期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
Model construction and numerical simulation of arterial remodeling after stent implantation with variations of cell concentration
1
作者 Yu Zhang Shiliang Chen +3 位作者 Hanbing Zhang Chenyang Ma Tianming Du Aike Qiao 《Medicine in Novel Technology and Devices》 2022年第4期51-59,共9页
Differences in concentration of molecules can cause different molecular diffusion.This issue has not been well studied in the vascular remodeling process with regards to is-stent restenosis.This study designed and bui... Differences in concentration of molecules can cause different molecular diffusion.This issue has not been well studied in the vascular remodeling process with regards to is-stent restenosis.This study designed and built a model to explore the effect of differences in vascular cell concentration on vascular remodeling.Finite element analysis(FEA)models and the agent-based models(ABMs)were established to simulate the damage and proliferation process of vascular smooth muscle cells(VSMCs)caused by coronary artery stent implantation.The FEA model simulated the expansion of the stent in the coronary artery,the tensile stress was captured and imported into the ABM,and the damaged VSMCs proliferated to reduce their damage level.VSMCs were randomly distributed within a defined domain,and the number of VSMCs in a unit volume(or area)was defined as the concentration of VSMCs.VSMCs with the smallest concentration of VSMCs will preferentially proliferate,which simulates the cell proliferation affected by the concentration of VSMCs.The results showed that after stent implantation,VSMCs proliferated gradually from the severely damaged stent area to the lumen until the artery reached a steady state.By comparison,the loss of arterial lumen and the number of newly grown VSMCs were greater in the presence of the concentration than in its absence.Cells made full use of the lumen space under the influence of concentration differences,so the concentration was of great significance to vascular remodeling. 展开更多
关键词 Numerical simulation Agent-based model Finite element method Vascular remodeling cell concentration
原文传递
EFFECTS OF PDGF-BB ON INTRACELLULAR CALCIUM CONCENTRATION AND PROLIFERATION IN CULTURED GLOMERULAR MESANGIAL CELLS 被引量:1
2
作者 温莉萍 张翀 +3 位作者 边帆 邹军 蒋更如 朱汉威 《Journal of Shanghai Second Medical University(Foreign Language Edition)》 2006年第2期130-133,共4页
Objective To investigate the relationship between the alteration of intracellular calcium concentration and proliferation in cultured glomerular mesangial cells. Methods Rat mesangial cells were cultured. lntracellula... Objective To investigate the relationship between the alteration of intracellular calcium concentration and proliferation in cultured glomerular mesangial cells. Methods Rat mesangial cells were cultured. lntracellular calcium concentrations were measured by confocal Laser Scanning Microscopy and Fura-3 fluorescence dyeing techniques. Cell growth was measured by MTT assay. Results PDGF-BB increased intracellular calcium concentrations in a dose-dependent manner, and at the same time promote the proliferation of mesangial cells. After preincubation with calcium channel blocker nifedipine or angiotensin converting enzyme inhibitor captopril, both the increase of intracellular calcium concentrations and cell proliferations induced by PDGF-BB were inhibited. Tripteriglum Wilfordii Glycosides (TMG) significantly inhibited the mesangial cell proliferations, but it had no significant effect on intracellular calcium concentrations. Conclusion There was a positive relationship between the elevation of intracellular calcium concentration and cell proliferation in glomerular mesangial cells, but the increase of intracellular calcium concentrations wasn't the only way for proliferation. 展开更多
