Objective:To examine the inhibitory effect of Hydrangea serrata extract against hepatocellular carcinoma HepG2 cells and its underlying mechanisms.Methods:The effects of Hydrangea serrata extract on growth inhibition ...Objective:To examine the inhibitory effect of Hydrangea serrata extract against hepatocellular carcinoma HepG2 cells and its underlying mechanisms.Methods:The effects of Hydrangea serrata extract on growth inhibition of tumor cells and spheroids were assessed using MTT and 3D culture assays.Quantitative real-time PCR and Western blot analyses were employed to investigate the changes in mRNA and protein expression levels of molecules related to cell cycle and apoptosis.Results:Hydrangea serrata extract effectively inhibited the growth of both tumor cells and spheroids.The extract also significantly upregulated p27 mRNA expression and downregulated CDK2 mRNA expression,leading to cell cycle arrest.Moreover,increased BAX/Bcl-2 ratio as well as caspase-9 and-3 were observed after treatment with Hydrangea serrata extract,indicating the induction of tumor cell apoptosis.Conclusions:Hydrangea serrata extract has the potential to alleviate tumors by effectively modulating cell-cycle-related gene expressions and inducing apoptosis,thereby inhibiting tumor growth.展开更多
Objective Endometrial carcinoma(EC)is a prevalent gynecological malignancy characterized by increasing incidence and mortality rates.This underscores the critical need for novel therapeutic targets.One such potential ...Objective Endometrial carcinoma(EC)is a prevalent gynecological malignancy characterized by increasing incidence and mortality rates.This underscores the critical need for novel therapeutic targets.One such potential target is cell division cycle 20(CDC20),which has been implicated in oncogenesis.This study investigated the effect of the CDC20 inhibitor Apcin on EC and elucidated the underlying mechanism involved.Methods The effects of Apcin on EC cell proliferation,apoptosis,and the cell cycle were evaluated using CCK8 assays and flow cytometry.RNA sequencing(RNA-seq)was subsequently conducted to explore the underlying molecular mechanism,and Western blotting and coimmunoprecipitation were subsequently performed to validate the results.Animal studies were performed to evaluate the antitumor effects in vivo.Bioinformatics analysis was also conducted to identify CDC20 as a potential therapeutic target in EC.Results Treatment with Apcin inhibited proliferation and induced apoptosis in EC cells,resulting in cell cycle arrest.Pathways associated with apoptosis and the cell cycle were activated following treatment with Apcin.Notably,Apcin treatment led to the upregulation of the cell cycle regulator p21,which was verified to interact with CDC20 and consequently decrease the expression of downstream cyclins in EC cells.In vivo experiments confirmed that Apcin treatment significantly impeded tumor growth.Higher CDC20 expression was observed in EC tissue than in nonmalignant tissue,and increased CDC20 expression in EC patients was associated with shorter overall survival and progress free interval.Conclusion CDC20 is a novel molecular target in EC,and Apcin could be developed as a candidate antitumor drug for EC treatment.展开更多
Objectives:The pro-oncogenic effects of NCAPD2 have been extensively studied across various tumor types;however,its precise role within the context of lung adenocarcinoma(LUAD)remains elusive.This study aims to elucid...Objectives:The pro-oncogenic effects of NCAPD2 have been extensively studied across various tumor types;however,its precise role within the context of lung adenocarcinoma(LUAD)remains elusive.This study aims to elucidate the biological functions of NCAPD2 in LUAD and unravel the underlying mechanistic pathways.Methods:Utilizing bioinformatics methodologies,we explored the differential expression of NCAPD2 between normal and tumor samples,along with its correlations with clinical-pathological characteristics,survival prognosis,and immune infiltration.Results:In the TCGA-LUAD dataset,tumor samples demonstrated significantly elevated levels of NCAPD2 expression compared to normal samples(p<0.001).Clinically,higher NCAPD2 expression was notably associated with advanced T,N,and M stages,pathologic stage,gender,smoking status,and diminished overall survival(OS).Moreover,differentially expressed genes(DEGs)associated with NCAPD2 were predominantly enriched in pathways related to cell division.Immune infiltration analysis revealed that NCAPD2 expression levels were linked to the infiltration of memory B cells,naïve CD4+T cells,activated memory CD4+T cells,and M1 macrophages.In vitro experiments demonstrated that silencing NCAPD2 suppressed LUAD cell proliferation,migration,invasion,epithelial-mesenchymal transition(EMT),and cell cycle progression.Conclusions:In summary,NCAPD2 may represent a promising prognostic biomarker and novel therapeutic target for LUAD.展开更多
Krill oil(KO)exhibits various biological activities,such as anti-inflammatory and antitumor effects.However,the inhibitory effects of benign prostatic hyperplasia(BPH)in vitro and in vivo have not yet been studied.Thi...Krill oil(KO)exhibits various biological activities,such as anti-inflammatory and antitumor effects.However,the inhibitory effects of benign prostatic hyperplasia(BPH)in vitro and in vivo have not yet been studied.This study investigated the anti-BPH effects of KO extracted by an enzymatic hydrolysis method.KO treatment inhibited the proliferation of WMPY-1 and BPH-1 cells by induction of G0/G1 phase arrest through the modulation of positive and negative regulators in both prostate cell types.KO treatment stimulated phosphorylation of c-Jun N-terminal kinase(JNK)and p38 signaling.In addition,KO changed the expression of BPH-related markers(5α-reductase,androgen receptor,FGF,Bcl-2,and Bax)and the activity of the proliferation-mediated NF-κB binding motif.KO-induced levels of proliferation-mediated molecules of prostate cells were attenuated in the presence of siRNA-specific p-38(si-p38)and JNK(si-JNK).Furthermore,the administration of KO alleviated prostate size and weight and the cell layer thickness of prostate glands in a testosterone enanthate-induced BPH rat model.KO treatment altered the level of dihydrotestosterone in serum and the expression levels of BPH-related markers in prostate tissues.Finally,KO-mediated inhibition of prostatic growth was validated by histological analysis.These results suggest that KO has an inhibitory effect on BPH in prostate cells in vitro and in vivo.Thus,KO might be a potential prophylactic or therapeutic agent for patients with BPH.展开更多
Neurodegenerative diseases are caused by the progressive loss of specific neurons.The exact mechanisms of action of these diseases are unknown,and many studies have focused on pathways related to abnormal accumulation...Neurodegenerative diseases are caused by the progressive loss of specific neurons.The exact mechanisms of action of these diseases are unknown,and many studies have focused on pathways related to abnormal accumulation and processing of proteins,mitochondrial dysfunction,and oxidative stress leading to apoptotic death.However,a growing body of evidence indicates that aberrant cell cycle re-entry plays a major role in the pathogenesis of neurodegeneration.The activation of the cell cycle in mature neurons could be promoted by several signaling mechanisms,including c-Jun N-terminal kinases,p38 mitogen-activated protein kinases,and mitogen-activated protein kinase/extracellular signal-regulated kinase cascades;post-translational modifications such as Tau-phosphorylation;and DNA damage response.In all these events,implicated Cdk5,a proline-directed serine/threonine protein kinase,seems to be responsible for several cellular processes in neurons including axon growth,neurotransmission,synaptic plasticity,neuronal migration,and maintenance of neuronal survival.However,under pathological conditions,Cdk5 dysregulation may lead to cell cycle re-entry in post-mitotic neurons.Thus,Cdk5 hyperactivation,by its physiologic activator p25,hyper-phosphorylates downstream substrates related to neurodegenerative diseases.This review summarizes factors such as oxidative stress,DNA damage response,signaling pathway disturbance,and Ubiquitin proteasome malfunction contributing to cell cycle re-entry in post-mitotic neurons.It also describes how all these factors are linked to a greater or lesser extent with Cdk5.Thus,it offers a global vision of the function of cell cycle-related proteins in mature neurons with a focus on Cdk5 and how this protein contributes to the development of Alzheimer’s disease,Parkinson’s disease,amyotrophic lateral sclerosis,and Huntington’s disease by cell cycle activation.展开更多
Polyphenol-rich foods have been shown to be good for cancer prevention as powerful antioxidants. In this study, the mechanisms of wild pink bayberry free phenolic extract(WPBFE)inhibiting the proliferation and inducin...Polyphenol-rich foods have been shown to be good for cancer prevention as powerful antioxidants. In this study, the mechanisms of wild pink bayberry free phenolic extract(WPBFE)inhibiting the proliferation and inducing apoptotic of MDA-MB-231 breast cancer cells was examined. The main phenolic acids and flavonols in WPBFE were gallic acid((18.83 ± 0.44)μg/g FW)and myricetin((1.52 ± 0.05)μg/g FW), respectively. The maximum inhibition rate of WPBFE at non-cytotoxicity dose(below 80 mg/mL)was 81%. Western blotting analysis showed that WPBFE could cause the arrest of cell cycle in G0/G1 phase by down-regulating expression levels of PCNA, CDK4, cyclin D1 and up-regulating the expression level of p21. Meanwhile, WPBFE induced apoptosis through initiating the mitochondrial death pathway by up-regulating cleaved caspase-3 and enhancing the ratio of Bax/Bcl-2, with the maximum expression levels of 1.29 and 2.03 folds that of control group, respectively. Further study of the upstream protein, we found that WPBFE down-regulated TRAF2, while upregulated p-ASK1, p-p38 and p-p53. Furthermore, WPBFE could down-regulate the expression of p-PI3K and p-Akt. These observations indicated that WPBFE might play an anticancer role through regulating the p38 MAPK together with PI3K/Akt pathway.展开更多
