing UV, there are Ce^3-, Ce^4- and Ti^4- on the surface of the films; the glass substrates coated with CeO2-TiO2 (Ce/Ti=0.5:0.5; 0.6:0.4)/SnO2:Sb(6 mol%) double films show high absorbing UV(〉99), high visible light transmission (75%) and good infrared reflection (〉70%). The sheet resistance of the films is 30-50 Ω/□. The glass substrates coated with the double functional films can be used as window glass of buildings, automobile and so on.
基金the National Natural Science Foundation of China(No.51032005)the Fundamental Research Funds for the Central Universities(Wuhan University of Technology)+1 种基金the China Postdoctoral Science Foundation(No.2012M511285)the Fund for the Young Innovative Team(Hubei University of Education)(No.2012KQ05)
文摘60CeO2-40TiO2 thin films were deposited on soda-lime silicate glass substrates by R.F. magnetron sputtering. The effects of heat-treatment on the UV-absorption of the thin films were studied on the 60CeO2-40TiO2 thin film with the largest UV cut-off wavelength. The sample films with CeO2:TiO2=60:40 were heated at 773 K, 873 K, 973 K for 30 min. These films are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy and spectrometer (XPS). XRD analysis proves that the addition of TiO2 to CeO2 changed the crystalline state of CeO2. But the UV absorption effect of CeO2-TiO2 films with CeO2 crystallite phase is inferior to that of the amorphous phase CeO2-TiO2 films. XPS analysis also indicates that the amorphous phase CeO2-TiO2 films have the most Ce3+ content in these films. Amorphous phase and crystalline phase of the CeO2-TiO2 films have different effects on UV absorption of the thin films.
基金the National Natural Science Foundation of China (No.50472039)Hubei Provincial Natural Science Foundation of China (No.2005ABA011)
文摘The golden and ultraviolet-absorbed CeO2-TiO2 film was prepared on soda-lime glass substrate with the thickness of 2 mm via the sol-gel method. The transmission spectra in range of 200 nm-800 nm were measured, and the crystallization, the abrasion and acid resistance were also investigated. The appropriate sol contents and heat-treatment schedule were determined. The results indicate that the appropriate molar ratio of Ce/Ti was 3:5 to 5:6. The ultraviolet-absorbance ability increased with the increase of the Ce/Ti molar ratio, but when the Ce/Ti molar ratio was higher than 1.5, the homogeneity of the film was deteriorated. With the increase of heat-treatment temperature, the main wavelengths of the color of the coated glasses were equal, but the color' s saturation decreased; the transmission peaks were the same, while the intensity of the peaks decreased. The roughness, abrasion and acid resistance of the film were also enhanced at the same time. The appropriate heat- treatment temperature may be 340℃.
基金Project supported by the Changjiang Scholars and Innovative Research Team in University
文摘Sb-doped SnO2(ATO)-(CeO2-TiO2) thin Films were deposited on glass substrates using the mixed solution including CeO2-TiO2 precursor and ATO particles by sol-gel dip coating process.ATO particles were prepared using low-temperature hydrothermal process.The mixed molar ratio of ATO to(CeO2-TiO2) vs the properties of CeO2-TiO2 thin film was investigated.The optical properties of the films were characterized by UV-visible transmission and infrared reflection spectra,the sheet resistance of ATO particles and films were measured by rubber sheeter(MYI-50) and four-point probe(HisuperGroup Inc,SDY-5),the surface morphology and structure of the films were analyzed using 3D Digitale Mikroskop and X-ray diffraction(XRD),respectively.The results showed that the ATO precursor solution lost weight completely at about 500 oC,and the ATO particles was obtained,which indicated the same rutile lattice structure as SnO2.The glass substrates coated with ATO-(CeO2-TiO2) thin films showed better properties in antistatic electricity(104-106 Ω/),shielding UV(almost 100%),visible light transmission(70%) and infrared reflection(】30%).
文摘CeO\-2 films have been grown on biaxially textured Ni substrates at various temperatures. The results show that CeO\-2 films without IBAD are dominated by (111) orientation from room temperature to 800℃ while the preferential orientation of CeO\-2 films with IBAD is (001) at lower deposition temperature and (111) at deposition temperature higher than 450℃. CeO\-2 films with better in_plane texture and out_of_plane orientation can be grown at 360℃ with 240 eV ion energy and 200 μA/cm\+2 ion current density.
