Adaptive layered Cartesian cut cell method is presented to solve the difficulty of the tmstructured hexahedral anisotropic Cartesian grids generation from the complex CAD model. "Vertex merging algorithm based on rel...Adaptive layered Cartesian cut cell method is presented to solve the difficulty of the tmstructured hexahedral anisotropic Cartesian grids generation from the complex CAD model. "Vertex merging algorithm based on relaxed AVL tree is investigated to construct topological structure for stereo lithography (STL) files, and a topology-based self-adaptive layered slicing algorithm with special features control strategy is brought forward. With the help of convex hull, a new points-in-polygon method is employed to improve the Cartesian cut cell method. By integrating the self-adaptive layered slicing algorithm and the improved Cartesian cut cell method, the adaptive layered Cartesian cut cell method gains the volume data of the complex CAD model in STL file and generates the unstructured hexahedral anisotropic Cartesian grids.展开更多
In this paper, a Cartesian grid method with cut cell has been developed to simulate mold filling of casting process. Cut cells at the cast-mold interface are generated on the Cartesian grid. With the boundary cut cell...In this paper, a Cartesian grid method with cut cell has been developed to simulate mold filling of casting process. Cut cells at the cast-mold interface are generated on the Cartesian grid. With the boundary cut cells, a special treatment is necessary. That is Cartesian grid method with cut cell. A simple shape was tested and the cut cell method was compared with the traditional one on Cartesian grids. And, a developed method was applied to the real casting product simulation. Cartesian grid system causes momentum loss and unsound fluid flow patterns because of inaccurate generation of meshes. These problems have been improved by using cut cell method.展开更多
In the field of casting flow simulation, the application of body-fitted coordinate(BFC) has not been widely used due to the difficulty and low efficiency of grid generation, despite the availability of good quality an...In the field of casting flow simulation, the application of body-fitted coordinate(BFC) has not been widely used due to the difficulty and low efficiency of grid generation, despite the availability of good quality analysis results. Cartesian coordinates, on the other hand, have been used predominantly in casting process simulations because of their relatively easy and fast grid generation. However, Cartesian grid systems cannot obtain accurate results because they cannot express the geometries properly. In this study, Cut Cell method was applied to solve this problem. The three-dimensional incompressible viscous governing equation was analyzed using a function defined for the volume and area of the casting in the cutting cell. Using the Cut Cell method, accurate flow analysis results were also obtained in the Cartesian grid systems. The tests of simple shape and the applications of actual casting product have been tried with Cut Cell method.展开更多
For solving water entry problems, a numerical method is presented, which is a CFD method based on free surface capturing method and Cartesian cut cell mesh.In this approach, incompressible Euler equations for a variab...For solving water entry problems, a numerical method is presented, which is a CFD method based on free surface capturing method and Cartesian cut cell mesh.In this approach, incompressible Euler equations for a variable density fluid are numerically calculated by the finite volume method.Then artificial compressibility method, dual time-stepping technique and Roe's approximate Riemann solver are adopted in the numerical scheme.Finally, some application cases are designed to show the ability of the current method to cope with water entry problems in ocean engineering.展开更多
Fixed and forced moving circular cylinders in turbulent flows are studied by using the Large Eddy Simulation (LES) and two-equation based Detached Eddy Simulation (DES) turbulence models. The Cartesian cut cell ap...Fixed and forced moving circular cylinders in turbulent flows are studied by using the Large Eddy Simulation (LES) and two-equation based Detached Eddy Simulation (DES) turbulence models. The Cartesian cut cell approach is adopted to track the body surface across a stationary background grid covering the whole computational domain. A cell-centered finite volume method of second-order accuracy in both time and space is developed to solve the flow field in fluid cells, which is also modified accordingly in cut cells and merged cells. In order to compare different turbulence models, the current flow past a fixed circular cylinder at a moderate Reynolds number, Re = 3 900, is tested first. The model is also applied to the simulation of a forced oscillating circular cylinder in the turbulent flow, and the influences of different oscillation amplitudes, frequencies and free stream velocities are discussed. The numerical results indicate that the present numerical model based on the Cartesian cut cell approach is capable of solving the turbulent flow around a body undergoing motions, which is a foundation for the possible future study on wake induced oscillation and vortex induced vibration.展开更多
基金This project is supported by National Natural Science Foundation of China (No. 60375020, No. 50305033)Provincial Natural Science Foundation of Zhejiang, China (No. Y105430).