Mutations in the microrchidia CW-type zinc finger protein 2(MORC2)gene are the causative agent of Charcot-Marie-Tooth disease type 2Z(CMT2Z),and the hotspot mutation p.S87L is associated with a more seve re spinal mus...Mutations in the microrchidia CW-type zinc finger protein 2(MORC2)gene are the causative agent of Charcot-Marie-Tooth disease type 2Z(CMT2Z),and the hotspot mutation p.S87L is associated with a more seve re spinal muscular atrophy-like clinical phenotype.The aims of this study were to determine the mechanism of the severe phenotype caused by the MORC2 p.S87L mutation and to explore potential treatment strategies.Epithelial cells were isolated from urine samples from a spinal muscular atrophy(SMA)-like patient[MORC2 p.S87L),a CMT2Z patient[MORC2 p.Q400R),and a healthy control and induced to generate pluripotent stem cells,which were then differentiated into motor neuron precursor cells.Next-generation RNA sequencing followed by KEGG pathway enrichment analysis revealed that differentially expressed genes involved in the PI3K/Akt and MAP K/ERK signaling pathways were enriched in the p.S87L SMA-like patient group and were significantly downregulated in induced pluripotent stem cells.Reduced proliferation was observed in the induced pluripotent stem cells and motor neuron precursor cells derived from the p.S87L SMA-like patient group compared with the CMT2Z patient group and the healthy control.G0/G1 phase cell cycle arrest was observed in induced pluripotent stem cells derived from the p.S87L SMA-like patient.MORC2 p.S87Lspecific antisense oligonucleotides(p.S87L-ASO-targeting)showed significant efficacy in improving cell prolife ration and activating the PI3K/Akt and MAP K/ERK pathways in induced pluripotent stem cells.Howeve r,p.S87L-ASO-ta rgeting did not rescue prolife ration of motor neuron precursor cells.These findings suggest that downregulation of the PI3K/Akt and MAP K/ERK signaling pathways leading to reduced cell proliferation and G0/G1 phase cell cycle arrest in induced pluripotent stem cells might be the underlying mechanism of the severe p.S87L SMA-like phenotype.p.S87L-ASO-targeting treatment can alleviate disordered cell proliferation in the early stage of pluripotent stem cell induction.展开更多
Objective:To investigate the potential synergistic activity of diclofenac with piperine and D-limonene in inducing apoptosis and cell cycle arrest in breast cancer MCF-7 cells.Methods:Molecular docking study was condu...Objective:To investigate the potential synergistic activity of diclofenac with piperine and D-limonene in inducing apoptosis and cell cycle arrest in breast cancer MCF-7 cells.Methods:Molecular docking study was conducted to evaluate the binding affinity of diclofenac with piperine and D-limonene against p53,Bax,and Bcl-2.The MTT assay was used to determine IC50,and the Chou-Talay method was used to determine the synergistic concentration of the combination treatment of diclofenac plus piperine and diclofenac plus D-limonene.Apoptosis detection,cell cycle arrest,reactive oxygen species production,and mitochondrial membrane potential were also investigated.Results:Diclofenac,piperine,and D-limonene showed potent binding affinity for p53,Bax,and Bcl-2.Diclofenac plus piperine and diclofenac plus D-limonene enhanced the formation of reactive oxygen species,which also had an effect on the mitochondrial membrane’s integrity and caused DNA fragmentation.Diclofenac plus piperine and diclofenac plus D-limonene arrested the cells in the sub-G0phase while drastically lowering the percentage of cells in the G2/M phase.Furthermore,the elevated apoptosis in the combined therapy was confirmed by annexin V/propidium iodide staining.Conclusions:The combined therapy prominently enhanced the antiproliferative and apoptotic effects on MCF-7 cells compared with treatment with diclofenac,piperine,and D-limonene alone.展开更多
BACKGROUND Prohibitin 1(PHB1)has been identified as an antiproliferative protein that is highly conserved and ubiquitously expressed,and it participates in a variety of essential cellular functions,including apoptosis...BACKGROUND Prohibitin 1(PHB1)has been identified as an antiproliferative protein that is highly conserved and ubiquitously expressed,and it participates in a variety of essential cellular functions,including apoptosis,cell cycle regulation,prolifera-tion,and survival.Emerging evidence indicates that PHB1 may play an important role in the progression of hepatocellular carcinoma(HCC).However,the role of PHB1 in HCC is controversial.AIM To investigate the effects of PHB1 on the proliferation and apoptosis of human HCC cells and the relevant mechanisms in vitro.METHODS HCC patients and healthy individuals were enrolled in this study according to the inclusion and exclusion criteria;then,PHB1 levels in the sera and liver tissues of these participates were determined using ELISA,RT-PCR,and immunohistoche-mistry.Human HepG2 and SMMC-7721 cells were transfected with the pEGFP-PHB1 plasmid and PHB1-specific shRNA(shRNA-PHB1)for 24-72 h.Cell prolif-eration was analysed with an MTT assay.Cell cycle progression and apoptosis were analysed using flow cytometry(FACS).The mRNA and protein expression levels of the cell cycle-related molecules p21,Cyclin A2,Cyclin E1,and CDK2 and the cell apoptosis-related molecules cytochrome C(Cyt C),p53,Bcl-2,Bax,caspase 3,and caspase 9 were measured by real-time PCR and Western blot,respectively.RESULTS Decreased levels of PHB1 were found in the sera and liver tissues of HCC patients compared to those of healthy individuals,and decreased PHB1 was positively correlated with low differentiation,TNM stage III-IV,and alpha-fetoprotein≥400μg/L.Overexpression of PHB1 significantly inhibited human HCC cell proliferation in a time-dependent manner.FACS revealed that the overexpression of PHB1 arrested HCC cells in the G0/G1 phase of the cell cycle and induced apoptosis.The proportion of cells in the G0/G1 phase was significantly increased and the proportion of cells in the S phase was decreased in HepG2 cells that were transfected with pEGFP-PHB1 compared with untreated control and empty vector-transfected cells.The percentage of apoptotic HepG2 cells that were transfected with pEGFP-PHB1 was 15.41%±1.06%,which was significantly greater than that of apoptotic control cells(3.65%±0.85%,P<0.01)and empty vector-transfected cells(4.21%±0.52%,P<0.01).Similar results were obtained with SMMC-7721 cells.Furthermore,the mRNA and protein expression levels of p53,p21,Bax,caspase 3,and caspase 9 were increased while the mRNA and protein expression levels of Cyclin A2,Cy-clin E1,CDK2,and Bcl-2 were decreased when PHB1 was overexpressed in human HCC cells.However,when PHB1 was upregulated in human HCC cells,Cyt C expression levels were increased in the cytosol and decreased in the mitochondria,which indicated that Cyt C had been released into the cytosol.Conversely,these effects were reversed when PHB1 was knocked down.CONCLUSION PHB1 inhibits human HCC cell viability by arresting the cell cycle and inducing cell apoptosis via activation of the p53-mediated mitochondrial pathway.展开更多
Background:The cell cycle is at the center of cellular activities and is orchestrated by complex regulatory mechanisms,among which transcriptional regulation is one of the most important components.Alternative splicin...Background:The cell cycle is at the center of cellular activities and is orchestrated by complex regulatory mechanisms,among which transcriptional regulation is one of the most important components.Alternative splicing dramatically expands the regulatory network by producing transcript isoforms of genes to exquisitely control the cell cycle.However,the patterns of transcript isoform expression in the cell cycle are unclear.Therapies targeting cell cycle checkpoints are commonly used as anticancer therapies,but none of them have been designed or evaluated at the alternative splicing transcript level.The utility of these transcripts as markers of cell cycle-related drug sensitivity is still unknown,and studies on the expression patterns of cell cycle-targeting drug-related transcripts are also rare.Methods:To explore alternative splicing patterns during cell cycle progression,we performed sequential transcriptomic assays following cell cycle synchronization in colon cancer HCT116 and breast cancer MDA-MB-231 cell lines,using flow cytometry and reference cell cycle transcripts to confirm the cell cycle phases of samples,and we developed a new algorithm to describe the periodic patterns of transcripts fluctuating during the cell cycle.Genomics of Drug Sensitivity in Cancer(GDSC)drug sensitivity datasets and Cancer Cell Line Encyclopedia(CCLE)transcript datasets were used to assess the correlation of genes and their transcript isoforms with drug sensitivity.We identified transcripts associated with typical drugs targeting cell cycle by determining correlation coefficients.Cytotoxicity assays were used to confirm the effect of ENST00000257904 against cyclin dependent kinase 4/6(CDK4/6)inhibitors.Finally,alternative splicing transcripts associated with mitotic(M)phase arrest were analyzed using an RNA synthesis inhibition assay and transcriptome analysis.Results:We established high-resolution transcriptome datasets of synchronized cell cycle samples from colon cancer HCT116 and breast cancer MDA-MB-231 cells.The results of the cell cycle assessment showed that 43,326,41,578 and 29,244 transcripts were found to be periodically expressed in HeLa,HCT116 and MDA-MB-231 cells,respectively,among which 1280 transcripts showed this expression pattern in all three cancer cell lines.Drug sensitivity assessments showed that a large number of these transcripts displayed a higher correlation with drug sensitivity than their corresponding genes.Cell cycle-related drug screening showed that the level of the CDK4 transcript ENST00000547281 was more significantly associated with the resistance of cells to CDK4/6 inhibitors than the level of the CDK4 reference transcript ENST00000257904.The transcriptional inhibition assay following M phase arrest further confirmed the M-phase-specific expression of the splicing transcripts.Combined with the cell cycle-related drug screening,the results also showed that a set of periodic transcripts,for example,ENST00000314392(a dolichylphosphate mannosyltransferase polypeptide 2 isoform transcript),was more associated with drug sensitivity than the levels of their corresponding gene transcripts.Conclusions:In summary,we identified a panel of cell cycle-related periodic transcripts and found that the levels of transcripts of drug target genes showed different values for predicting drug sensitivity,providing novel insights into alternative splicing-related drug development and evaluation.展开更多
