Multi-view video coding (MVC) comprises rich 3D information and is widely used in new visual media, such as 3DTV and free viewpoint TV (FTV). However, even with mainstream computer manufacturers migrating to multi...Multi-view video coding (MVC) comprises rich 3D information and is widely used in new visual media, such as 3DTV and free viewpoint TV (FTV). However, even with mainstream computer manufacturers migrating to multi-core processors, the huge computational requirement of MVC currently prohibits its wide use in consumer markets. In this paper, we demonstrate the design and implementation of the first parallel MVC system on Cell Broadband Engine^TM processor which is a state-of-the-art multi-core processor. We propose a task-dispatching algorithm which is adaptive data-driven on the frame level for MVC, and implement a parallel multi-view video decoder with modified H.264/AVC codec on real machine. This approach provides scalable speedup (up to 16 times on sixteen cores) through proper local store management, utilization of code locality and SIMD improvement. Decoding speed, speedup and utilization rate of cores are expressed in experimental results.展开更多
基金Supported partially by the National Natural Science Foundation of China (Grant No.60503063)the National High-Tech Research & Development Program of China (Grant No.2006AA01Z321)the National Basic Research Program of China (Grant No.2006CB303103)
文摘Multi-view video coding (MVC) comprises rich 3D information and is widely used in new visual media, such as 3DTV and free viewpoint TV (FTV). However, even with mainstream computer manufacturers migrating to multi-core processors, the huge computational requirement of MVC currently prohibits its wide use in consumer markets. In this paper, we demonstrate the design and implementation of the first parallel MVC system on Cell Broadband Engine^TM processor which is a state-of-the-art multi-core processor. We propose a task-dispatching algorithm which is adaptive data-driven on the frame level for MVC, and implement a parallel multi-view video decoder with modified H.264/AVC codec on real machine. This approach provides scalable speedup (up to 16 times on sixteen cores) through proper local store management, utilization of code locality and SIMD improvement. Decoding speed, speedup and utilization rate of cores are expressed in experimental results.