基金financially supported by the International Thermonuclear Experimental Reactor (ITER) Project from Ministry of Science and Technology of China (No.2011GB113004)the National High Technology Research and Development Program of China(No.2014AA032402)+1 种基金the Shanghai Commission of Science and Technology (Nos.11DZ1100402 and 13DZ0500100)the Natural Science Foundation of China(Nos.11204174 and 51372150)
文摘CeO2 film plays an essential role in nucleation and growth of YBa2 Cu3 O(7-x)(YBCO) films. In this work,the dependence of superconducting properties of YBCO on CeO2 films with different thicknesses was investigated,in order to achieve fabrication of high-performance YBCO coated conductors in industrial scale. The crystalline structure and morphology of CeO2 films with thickness ranging from 21 to 563 nm were systematically characterized by means of X-ray diffraction(XRD), atomic force microscope(AFM) and reflection high-energy electron diffraction(RHEED). Additional focus was addressed on evolution of the surface quality of CeO2 films with thickness increasing. The results show that at the optimal thickness of 221 nm, CeO2 film exhibits sharp in-plane and out-of-plane texture with full width of half maximum(FWHM) values of 5.9° and 1.8°, respectively, and smooth surface with a mean root-mean-square(RMS) roughness value as low as 0.6 nm. Combing RHEED and transmission electron microscope(TEM) cross-sectional analysis, it is found that nucleation and growth of CeO2 films at early stage remain in island growth mode with rougher surface,while further increasing the thickness beyond the optimal thickness leads to weak surface quality, consequently resulting in degradation of superconductor layers deposited subsequently. Eventually, a critical current density(Jc) as high as 4.6×10-6 A·cm-(-2)(77 K, self-field) is achieved on a YBCO film on a thickness-modulated CeO2/MgO/Y2 O3/Al2 O3/C276 architecture, demonstrating the advantages of CeO2 films as buffer layer in high-throughput manufacture of coated conductors.
基金supported by National Natural Science Foundation of China(11076005,50932001)
文摘Highly epitaxial and pure(001)-oriented CeO2 films were grown on SrTiO3(001) substrates by laser molecular beam epitaxy method without any gas ambient.Layer-by-layer epitaxial growth mode of CeO2 was confirmed by in situ reflection high-energy electron diffraction(RHEED) observations.High-resolution X-ray diffraction(HRXRD) and high-resolution transmission electron microscopy(HRTEM) results indicated the STO(100)//CeO2(100),STO[100]//CeO2 [110] epitaxial relationship for out-of-plane and in-plane,respectively.The formation mechanism of the epitaxial film was also discussed in the light of a theoretical model.Chemical states of the LMBE ceria films were evaluated and evidences for the existence of Ce3+and oxygen vacancies were presented.
基金Project supported by the Special Fund of Jiangsu Province for the Transformation of Scientific and Technological achievements
文摘Ultraviolet-shielding and conductive double functional films were composed of CeO2-TiO2 film and SnO2:Sb film deposited on glass substrates using sol-gel process.Ce(NO3)3·6H2O and Ti(C4H9O4),SnCl4 and SbCl3 were used as precursors of the two different functional films respectively.The CeO2-TiO2 films were deposited on glass substrates by sol-gel dip coating method,and then the SnO2:Sb films with different thickness were deposited on the pre-coated CeO2-TiO2 thin film glass substrates,finally,the substrates coated with double functional films were annealed at different temperatures.The optical and electrical properties of the CeO2-TiO2 films and the double films were measured by UV-Vis spectrometer and four probe resistance measuring instrument.The crystal structures and surface morphology of the films were characterized using XRD and optical microscope,respectively.The obtained results show that the ultraviolet-shielding rate of the glass substrates with CeO2-TiO2 films is not less than 90%,and transmittance in visible lights can reach 65%.With the thickness of the SnO2:Sb film increasing,its conductivity became better,and the surface resistance is about 260 Ω/ when the SnO2:Sb films were deposited 11 cycles of the dip on the pre-coated CeO2-TiO2 glass.The ultraviolet-shielding rate of the glass substrates with double functional films is higher than 97%,and the peak transmittance in the visible lights is 72%.Additionally,with increasing the heat treatment time,the Na+ of the glass substrates diffuses into the films,resulting in the particle size of SnO2 crystal smaller.