Fizzy-related protein homolog 1 (FZR1) mainly functions as a specific activator of the anaphase-promotingcomplex/cyclosome (APC/C) in the cell cycle and controls the G0 and G1 phases of the cell cycle. We highlightrec...Fizzy-related protein homolog 1 (FZR1) mainly functions as a specific activator of the anaphase-promotingcomplex/cyclosome (APC/C) in the cell cycle and controls the G0 and G1 phases of the cell cycle. We highlightrecent work that has studied the role of FZR1 in tumorigenesis, growth, differentiation, and genome stability throughcell-cycle control. We summarize the current state of knowledge regarding FZR1 structure, function, and the distinctways of APC/C dysregulation in solid tumors and hematologic malignancies. We also discuss novel approaches fortargeting the FZR1 as a cancer therapy and research area for future work.展开更多
Background:This study aimed to select compounds with unique inhibitory effects on muscle-invasive bladder cancer(MIBC)from coumarone derivatives with similar parent nuclear structures and to reveal their tumor-suppres...Background:This study aimed to select compounds with unique inhibitory effects on muscle-invasive bladder cancer(MIBC)from coumarone derivatives with similar parent nuclear structures and to reveal their tumor-suppressive effects using various approaches.Methods:Bladder cancer cell lines SW780 and T24,as well as human normal bladder epithelial cell line SV-HUC-1 were selected as the study model,and these urinary system cells were co-incubated with various concentrations of(S,E)-4-(4-methylbenzylidene)-3-phenylchroman-3-ol,(S,E)-4-(4-isocyanobenzylidene)-3-phenylchroman-3-ol,(S,E)-4-(4-fluorobenzylidene)-3-phenylchroman-3-ol(FPO),and(S,E)-3-phenyl-4-(4-(trifluoromethoxy)benzylidene)chroman-3-ol.Cell activity was detected using cell counting kit-8.FPO showed the strongest inhibitory effect on MIBC cells;therefore,it was selected for further experiments.We monitored the FPO-induced T24 cell morphological changes with an inverted microscope.The FPO-inhibited migration of T24 cells was examined using a cell scratch assay.We detected the clonogenic ability of T24 cells through a clone formation test and evaluated their proliferative ability using a 5-ethynyl-2’-deoxyuridine fluorescence staining kit.The inhibitory effect of FPO against the cell cycle was monitored using flow cytometry,and its suppressive effect on the DNA replication ability of T24 cells was detected using double fluorescence staining(Ki67 and phalloidin).Results:Among the four candidate coumarone derivatives,FPO showed the most significant inhibitory effect on MIBC cells and was less toxic to normal urothelial cells.FPO inhibited T24 cell growth in time and dose-dependent manners(the half-inhibitory concentration is 8μM).FPO significantly repressed the proliferation,migration,and clonogenic ability of bladder cancer T24 cells.Cell mobility was significantly inhibited by FPO:30μM FPO almost completely repressed migration occurred at after 24 h treatment.Moreover,FPO significantly suppressed the clonogenicity of bladder cancer cells in a dose-dependent manner.Mechanistically,FPO targeted the cell cycle,arresting the S and G2 phases on bladder cancer T24 cells.Conclusion:We discovered a novel anticancer chemical,FPO,and proposed a potential mechanism,through which it suppresses MIBC T24 cells by repressing the cell cycle in the S and G2 phases.This study contributes to the development of novel anticancer drugs for MIBC.展开更多
Background:As reported,γ-tubulin(TuBG1)is related to the occurrence and development of various types of malignant tumors.However,its role in hepatocellular cancer(HCC)is not clear.The present study was to investigate...Background:As reported,γ-tubulin(TuBG1)is related to the occurrence and development of various types of malignant tumors.However,its role in hepatocellular cancer(HCC)is not clear.The present study was to investigate the relationship between TuBG1 and clinical parameters and survival in HCC patients.Methods:The correlation between TuBG1 and clinical parameters and survival in HCC patients was ex-plored by bioinformatics analysis.Immunohistochemistry was used for the verification.The molecular function of TuBG1 was measured using colony formation,scratch assay,trans-well assay and flow cytometry.Gene set enrichment analysis(GSEA)was used to pick up the enriched pathways,followed by investigating the target pathways using Western blotting.The tumor-immune system interactions and drug bank database(TISIDB)was used to evaluate TuBG1 and immunity.Based on the TuBG1-related immune genes,a prognostic model was constructed and was further validated internally and externally.Results:The bioinformatic analysis found high expressed TuBG1 in HCC tissue,which was confirmed us-ing immunohistochemistry and Western blotting.After silencing the TuBG1 in HCC cell lines,more G1 arrested cells were found,cell proliferation and invasion were inhibited,and apoptosis was promoted.Furthermore,the silence of TuBG1 increased the expressions of Ataxia-Telangiectasia and Rad-3(ATR),phospho-P38 mitogen-activated protein kinase(P-P38MAPK),phospho-P53(P-P53),B-cell lymphoma-2 associated X protein(Bax),cleaved caspase 3 and P21;decreased the expressions of B-cell lymphoma-2(Bcl-2),cyclin D1,cyclin E2,cyclin-dependent kinase 2(CDK2)and CDK4.The correlation analysis of immunohistochemistry and clinical parameters and survival data revealed that TuBG1 was negatively corre-lated with the overall survival.The constructed immune prognosis model could effectively evaluate the prognosis.Conclusions:The increased expression of TuBG1 in HCC is associated with poor prognosis,which might be involved in the occurrence and development of HCC.展开更多
Background:Despite the availability of chemotherapy drugs such as 5-fluorouracil(5-FU),the treatment of some cancers such as gastric cancer remains challenging due to drug resistance and side effects.This study aimed t...Background:Despite the availability of chemotherapy drugs such as 5-fluorouracil(5-FU),the treatment of some cancers such as gastric cancer remains challenging due to drug resistance and side effects.This study aimed to investigate the effect of celastrol in combination with the chemotherapy drug 5-FU on proliferation and induction of apoptosis in human gastric cancer cell lines(AGS and EPG85-257).Materials and Methods:In this in vitro study,AGS and EPG85-257 cells were treated with different concentrations of celastrol,5-FU,and their combination.Cell proliferation was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide(MTT)assay.The synergistic effect of 5-FU and celastrol was studied using Compusyn software.The DNA content at different phases of the cell cycle and apoptosis rate was measured usingflow cytometry.Results:Co-treatment with low concentrations(10%inhibitory concentration(IC10))of celastrol and 5-FU significantly reduced IC50(p<0.05)so that 48 h after treatment,IC50 was calculated at 3.77 and 6.9μM for celastrol,20.7 and 11.6μM for 5-FU,and 5.03 and 4.57μM for their combination for AGS and EPG85-257 cells,respectively.The mean percentage of apoptosis for AGS cells treated with celastrol,5-FU,and their combination was obtained 23.9,41.2,and 61.9,and for EPG85-257 cells 5.65,46.9,and 55.7,respectively.In addition,the 5-FU and celastrol-5-FU combination induced cell cycle arrest in the synthesis phase.Conclusions:Although celastrol could decrease the concentration of 5-fluorouracil that sufficed to suppress gastric cancer cells,additional studies are required to arrive at conclusive evidence on the anticancer effects of celastrol.展开更多
Cancer frequently develops resistance to the majority of chemotherapy treatments.This study aimed to examine the synergistic cytotoxic and antitumor effects of SGLT2 inhibitors,specifically Canagliflozin(CAN),Dapaglif...Cancer frequently develops resistance to the majority of chemotherapy treatments.This study aimed to examine the synergistic cytotoxic and antitumor effects of SGLT2 inhibitors,specifically Canagliflozin(CAN),Dapagliflozin(DAP),Empagliflozin(EMP),and Doxorubicin(DOX),using in vitro experimentation.The precise combination of CAN+DOX has been found to greatly enhance the cytotoxic effects of doxorubicin(DOX)in MCF-7 cells.Interestingly,it was shown that cancer cells exhibit an increased demand for glucose and ATP in order to support their growth.Notably,when these medications were combined with DOX,there was a considerable inhibition of glucose consumption,as well as reductions in intracellular ATP and lactate levels.Moreover,this effect was found to be dependent on the dosages of the drugs.In addition to effectively inhibiting the cell cycle,the combination of CAN+DOX induces substantial modifications in both cell cycle and apoptotic gene expression.This work represents the initial report on the beneficial impact of SGLT2 inhibitor medications,namely CAN,DAP,and EMP,on the responsiveness to the anticancer properties of DOX.The underlying molecular mechanisms potentially involve the suppression of the function of SGLT2.展开更多