文摘Adaptive layered Cartesian cut cell method is presented to solve the difficulty of the tmstructured hexahedral anisotropic Cartesian grids generation from the complex CAD model. "Vertex merging algorithm based on relaxed AVL tree is investigated to construct topological structure for stereo lithography (STL) files, and a topology-based self-adaptive layered slicing algorithm with special features control strategy is brought forward. With the help of convex hull, a new points-in-polygon method is employed to improve the Cartesian cut cell method. By integrating the self-adaptive layered slicing algorithm and the improved Cartesian cut cell method, the adaptive layered Cartesian cut cell method gains the volume data of the complex CAD model in STL file and generates the unstructured hexahedral anisotropic Cartesian grids.
文摘In this paper, a Cartesian grid method with cut cell has been developed to simulate mold filling of casting process. Cut cells at the cast-mold interface are generated on the Cartesian grid. With the boundary cut cells, a special treatment is necessary. That is Cartesian grid method with cut cell. A simple shape was tested and the cut cell method was compared with the traditional one on Cartesian grids. And, a developed method was applied to the real casting product simulation. Cartesian grid system causes momentum loss and unsound fluid flow patterns because of inaccurate generation of meshes. These problems have been improved by using cut cell method.
基金supported by the Ministry of Trade,Industry and Energy(MOTIE,Korea)(Project Name:Development of 500MPa URF&SIL 3 Manifold and Subsea System Engineering for Deepsea Field)
文摘In the field of casting flow simulation, the application of body-fitted coordinate(BFC) has not been widely used due to the difficulty and low efficiency of grid generation, despite the availability of good quality analysis results. Cartesian coordinates, on the other hand, have been used predominantly in casting process simulations because of their relatively easy and fast grid generation. However, Cartesian grid systems cannot obtain accurate results because they cannot express the geometries properly. In this study, Cut Cell method was applied to solve this problem. The three-dimensional incompressible viscous governing equation was analyzed using a function defined for the volume and area of the casting in the cutting cell. Using the Cut Cell method, accurate flow analysis results were also obtained in the Cartesian grid systems. The tests of simple shape and the applications of actual casting product have been tried with Cut Cell method.
基金Supported by the National 863 Plan Foundation under Grant No.2006AA09A104
文摘For solving water entry problems, a numerical method is presented, which is a CFD method based on free surface capturing method and Cartesian cut cell mesh.In this approach, incompressible Euler equations for a variable density fluid are numerically calculated by the finite volume method.Then artificial compressibility method, dual time-stepping technique and Roe's approximate Riemann solver are adopted in the numerical scheme.Finally, some application cases are designed to show the ability of the current method to cope with water entry problems in ocean engineering.
文摘Fixed and forced moving circular cylinders in turbulent flows are studied by using the Large Eddy Simulation (LES) and two-equation based Detached Eddy Simulation (DES) turbulence models. The Cartesian cut cell approach is adopted to track the body surface across a stationary background grid covering the whole computational domain. A cell-centered finite volume method of second-order accuracy in both time and space is developed to solve the flow field in fluid cells, which is also modified accordingly in cut cells and merged cells. In order to compare different turbulence models, the current flow past a fixed circular cylinder at a moderate Reynolds number, Re = 3 900, is tested first. The model is also applied to the simulation of a forced oscillating circular cylinder in the turbulent flow, and the influences of different oscillation amplitudes, frequencies and free stream velocities are discussed. The numerical results indicate that the present numerical model based on the Cartesian cut cell approach is capable of solving the turbulent flow around a body undergoing motions, which is a foundation for the possible future study on wake induced oscillation and vortex induced vibration.