Nanocrystalline CeO2 powders (particle size ≈10-15 nm), doped with up to 20 at.-% of Mg,Ca or Y were prepared by chemical precipitation under hydrothermal conditions. The particle size and shape of the powders change...Nanocrystalline CeO2 powders (particle size ≈10-15 nm), doped with up to 20 at.-% of Mg,Ca or Y were prepared by chemical precipitation under hydrothermal conditions. The particle size and shape of the powders change slightly with the dopant concentrations. The the of the dopants on the sintering of the compacted powders was investigated during heating at a constant rate of 10℃/min. The elemental composition and the concentration of the dopant has significant efFect on the densification and grain growth. Compared to undoped CeO2, the dopants produce a shift in the densification curve to higher temperatures. For the same dopant concentration and under identical sintering conditions, the Ca doped samples reach nearly full density with the smallest grain size (≈50 nm), however, the Mg doped sample has the lowest density (≈95% of the theoretical) with the largest grain size (≈1 μm)展开更多
To satisfy practical requirements from industrial applications, an alternate route for synthesis compound ultrafine CeO2 powders by wet-solid-phase mechanochemical modification using industrial grade hydrated cerium c...To satisfy practical requirements from industrial applications, an alternate route for synthesis compound ultrafine CeO2 powders by wet-solid-phase mechanochemical modification using industrial grade hydrated cerium carbonate as raw material was proposed.The effect of modifier reaction percentage, reaction time, calcining temperature and modifier amount on particle size, density, suspensibility, and hardness of compound CeO2 powder was investigated.The phase evolutions of preparation process were characterized by XRD.SEM micrograph of the final product shows that compound CeO2 powders obtained are well-dispersed, spherically-shaped, uniformly-sized and submicron-sized particles.The method is readily available in raw material, low in cost, simple in process, and has great potential for industrialization.The compound CeO2 powders of different physical properties can be synthesized by controlling the above-mentioned influence factors in preparation process.展开更多
文摘Nanocrystalline CeO2 powders (particle size ≈10-15 nm), doped with up to 20 at.-% of Mg,Ca or Y were prepared by chemical precipitation under hydrothermal conditions. The particle size and shape of the powders change slightly with the dopant concentrations. The the of the dopants on the sintering of the compacted powders was investigated during heating at a constant rate of 10℃/min. The elemental composition and the concentration of the dopant has significant efFect on the densification and grain growth. Compared to undoped CeO2, the dopants produce a shift in the densification curve to higher temperatures. For the same dopant concentration and under identical sintering conditions, the Ca doped samples reach nearly full density with the smallest grain size (≈50 nm), however, the Mg doped sample has the lowest density (≈95% of the theoretical) with the largest grain size (≈1 μm)
基金Project supported by the National Natural Science Foundation of China (20163002)and the Jianxi Natural Science Foundation( 0220004 )
文摘To satisfy practical requirements from industrial applications, an alternate route for synthesis compound ultrafine CeO2 powders by wet-solid-phase mechanochemical modification using industrial grade hydrated cerium carbonate as raw material was proposed.The effect of modifier reaction percentage, reaction time, calcining temperature and modifier amount on particle size, density, suspensibility, and hardness of compound CeO2 powder was investigated.The phase evolutions of preparation process were characterized by XRD.SEM micrograph of the final product shows that compound CeO2 powders obtained are well-dispersed, spherically-shaped, uniformly-sized and submicron-sized particles.The method is readily available in raw material, low in cost, simple in process, and has great potential for industrialization.The compound CeO2 powders of different physical properties can be synthesized by controlling the above-mentioned influence factors in preparation process.