Objectives:Sciadopitysin(SP)is aflavonoid in Ginkgo biloba that exhibits various pharmacological activities.This study aimed to investigate its antitumor effects and the underlying molecular mechanism of SP in hepatoce...Objectives:Sciadopitysin(SP)is aflavonoid in Ginkgo biloba that exhibits various pharmacological activities.This study aimed to investigate its antitumor effects and the underlying molecular mechanism of SP in hepatocellular carcinoma(HCC)cells.Methods:Network pharmacology was used for target prediction analysis.Cell Counting Kit-8(CCK-8)assay was used to test the cell viability.Flow cytometry was used to test the cell cycle distribution,apoptosis status,and reactive oxygen species(ROS)levels.Transwell and wound-healing assay was used to test the migration effect of SP on HepG2 cells.Western Blot assay was used to test the expression levels of proteins.Results:Network pharmacology analysis results showed that the mitogen-activated protein kinase(MAPK)and other signaling pathways are involved in the SP anti-HCC biological process.CCK-8 assay results demonstrated that SP showed an obvious killing effect on three types of HCC cells and low cytotoxic effect on normal cells.Western Blot andflow cytometry results showed that SP regulated MAPK/signal transducer and activator of transcription 3(STAT3)/nuclear factor kappa-B(NF-κB)signaling pathway to induce mitochondrion-dependent apoptosis in HepG2 cells.Additionally,SP can arrest the G0/G1 phase cell cycle via the protein kinase B(AKT)/p21/p27/cyclin-dependent kinase(CDK)/Cyclin signaling pathway.Wound healing and transwell assays showed that SP inhibited cell motility and invasion through the AKT/glycogen synthase kinase3β(GSK-3β)/vimentin/β-catenin signaling pathway.Conclusion:Thesefindings demonstrated that SP induced mitochondrion-dependent apoptosis,arrested cell cycle in the G0/G1 phase,and inhibited cell migration by regulating the ROS-mediated signaling pathway in HepG2 cells.Thus,SP could serve as a therapeutic agent for the treatment of human HCC.展开更多
Background:Nasopharyngeal carcinoma(NPC)exhibits a significant prevalence in the southern regions of China,and paclitaxel(PTX)is frequently employed as a medication for managing advanced NPC.However,drug resistance is...Background:Nasopharyngeal carcinoma(NPC)exhibits a significant prevalence in the southern regions of China,and paclitaxel(PTX)is frequently employed as a medication for managing advanced NPC.However,drug resistance is typically accompanied by a poor prognosis.Exploring the synergistic potential of combining multiple chemotherapeutic agents may represent a promising avenue for optimizing treatment efficacy.Methods:This study investigated whether 3-Methyladenine(3-MA)could potentiated the effect of PTX and its potential molecular mechanism.Samples were divided into the following categories:Negative control(NC)with the solvent dimethyl sulfoxide(DMSO,0.5%v/v),PTX(400 nM),3-MA(4 mM),and PTX(400 nM)+3-MA(4 mM).The viability of NPC cells was assessed using both the cell counting kit-8(CCK-8)assay and the colony formation assay.Microscopic observation was performed to identify morphological cell changes.Flow cytometry was used to assess cell cycle status,mitochondrial membrane potential(MMP),and apoptotic cells.Western blotting was conducted to quantify the protein expression.Results:3-MA enhanced PTX-specific inhibition of NPC cell proliferation.PTX,either alone or in combination with 3-MA,caused cell cycle halt at the G2/M phase in the majority of NPC cells,and the combination treatment of PTX with 3-MA induced a higher rate of NPC cell death compared to PTX alone.Western blotting results revealed the combination of PTX with 3-MA heightened activation of cyclin-dependent kinase 1(CDK1),a key molecule in shifting cells from mitotic arrest to apoptosis,led to a reduction in Myeloid Cell Leukemia 1(MCL-1)expression and an increase in Poly(ADP-ribose)polymerase(PARP)cleavage.Conclusion:The concurrent administration of PTX with 3-MA effectively enhances PTX’s inhibitory impact on NPC and activates the apoptosis signal regulated by CDK1.展开更多
Introduction:Among all malignant tumors of the digestive system,pancreatic carcinoma exhibits the highest mortality rate.Currently,prevention and effective treatment are urgent issues that need to be addressed.Methods...Introduction:Among all malignant tumors of the digestive system,pancreatic carcinoma exhibits the highest mortality rate.Currently,prevention and effective treatment are urgent issues that need to be addressed.Methods:The study focused on meiotic nuclear divisions 1(MND1),integrating data from the Gene Expression Profiling Interactive Analysis(GEPIA)database with prognostic survival analysis.Simultaneously,experiments at cellular level were employed to demonstrate the effect of MND1 on the proliferation and migration of PC.The small-molecule inhibitor of MND1 was used to suppress the migration of PC cells by knocking down MND1 using small interfering RNA(siRNA)in Patu-8988 and Panc1 cell lines.Results:The results of Cell Counting Kit-8 indicated that the suppression of MND1 resulted in a decrease in cell proliferation.Wound healing and Transwell assays revealed that MND1 knockdown reduced cell migration and invasion.Flow cytometry revealed that inhibiting MND1 hindered the cell cycle.Furthermore,MND1 could stimulate the proliferation,migration,and invasion of Patu-8988 and Panc1 cells by increasing the expression of MND1.Notably,MND1 had a positive effect on H2AFX expression in PC cells.Elevated MND1 expression suggests the low overall survival rate of individuals diagnosed with PC.Conclusion:These findings suggest that MND1 has the potential to be a gene with the ability to accurately diagnose and treat PC.展开更多
Background:The treatment alternatives for bladder cancer(BLCA),the 10th most prevalent cancer in the world,need to be further investigated,and many active substances like Puerarin in herbal medicine were found to be e...Background:The treatment alternatives for bladder cancer(BLCA),the 10th most prevalent cancer in the world,need to be further investigated,and many active substances like Puerarin in herbal medicine were found to be effective in treating BLCA.The purpose of this study was to investigate the potential treating mechanisms of Puerarin on BLCA.Methods:The cell counting kit 8 assay and flow cytometry were performed to confirm Puerarin’s ability to suppress BLCA.The differentially expressed proteins(DEPs)were obtained by Tandem Mass Tags technology and functional enrichment analysis performed by R studio.The most enriched pathways were selected for study and the DEPs were screened out.Protein-protein interaction network maps were created using String and Cytoscape and key proteins,which will be analyzed for survival,expression,and upstream transcription factor prediction,were screened out using the cytoHubba plugin.CHEA3 was used to obtain upstream transcription factor validated by molecular docking and western blotting experiments.Results:Cell counting kit 8 showed that Puerarin inhibited BLCA cells,with 50%inhibitory concentration of 218μmol/L in T24 and 198μmol/L in 5637.Flow cytometry reveals that Puerarin blocks T24 and 5637 cells in G1 phase.1,385 DEPs were obtained and the enrichment analysis revealed that cell cycle and DNA replication were the two main areas in which DEPs were enriched.Cyclin-B-cyclin dependent kinase 1(CDK1),cyclin B1(CCNB1),and polo-like kinase 1(PLK1)were identified as key proteins,and their upstream transcription factor was predicted to be centromere protein A(CENPA).Puerarin’s binding energy to CENPA was determined by molecular docking to be−6.3 kcal/mol,indicating a strong binding interaction.Western blot showed that Puerarin significantly reduced the expression of CENPA.Conclusion:We hypothesize that Puerarin may inhibit the proliferation of bladder cancer cells by inhibiting CENPA expression to regulate PLK1 and CCNB1 expression,thereby affecting cell cycle.展开更多
Aim To investigate in vitro apoptosis-induction effects of oridonin on gastric tumor cells BGC-823 and its effects on cell cycle, mitochondrial membrane potential and intracellular Ca^2+ to shed light on the mode of ...Aim To investigate in vitro apoptosis-induction effects of oridonin on gastric tumor cells BGC-823 and its effects on cell cycle, mitochondrial membrane potential and intracellular Ca^2+ to shed light on the mode of its anticancer action. Methods The MTT method was used to investigate the inhibitory effect of oridonin on BGC-823 cells. The apoptosis-induction effect was evaluated by confocal laser microscopy and flow cytometry. The change of mitochondrial membrane potential and the increase of intracellular Ca^2+ were assessed by fluorescence probe rhodamine123 and Fluo 3-AM, respectively, with flow cytometry. The expression of apoptosis and cell cycle related proteins was studied using western blotting. Results Oridonin inhibited BGC-823 cells growth with IC50 of 22.21 p, mol.L^-1. It induced apoptosis in a dose-dependent manner. In addition, it decreased mitochondria membrane potential, increased intracellular Ca^2+, and activated pro-caspase 3. BGC-823 cells were arrested in G2/M cell cycle phase with lower expression of cyclin A protein. The up-regulation of p53 was observed before apoptosis and cell cycle arrest occurred. Conclusion Oridonin inhibits the proliferation of BGC-823 cells through G2/M cell cycle arrest and apoptosis induction, which is mediated by influx of Ca^2+, up-regulation of p53, activation of caspase-3, and down-regulation of cyclin A.展开更多
基金funded by the GRRC Program of Gyeonggi province[GRRC-KyungHee2023(B01)],Republic of Korea.
文摘Objective:To examine the inhibitory effect of Hydrangea serrata extract against hepatocellular carcinoma HepG2 cells and its underlying mechanisms.Methods:The effects of Hydrangea serrata extract on growth inhibition of tumor cells and spheroids were assessed using MTT and 3D culture assays.Quantitative real-time PCR and Western blot analyses were employed to investigate the changes in mRNA and protein expression levels of molecules related to cell cycle and apoptosis.Results:Hydrangea serrata extract effectively inhibited the growth of both tumor cells and spheroids.The extract also significantly upregulated p27 mRNA expression and downregulated CDK2 mRNA expression,leading to cell cycle arrest.Moreover,increased BAX/Bcl-2 ratio as well as caspase-9 and-3 were observed after treatment with Hydrangea serrata extract,indicating the induction of tumor cell apoptosis.Conclusions:Hydrangea serrata extract has the potential to alleviate tumors by effectively modulating cell-cycle-related gene expressions and inducing apoptosis,thereby inhibiting tumor growth.
文摘Objective Endometrial carcinoma(EC)is a prevalent gynecological malignancy characterized by increasing incidence and mortality rates.This underscores the critical need for novel therapeutic targets.One such potential target is cell division cycle 20(CDC20),which has been implicated in oncogenesis.This study investigated the effect of the CDC20 inhibitor Apcin on EC and elucidated the underlying mechanism involved.Methods The effects of Apcin on EC cell proliferation,apoptosis,and the cell cycle were evaluated using CCK8 assays and flow cytometry.RNA sequencing(RNA-seq)was subsequently conducted to explore the underlying molecular mechanism,and Western blotting and coimmunoprecipitation were subsequently performed to validate the results.Animal studies were performed to evaluate the antitumor effects in vivo.Bioinformatics analysis was also conducted to identify CDC20 as a potential therapeutic target in EC.Results Treatment with Apcin inhibited proliferation and induced apoptosis in EC cells,resulting in cell cycle arrest.Pathways associated with apoptosis and the cell cycle were activated following treatment with Apcin.Notably,Apcin treatment led to the upregulation of the cell cycle regulator p21,which was verified to interact with CDC20 and consequently decrease the expression of downstream cyclins in EC cells.In vivo experiments confirmed that Apcin treatment significantly impeded tumor growth.Higher CDC20 expression was observed in EC tissue than in nonmalignant tissue,and increased CDC20 expression in EC patients was associated with shorter overall survival and progress free interval.Conclusion CDC20 is a novel molecular target in EC,and Apcin could be developed as a candidate antitumor drug for EC treatment.
基金supported by the National Natural Science Foundation of China(82173828 and 81874314)the Research Project of the Shanghai Municipal Health Commission(20234Y0082).
文摘Objectives:The pro-oncogenic effects of NCAPD2 have been extensively studied across various tumor types;however,its precise role within the context of lung adenocarcinoma(LUAD)remains elusive.This study aims to elucidate the biological functions of NCAPD2 in LUAD and unravel the underlying mechanistic pathways.Methods:Utilizing bioinformatics methodologies,we explored the differential expression of NCAPD2 between normal and tumor samples,along with its correlations with clinical-pathological characteristics,survival prognosis,and immune infiltration.Results:In the TCGA-LUAD dataset,tumor samples demonstrated significantly elevated levels of NCAPD2 expression compared to normal samples(p<0.001).Clinically,higher NCAPD2 expression was notably associated with advanced T,N,and M stages,pathologic stage,gender,smoking status,and diminished overall survival(OS).Moreover,differentially expressed genes(DEGs)associated with NCAPD2 were predominantly enriched in pathways related to cell division.Immune infiltration analysis revealed that NCAPD2 expression levels were linked to the infiltration of memory B cells,naïve CD4+T cells,activated memory CD4+T cells,and M1 macrophages.In vitro experiments demonstrated that silencing NCAPD2 suppressed LUAD cell proliferation,migration,invasion,epithelial-mesenchymal transition(EMT),and cell cycle progression.Conclusions:In summary,NCAPD2 may represent a promising prognostic biomarker and novel therapeutic target for LUAD.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2018R1A6A1A03025159).
文摘Krill oil(KO)exhibits various biological activities,such as anti-inflammatory and antitumor effects.However,the inhibitory effects of benign prostatic hyperplasia(BPH)in vitro and in vivo have not yet been studied.This study investigated the anti-BPH effects of KO extracted by an enzymatic hydrolysis method.KO treatment inhibited the proliferation of WMPY-1 and BPH-1 cells by induction of G0/G1 phase arrest through the modulation of positive and negative regulators in both prostate cell types.KO treatment stimulated phosphorylation of c-Jun N-terminal kinase(JNK)and p38 signaling.In addition,KO changed the expression of BPH-related markers(5α-reductase,androgen receptor,FGF,Bcl-2,and Bax)and the activity of the proliferation-mediated NF-κB binding motif.KO-induced levels of proliferation-mediated molecules of prostate cells were attenuated in the presence of siRNA-specific p-38(si-p38)and JNK(si-JNK).Furthermore,the administration of KO alleviated prostate size and weight and the cell layer thickness of prostate glands in a testosterone enanthate-induced BPH rat model.KO treatment altered the level of dihydrotestosterone in serum and the expression levels of BPH-related markers in prostate tissues.Finally,KO-mediated inhibition of prostatic growth was validated by histological analysis.These results suggest that KO has an inhibitory effect on BPH in prostate cells in vitro and in vivo.Thus,KO might be a potential prophylactic or therapeutic agent for patients with BPH.
基金supported by the Spanish Ministry of Industry and Competitiveness[Grant BFU2016-80006-P]The Andalusian Regional Government[Group BIO-216]the FEDER-Andalusian programme 2014-2020[1262530-R].
文摘Neurodegenerative diseases are caused by the progressive loss of specific neurons.The exact mechanisms of action of these diseases are unknown,and many studies have focused on pathways related to abnormal accumulation and processing of proteins,mitochondrial dysfunction,and oxidative stress leading to apoptotic death.However,a growing body of evidence indicates that aberrant cell cycle re-entry plays a major role in the pathogenesis of neurodegeneration.The activation of the cell cycle in mature neurons could be promoted by several signaling mechanisms,including c-Jun N-terminal kinases,p38 mitogen-activated protein kinases,and mitogen-activated protein kinase/extracellular signal-regulated kinase cascades;post-translational modifications such as Tau-phosphorylation;and DNA damage response.In all these events,implicated Cdk5,a proline-directed serine/threonine protein kinase,seems to be responsible for several cellular processes in neurons including axon growth,neurotransmission,synaptic plasticity,neuronal migration,and maintenance of neuronal survival.However,under pathological conditions,Cdk5 dysregulation may lead to cell cycle re-entry in post-mitotic neurons.Thus,Cdk5 hyperactivation,by its physiologic activator p25,hyper-phosphorylates downstream substrates related to neurodegenerative diseases.This review summarizes factors such as oxidative stress,DNA damage response,signaling pathway disturbance,and Ubiquitin proteasome malfunction contributing to cell cycle re-entry in post-mitotic neurons.It also describes how all these factors are linked to a greater or lesser extent with Cdk5.Thus,it offers a global vision of the function of cell cycle-related proteins in mature neurons with a focus on Cdk5 and how this protein contributes to the development of Alzheimer’s disease,Parkinson’s disease,amyotrophic lateral sclerosis,and Huntington’s disease by cell cycle activation.
基金the support from the Guangdong Basic and Applied Basic Research Foundation (2020A1515011376)the National Natural Science Foundation of China (31601397)+2 种基金the Innovative Leading Talents Project of Guangzhou Development ZoneGuangzhou Innovation Leading Talent Projectthe 111 Project (B17018)。
文摘Polyphenol-rich foods have been shown to be good for cancer prevention as powerful antioxidants. In this study, the mechanisms of wild pink bayberry free phenolic extract(WPBFE)inhibiting the proliferation and inducing apoptotic of MDA-MB-231 breast cancer cells was examined. The main phenolic acids and flavonols in WPBFE were gallic acid((18.83 ± 0.44)μg/g FW)and myricetin((1.52 ± 0.05)μg/g FW), respectively. The maximum inhibition rate of WPBFE at non-cytotoxicity dose(below 80 mg/mL)was 81%. Western blotting analysis showed that WPBFE could cause the arrest of cell cycle in G0/G1 phase by down-regulating expression levels of PCNA, CDK4, cyclin D1 and up-regulating the expression level of p21. Meanwhile, WPBFE induced apoptosis through initiating the mitochondrial death pathway by up-regulating cleaved caspase-3 and enhancing the ratio of Bax/Bcl-2, with the maximum expression levels of 1.29 and 2.03 folds that of control group, respectively. Further study of the upstream protein, we found that WPBFE down-regulated TRAF2, while upregulated p-ASK1, p-p38 and p-p53. Furthermore, WPBFE could down-regulate the expression of p-PI3K and p-Akt. These observations indicated that WPBFE might play an anticancer role through regulating the p38 MAPK together with PI3K/Akt pathway.
基金supported by the National Natural Science Foundation of China,Nos.82171172(to RZ)and 81771366(to RZ)Fundamental Research Funds for the Central Universities of Central South University,Nos.2021zzts1095(to SZ)and 2022zzts0832(to HY)。
文摘Mutations in the microrchidia CW-type zinc finger protein 2(MORC2)gene are the causative agent of Charcot-Marie-Tooth disease type 2Z(CMT2Z),and the hotspot mutation p.S87L is associated with a more seve re spinal muscular atrophy-like clinical phenotype.The aims of this study were to determine the mechanism of the severe phenotype caused by the MORC2 p.S87L mutation and to explore potential treatment strategies.Epithelial cells were isolated from urine samples from a spinal muscular atrophy(SMA)-like patient[MORC2 p.S87L),a CMT2Z patient[MORC2 p.Q400R),and a healthy control and induced to generate pluripotent stem cells,which were then differentiated into motor neuron precursor cells.Next-generation RNA sequencing followed by KEGG pathway enrichment analysis revealed that differentially expressed genes involved in the PI3K/Akt and MAP K/ERK signaling pathways were enriched in the p.S87L SMA-like patient group and were significantly downregulated in induced pluripotent stem cells.Reduced proliferation was observed in the induced pluripotent stem cells and motor neuron precursor cells derived from the p.S87L SMA-like patient group compared with the CMT2Z patient group and the healthy control.G0/G1 phase cell cycle arrest was observed in induced pluripotent stem cells derived from the p.S87L SMA-like patient.MORC2 p.S87Lspecific antisense oligonucleotides(p.S87L-ASO-targeting)showed significant efficacy in improving cell prolife ration and activating the PI3K/Akt and MAP K/ERK pathways in induced pluripotent stem cells.Howeve r,p.S87L-ASO-ta rgeting did not rescue prolife ration of motor neuron precursor cells.These findings suggest that downregulation of the PI3K/Akt and MAP K/ERK signaling pathways leading to reduced cell proliferation and G0/G1 phase cell cycle arrest in induced pluripotent stem cells might be the underlying mechanism of the severe p.S87L SMA-like phenotype.p.S87L-ASO-targeting treatment can alleviate disordered cell proliferation in the early stage of pluripotent stem cell induction.
文摘Objective:To investigate the potential synergistic activity of diclofenac with piperine and D-limonene in inducing apoptosis and cell cycle arrest in breast cancer MCF-7 cells.Methods:Molecular docking study was conducted to evaluate the binding affinity of diclofenac with piperine and D-limonene against p53,Bax,and Bcl-2.The MTT assay was used to determine IC50,and the Chou-Talay method was used to determine the synergistic concentration of the combination treatment of diclofenac plus piperine and diclofenac plus D-limonene.Apoptosis detection,cell cycle arrest,reactive oxygen species production,and mitochondrial membrane potential were also investigated.Results:Diclofenac,piperine,and D-limonene showed potent binding affinity for p53,Bax,and Bcl-2.Diclofenac plus piperine and diclofenac plus D-limonene enhanced the formation of reactive oxygen species,which also had an effect on the mitochondrial membrane’s integrity and caused DNA fragmentation.Diclofenac plus piperine and diclofenac plus D-limonene arrested the cells in the sub-G0phase while drastically lowering the percentage of cells in the G2/M phase.Furthermore,the elevated apoptosis in the combined therapy was confirmed by annexin V/propidium iodide staining.Conclusions:The combined therapy prominently enhanced the antiproliferative and apoptotic effects on MCF-7 cells compared with treatment with diclofenac,piperine,and D-limonene alone.
基金the Key Research and Development Program of Shaanxi,No.2021SF-227 and No.2020SF-297the Natural Science Basic Research Program of Shaanxi,No.2023-JC-YB-770。
文摘BACKGROUND Prohibitin 1(PHB1)has been identified as an antiproliferative protein that is highly conserved and ubiquitously expressed,and it participates in a variety of essential cellular functions,including apoptosis,cell cycle regulation,prolifera-tion,and survival.Emerging evidence indicates that PHB1 may play an important role in the progression of hepatocellular carcinoma(HCC).However,the role of PHB1 in HCC is controversial.AIM To investigate the effects of PHB1 on the proliferation and apoptosis of human HCC cells and the relevant mechanisms in vitro.METHODS HCC patients and healthy individuals were enrolled in this study according to the inclusion and exclusion criteria;then,PHB1 levels in the sera and liver tissues of these participates were determined using ELISA,RT-PCR,and immunohistoche-mistry.Human HepG2 and SMMC-7721 cells were transfected with the pEGFP-PHB1 plasmid and PHB1-specific shRNA(shRNA-PHB1)for 24-72 h.Cell prolif-eration was analysed with an MTT assay.Cell cycle progression and apoptosis were analysed using flow cytometry(FACS).The mRNA and protein expression levels of the cell cycle-related molecules p21,Cyclin A2,Cyclin E1,and CDK2 and the cell apoptosis-related molecules cytochrome C(Cyt C),p53,Bcl-2,Bax,caspase 3,and caspase 9 were measured by real-time PCR and Western blot,respectively.RESULTS Decreased levels of PHB1 were found in the sera and liver tissues of HCC patients compared to those of healthy individuals,and decreased PHB1 was positively correlated with low differentiation,TNM stage III-IV,and alpha-fetoprotein≥400μg/L.Overexpression of PHB1 significantly inhibited human HCC cell proliferation in a time-dependent manner.FACS revealed that the overexpression of PHB1 arrested HCC cells in the G0/G1 phase of the cell cycle and induced apoptosis.The proportion of cells in the G0/G1 phase was significantly increased and the proportion of cells in the S phase was decreased in HepG2 cells that were transfected with pEGFP-PHB1 compared with untreated control and empty vector-transfected cells.The percentage of apoptotic HepG2 cells that were transfected with pEGFP-PHB1 was 15.41%±1.06%,which was significantly greater than that of apoptotic control cells(3.65%±0.85%,P<0.01)and empty vector-transfected cells(4.21%±0.52%,P<0.01).Similar results were obtained with SMMC-7721 cells.Furthermore,the mRNA and protein expression levels of p53,p21,Bax,caspase 3,and caspase 9 were increased while the mRNA and protein expression levels of Cyclin A2,Cy-clin E1,CDK2,and Bcl-2 were decreased when PHB1 was overexpressed in human HCC cells.However,when PHB1 was upregulated in human HCC cells,Cyt C expression levels were increased in the cytosol and decreased in the mitochondria,which indicated that Cyt C had been released into the cytosol.Conversely,these effects were reversed when PHB1 was knocked down.CONCLUSION PHB1 inhibits human HCC cell viability by arresting the cell cycle and inducing cell apoptosis via activation of the p53-mediated mitochondrial pathway.
基金supported by grants from the National Key Research and Development Program of China(2021YFF1201300)the National Natural Science Foundation of China(81872280,82073094)+2 种基金the CAMS Innovation Fund for Medical Sciences(CIFMS)(2021-I2M-1-014)the Open Issue of State Key Laboratory of Molecular Oncology(SKL-KF-2021-16)the Independent Issue of State Key Laboratory of Molecular Oncology(SKL-2021-16).
文摘Background:The cell cycle is at the center of cellular activities and is orchestrated by complex regulatory mechanisms,among which transcriptional regulation is one of the most important components.Alternative splicing dramatically expands the regulatory network by producing transcript isoforms of genes to exquisitely control the cell cycle.However,the patterns of transcript isoform expression in the cell cycle are unclear.Therapies targeting cell cycle checkpoints are commonly used as anticancer therapies,but none of them have been designed or evaluated at the alternative splicing transcript level.The utility of these transcripts as markers of cell cycle-related drug sensitivity is still unknown,and studies on the expression patterns of cell cycle-targeting drug-related transcripts are also rare.Methods:To explore alternative splicing patterns during cell cycle progression,we performed sequential transcriptomic assays following cell cycle synchronization in colon cancer HCT116 and breast cancer MDA-MB-231 cell lines,using flow cytometry and reference cell cycle transcripts to confirm the cell cycle phases of samples,and we developed a new algorithm to describe the periodic patterns of transcripts fluctuating during the cell cycle.Genomics of Drug Sensitivity in Cancer(GDSC)drug sensitivity datasets and Cancer Cell Line Encyclopedia(CCLE)transcript datasets were used to assess the correlation of genes and their transcript isoforms with drug sensitivity.We identified transcripts associated with typical drugs targeting cell cycle by determining correlation coefficients.Cytotoxicity assays were used to confirm the effect of ENST00000257904 against cyclin dependent kinase 4/6(CDK4/6)inhibitors.Finally,alternative splicing transcripts associated with mitotic(M)phase arrest were analyzed using an RNA synthesis inhibition assay and transcriptome analysis.Results:We established high-resolution transcriptome datasets of synchronized cell cycle samples from colon cancer HCT116 and breast cancer MDA-MB-231 cells.The results of the cell cycle assessment showed that 43,326,41,578 and 29,244 transcripts were found to be periodically expressed in HeLa,HCT116 and MDA-MB-231 cells,respectively,among which 1280 transcripts showed this expression pattern in all three cancer cell lines.Drug sensitivity assessments showed that a large number of these transcripts displayed a higher correlation with drug sensitivity than their corresponding genes.Cell cycle-related drug screening showed that the level of the CDK4 transcript ENST00000547281 was more significantly associated with the resistance of cells to CDK4/6 inhibitors than the level of the CDK4 reference transcript ENST00000257904.The transcriptional inhibition assay following M phase arrest further confirmed the M-phase-specific expression of the splicing transcripts.Combined with the cell cycle-related drug screening,the results also showed that a set of periodic transcripts,for example,ENST00000314392(a dolichylphosphate mannosyltransferase polypeptide 2 isoform transcript),was more associated with drug sensitivity than the levels of their corresponding gene transcripts.Conclusions:In summary,we identified a panel of cell cycle-related periodic transcripts and found that the levels of transcripts of drug target genes showed different values for predicting drug sensitivity,providing novel insights into alternative splicing-related drug development and evaluation.
基金supported by the National Key Scientific Research Project(2017YFC1001903)Provincial and Ministerial Level Projects(cstc2016shmstzx10006)the Guizhou Provincial Science&Technology Program(QKHZC[2020]4Y154).
文摘Fizzy-related protein homolog 1 (FZR1) mainly functions as a specific activator of the anaphase-promotingcomplex/cyclosome (APC/C) in the cell cycle and controls the G0 and G1 phases of the cell cycle. We highlightrecent work that has studied the role of FZR1 in tumorigenesis, growth, differentiation, and genome stability throughcell-cycle control. We summarize the current state of knowledge regarding FZR1 structure, function, and the distinctways of APC/C dysregulation in solid tumors and hematologic malignancies. We also discuss novel approaches fortargeting the FZR1 as a cancer therapy and research area for future work.
基金supported by National Nature Science Foundation of China(82172978)Taishan Scholars Program of Shandong Province(Grant No.tsqn201909147)+1 种基金the Key Project at Central Government Level:the ability establishment of sustainable use for valuable Chinese medicine resources(2060302)the Student Innovation Training Program in Jining Medical University(cx2021116).
文摘Background:This study aimed to select compounds with unique inhibitory effects on muscle-invasive bladder cancer(MIBC)from coumarone derivatives with similar parent nuclear structures and to reveal their tumor-suppressive effects using various approaches.Methods:Bladder cancer cell lines SW780 and T24,as well as human normal bladder epithelial cell line SV-HUC-1 were selected as the study model,and these urinary system cells were co-incubated with various concentrations of(S,E)-4-(4-methylbenzylidene)-3-phenylchroman-3-ol,(S,E)-4-(4-isocyanobenzylidene)-3-phenylchroman-3-ol,(S,E)-4-(4-fluorobenzylidene)-3-phenylchroman-3-ol(FPO),and(S,E)-3-phenyl-4-(4-(trifluoromethoxy)benzylidene)chroman-3-ol.Cell activity was detected using cell counting kit-8.FPO showed the strongest inhibitory effect on MIBC cells;therefore,it was selected for further experiments.We monitored the FPO-induced T24 cell morphological changes with an inverted microscope.The FPO-inhibited migration of T24 cells was examined using a cell scratch assay.We detected the clonogenic ability of T24 cells through a clone formation test and evaluated their proliferative ability using a 5-ethynyl-2’-deoxyuridine fluorescence staining kit.The inhibitory effect of FPO against the cell cycle was monitored using flow cytometry,and its suppressive effect on the DNA replication ability of T24 cells was detected using double fluorescence staining(Ki67 and phalloidin).Results:Among the four candidate coumarone derivatives,FPO showed the most significant inhibitory effect on MIBC cells and was less toxic to normal urothelial cells.FPO inhibited T24 cell growth in time and dose-dependent manners(the half-inhibitory concentration is 8μM).FPO significantly repressed the proliferation,migration,and clonogenic ability of bladder cancer T24 cells.Cell mobility was significantly inhibited by FPO:30μM FPO almost completely repressed migration occurred at after 24 h treatment.Moreover,FPO significantly suppressed the clonogenicity of bladder cancer cells in a dose-dependent manner.Mechanistically,FPO targeted the cell cycle,arresting the S and G2 phases on bladder cancer T24 cells.Conclusion:We discovered a novel anticancer chemical,FPO,and proposed a potential mechanism,through which it suppresses MIBC T24 cells by repressing the cell cycle in the S and G2 phases.This study contributes to the development of novel anticancer drugs for MIBC.
基金This work was supported by grants from the National Natural Science Foundation of China(52072005 and 51872279).
文摘Background:As reported,γ-tubulin(TuBG1)is related to the occurrence and development of various types of malignant tumors.However,its role in hepatocellular cancer(HCC)is not clear.The present study was to investigate the relationship between TuBG1 and clinical parameters and survival in HCC patients.Methods:The correlation between TuBG1 and clinical parameters and survival in HCC patients was ex-plored by bioinformatics analysis.Immunohistochemistry was used for the verification.The molecular function of TuBG1 was measured using colony formation,scratch assay,trans-well assay and flow cytometry.Gene set enrichment analysis(GSEA)was used to pick up the enriched pathways,followed by investigating the target pathways using Western blotting.The tumor-immune system interactions and drug bank database(TISIDB)was used to evaluate TuBG1 and immunity.Based on the TuBG1-related immune genes,a prognostic model was constructed and was further validated internally and externally.Results:The bioinformatic analysis found high expressed TuBG1 in HCC tissue,which was confirmed us-ing immunohistochemistry and Western blotting.After silencing the TuBG1 in HCC cell lines,more G1 arrested cells were found,cell proliferation and invasion were inhibited,and apoptosis was promoted.Furthermore,the silence of TuBG1 increased the expressions of Ataxia-Telangiectasia and Rad-3(ATR),phospho-P38 mitogen-activated protein kinase(P-P38MAPK),phospho-P53(P-P53),B-cell lymphoma-2 associated X protein(Bax),cleaved caspase 3 and P21;decreased the expressions of B-cell lymphoma-2(Bcl-2),cyclin D1,cyclin E2,cyclin-dependent kinase 2(CDK2)and CDK4.The correlation analysis of immunohistochemistry and clinical parameters and survival data revealed that TuBG1 was negatively corre-lated with the overall survival.The constructed immune prognosis model could effectively evaluate the prognosis.Conclusions:The increased expression of TuBG1 in HCC is associated with poor prognosis,which might be involved in the occurrence and development of HCC.
基金supported by Shahrekord University of Medical Sciences,Shahrekord,Iran(Ethics Code:IR.SKUMS.REC.1397.119,Grant No.3696 and Ethics Code:IR.SKUMS.REC.1401.197,Grant No.6651).
文摘Background:Despite the availability of chemotherapy drugs such as 5-fluorouracil(5-FU),the treatment of some cancers such as gastric cancer remains challenging due to drug resistance and side effects.This study aimed to investigate the effect of celastrol in combination with the chemotherapy drug 5-FU on proliferation and induction of apoptosis in human gastric cancer cell lines(AGS and EPG85-257).Materials and Methods:In this in vitro study,AGS and EPG85-257 cells were treated with different concentrations of celastrol,5-FU,and their combination.Cell proliferation was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide(MTT)assay.The synergistic effect of 5-FU and celastrol was studied using Compusyn software.The DNA content at different phases of the cell cycle and apoptosis rate was measured usingflow cytometry.Results:Co-treatment with low concentrations(10%inhibitory concentration(IC10))of celastrol and 5-FU significantly reduced IC50(p<0.05)so that 48 h after treatment,IC50 was calculated at 3.77 and 6.9μM for celastrol,20.7 and 11.6μM for 5-FU,and 5.03 and 4.57μM for their combination for AGS and EPG85-257 cells,respectively.The mean percentage of apoptosis for AGS cells treated with celastrol,5-FU,and their combination was obtained 23.9,41.2,and 61.9,and for EPG85-257 cells 5.65,46.9,and 55.7,respectively.In addition,the 5-FU and celastrol-5-FU combination induced cell cycle arrest in the synthesis phase.Conclusions:Although celastrol could decrease the concentration of 5-fluorouracil that sufficed to suppress gastric cancer cells,additional studies are required to arrive at conclusive evidence on the anticancer effects of celastrol.
基金funded by the Deanship of Scientific Research(DSR),King Abdulaziz University,Jeddah,Saudi Arabia,under Grant No.KEP-1-166-41The authors,therefore,acknowledge DSR,with thanks for their technical and financial support.
文摘Cancer frequently develops resistance to the majority of chemotherapy treatments.This study aimed to examine the synergistic cytotoxic and antitumor effects of SGLT2 inhibitors,specifically Canagliflozin(CAN),Dapagliflozin(DAP),Empagliflozin(EMP),and Doxorubicin(DOX),using in vitro experimentation.The precise combination of CAN+DOX has been found to greatly enhance the cytotoxic effects of doxorubicin(DOX)in MCF-7 cells.Interestingly,it was shown that cancer cells exhibit an increased demand for glucose and ATP in order to support their growth.Notably,when these medications were combined with DOX,there was a considerable inhibition of glucose consumption,as well as reductions in intracellular ATP and lactate levels.Moreover,this effect was found to be dependent on the dosages of the drugs.In addition to effectively inhibiting the cell cycle,the combination of CAN+DOX induces substantial modifications in both cell cycle and apoptotic gene expression.This work represents the initial report on the beneficial impact of SGLT2 inhibitor medications,namely CAN,DAP,and EMP,on the responsiveness to the anticancer properties of DOX.The underlying molecular mechanisms potentially involve the suppression of the function of SGLT2.
基金This research was funded by the Heilongjiang Province Key Research and Development Plan Guidance Project(Grant No.GZ20220039)the National Natural Science Foundation of China(Grant No.82060118)+2 种基金the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region(Grant No.NJYT24032)the Central Government Supports Local College Reform and Development Fund Talent Training Project(Grant No.2020GSP16)Heilongjiang Touyan Innovation Team Program(Grant No.2019HTY078).
文摘Objectives:Sciadopitysin(SP)is aflavonoid in Ginkgo biloba that exhibits various pharmacological activities.This study aimed to investigate its antitumor effects and the underlying molecular mechanism of SP in hepatocellular carcinoma(HCC)cells.Methods:Network pharmacology was used for target prediction analysis.Cell Counting Kit-8(CCK-8)assay was used to test the cell viability.Flow cytometry was used to test the cell cycle distribution,apoptosis status,and reactive oxygen species(ROS)levels.Transwell and wound-healing assay was used to test the migration effect of SP on HepG2 cells.Western Blot assay was used to test the expression levels of proteins.Results:Network pharmacology analysis results showed that the mitogen-activated protein kinase(MAPK)and other signaling pathways are involved in the SP anti-HCC biological process.CCK-8 assay results demonstrated that SP showed an obvious killing effect on three types of HCC cells and low cytotoxic effect on normal cells.Western Blot andflow cytometry results showed that SP regulated MAPK/signal transducer and activator of transcription 3(STAT3)/nuclear factor kappa-B(NF-κB)signaling pathway to induce mitochondrion-dependent apoptosis in HepG2 cells.Additionally,SP can arrest the G0/G1 phase cell cycle via the protein kinase B(AKT)/p21/p27/cyclin-dependent kinase(CDK)/Cyclin signaling pathway.Wound healing and transwell assays showed that SP inhibited cell motility and invasion through the AKT/glycogen synthase kinase3β(GSK-3β)/vimentin/β-catenin signaling pathway.Conclusion:Thesefindings demonstrated that SP induced mitochondrion-dependent apoptosis,arrested cell cycle in the G0/G1 phase,and inhibited cell migration by regulating the ROS-mediated signaling pathway in HepG2 cells.Thus,SP could serve as a therapeutic agent for the treatment of human HCC.
基金supported by the Science and Technology Innovation Program of Hunan Province(Grant Numbers:2021SK1014 and 2022WZ1027)the Colleges and Universities of Hunan Province(Grant Number:HNJG 20200440)+1 种基金the Scientific Research Fund of Hunan Provincial Education Department(Grant Number:21B0411)the Scientific Research Project of Changsha Central Hospital(Number:YNKY202201).
文摘Background:Nasopharyngeal carcinoma(NPC)exhibits a significant prevalence in the southern regions of China,and paclitaxel(PTX)is frequently employed as a medication for managing advanced NPC.However,drug resistance is typically accompanied by a poor prognosis.Exploring the synergistic potential of combining multiple chemotherapeutic agents may represent a promising avenue for optimizing treatment efficacy.Methods:This study investigated whether 3-Methyladenine(3-MA)could potentiated the effect of PTX and its potential molecular mechanism.Samples were divided into the following categories:Negative control(NC)with the solvent dimethyl sulfoxide(DMSO,0.5%v/v),PTX(400 nM),3-MA(4 mM),and PTX(400 nM)+3-MA(4 mM).The viability of NPC cells was assessed using both the cell counting kit-8(CCK-8)assay and the colony formation assay.Microscopic observation was performed to identify morphological cell changes.Flow cytometry was used to assess cell cycle status,mitochondrial membrane potential(MMP),and apoptotic cells.Western blotting was conducted to quantify the protein expression.Results:3-MA enhanced PTX-specific inhibition of NPC cell proliferation.PTX,either alone or in combination with 3-MA,caused cell cycle halt at the G2/M phase in the majority of NPC cells,and the combination treatment of PTX with 3-MA induced a higher rate of NPC cell death compared to PTX alone.Western blotting results revealed the combination of PTX with 3-MA heightened activation of cyclin-dependent kinase 1(CDK1),a key molecule in shifting cells from mitotic arrest to apoptosis,led to a reduction in Myeloid Cell Leukemia 1(MCL-1)expression and an increase in Poly(ADP-ribose)polymerase(PARP)cleavage.Conclusion:The concurrent administration of PTX with 3-MA effectively enhances PTX’s inhibitory impact on NPC and activates the apoptosis signal regulated by CDK1.
基金supported by grants from National Innovation Program for College Students(202210367076)Graduate Student Research Innovation Program of Bengbu Medical College(Byycxz22016)the National Natural Science Foundation of China(82072585),and the Key Research Project of Bengbu Medical College(No.2020byzd029).
文摘Introduction:Among all malignant tumors of the digestive system,pancreatic carcinoma exhibits the highest mortality rate.Currently,prevention and effective treatment are urgent issues that need to be addressed.Methods:The study focused on meiotic nuclear divisions 1(MND1),integrating data from the Gene Expression Profiling Interactive Analysis(GEPIA)database with prognostic survival analysis.Simultaneously,experiments at cellular level were employed to demonstrate the effect of MND1 on the proliferation and migration of PC.The small-molecule inhibitor of MND1 was used to suppress the migration of PC cells by knocking down MND1 using small interfering RNA(siRNA)in Patu-8988 and Panc1 cell lines.Results:The results of Cell Counting Kit-8 indicated that the suppression of MND1 resulted in a decrease in cell proliferation.Wound healing and Transwell assays revealed that MND1 knockdown reduced cell migration and invasion.Flow cytometry revealed that inhibiting MND1 hindered the cell cycle.Furthermore,MND1 could stimulate the proliferation,migration,and invasion of Patu-8988 and Panc1 cells by increasing the expression of MND1.Notably,MND1 had a positive effect on H2AFX expression in PC cells.Elevated MND1 expression suggests the low overall survival rate of individuals diagnosed with PC.Conclusion:These findings suggest that MND1 has the potential to be a gene with the ability to accurately diagnose and treat PC.
基金supported by National Natural Science Fund Item Number(82004110)Xuzhou Science and Technology Plan Project(KC22096)+3 种基金China Postdoctoral Science Foundation(2022M722674)Xuzhou Medical Reserve Talents Project(XWRCHT20220009)the Xuzhou Clinical Medicine Expert Team Project(2018TD004)Peixian Science and Technology Program(P202410)。
文摘Background:The treatment alternatives for bladder cancer(BLCA),the 10th most prevalent cancer in the world,need to be further investigated,and many active substances like Puerarin in herbal medicine were found to be effective in treating BLCA.The purpose of this study was to investigate the potential treating mechanisms of Puerarin on BLCA.Methods:The cell counting kit 8 assay and flow cytometry were performed to confirm Puerarin’s ability to suppress BLCA.The differentially expressed proteins(DEPs)were obtained by Tandem Mass Tags technology and functional enrichment analysis performed by R studio.The most enriched pathways were selected for study and the DEPs were screened out.Protein-protein interaction network maps were created using String and Cytoscape and key proteins,which will be analyzed for survival,expression,and upstream transcription factor prediction,were screened out using the cytoHubba plugin.CHEA3 was used to obtain upstream transcription factor validated by molecular docking and western blotting experiments.Results:Cell counting kit 8 showed that Puerarin inhibited BLCA cells,with 50%inhibitory concentration of 218μmol/L in T24 and 198μmol/L in 5637.Flow cytometry reveals that Puerarin blocks T24 and 5637 cells in G1 phase.1,385 DEPs were obtained and the enrichment analysis revealed that cell cycle and DNA replication were the two main areas in which DEPs were enriched.Cyclin-B-cyclin dependent kinase 1(CDK1),cyclin B1(CCNB1),and polo-like kinase 1(PLK1)were identified as key proteins,and their upstream transcription factor was predicted to be centromere protein A(CENPA).Puerarin’s binding energy to CENPA was determined by molecular docking to be−6.3 kcal/mol,indicating a strong binding interaction.Western blot showed that Puerarin significantly reduced the expression of CENPA.Conclusion:We hypothesize that Puerarin may inhibit the proliferation of bladder cancer cells by inhibiting CENPA expression to regulate PLK1 and CCNB1 expression,thereby affecting cell cycle.
基金Program for Changjiang Scholar and Innova-tive Team in University(Grant No.985-2-063-112).
文摘Aim To investigate in vitro apoptosis-induction effects of oridonin on gastric tumor cells BGC-823 and its effects on cell cycle, mitochondrial membrane potential and intracellular Ca^2+ to shed light on the mode of its anticancer action. Methods The MTT method was used to investigate the inhibitory effect of oridonin on BGC-823 cells. The apoptosis-induction effect was evaluated by confocal laser microscopy and flow cytometry. The change of mitochondrial membrane potential and the increase of intracellular Ca^2+ were assessed by fluorescence probe rhodamine123 and Fluo 3-AM, respectively, with flow cytometry. The expression of apoptosis and cell cycle related proteins was studied using western blotting. Results Oridonin inhibited BGC-823 cells growth with IC50 of 22.21 p, mol.L^-1. It induced apoptosis in a dose-dependent manner. In addition, it decreased mitochondria membrane potential, increased intracellular Ca^2+, and activated pro-caspase 3. BGC-823 cells were arrested in G2/M cell cycle phase with lower expression of cyclin A protein. The up-regulation of p53 was observed before apoptosis and cell cycle arrest occurred. Conclusion Oridonin inhibits the proliferation of BGC-823 cells through G2/M cell cycle arrest and apoptosis induction, which is mediated by influx of Ca^2+, up-regulation of p53, activation of caspase-3, and down-regulation of cyclin A.