关键词 mesangial cells PDGF-BB intracellular calcium concentrations proliferations
下载PDF
Ionic Conduction and Fuel Cell Performance of Ba0.98Ce0.8Tm0.2O3-α Ceramic
3
作者 仇立干 王茂元 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2010年第6期707-712,746,共7页
The perovskite-type oxide solid solution Ba0.98Ce0.8Tm0.2O3-α was prepared by high temperature solid-state reaction and its single phase character was confirmed by X-ray diffraction. The conduction property of the sa... The perovskite-type oxide solid solution Ba0.98Ce0.8Tm0.2O3-α was prepared by high temperature solid-state reaction and its single phase character was confirmed by X-ray diffraction. The conduction property of the sample was investigated by alternating current impedance spectroscopy and gas concentration cell methods under different gases atmospheres in the temperature range of 500-900 ℃. The performance of the hydrogen-air fuel cell using the sample as solid electrolyte was measured. In wet hydrogen, the sample is a pure protonic conductor with the protonic transport number of 1 in the range of 500-600 ℃, a mixed conductor of proton and electron with the protonic transport number of 0.945-0.933 above 600 ℃. In wet air, the sample is a mixed conductor of proton, oxide ion, and electronic hole. The protonic transport numbers are 0.010-0.021, and the oxide ionic transport numbers are 0.471-0.382. In hydrogen-air fuel cell, the sample is a mixed conductor of proton, oxide ion and electron, the ionic transport numbers are 0.942 0.885. The fuel cell using Ba0.98Ce0.8Tm0.2O3-α as solid electrolyte can work stably. At 900 ℃, the maximum power output density is 110,2 mW/cm2, which is higher than that of our previous cell using Ba0.98Ce0.8Tm0.2O3-α (x〈≤1, RE=Y, Eu, Ho) as solid electrolyte. 展开更多
关键词 Ba0.98Ce0.8Tm0.2O3-α Ionic conduction Gas concentration cell Alternating current impedance Fuel cell
下载PDF
Ionic Conduction and Fuel Cell Performance of Ba0.97Ce0.8Ho0.2O3-α Ceramic 被引量:1
4
作者 Li-gan Qiu 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 北大核心 2006年第4期347-351,共5页
The perovskite-type-oxide solid solution Ba0.97Ce0.8Ho0.2O3-α was prepared by high temperature solidstate reaction and its single-phase character was confirmed by X-ray diffraction. The ionic conduction of the sample... The perovskite-type-oxide solid solution Ba0.97Ce0.8Ho0.2O3-α was prepared by high temperature solidstate reaction and its single-phase character was confirmed by X-ray diffraction. The ionic conduction of the sample was investigated using electrical methods at elevated temperatures, and the performance of the hydrogen-air fuel cell using the sample as solid electrolyte was measured, which were compared with those of BaCe0.8Ho0.2O3-α. In wet hydrogen, BaCe0.8Ho0.2O3-α almost exhibits pure protonic conduction at 600-1000℃, and its protonic transport number is 1 at 600-900 ℃ and 0.99 at 1000 ℃. Similarly, Ba0.97Ce9.8Ho0.2O3-α exhibits pure protonic conduction with the protonic transport number of 1 at 600- 700℃, but its protonic conduction is slightly lower than that of BaCe0.8Ho0.2O3-α, and the protonic transport number are 0.99-0.96 at 800-1000 ℃. In wet air, the two samples both show low protonic and oxide ionic conduction. For Ba0.97Ce0.8Ho0.2O3-α, the protonic and oxide ionic transport numbers are 0.01-0.11 and 0.30-0.31 respectively, and for BaCe0.8Ho0.2O3-α, 0.01-0.09 and 0.27-0.33 respectively. Ionic conductivities of Ba0.97Ce0.8Ho0.2O3-α are higher than those of BaCe0.8Ho0.2O3-α under wet hydrogen and wet air. The performance of the fuel cell using Ba0.97Ce0.8Ho0.2O3-α as solid electrolyte is better than that of BaCe0.8Ho0.2O3-α. At 1000 ℃, its maximum short-circuit current density and power output density are 465 mA/cm^2 and 112 mW/cm^2, respectively. 展开更多
关键词 Ba0.97Ce0.8Ho0.2O3-α Protonic conduction CONDUCTIVITY Gas concentration cell Fuel cell
下载PDF
Thermal modeling and the optimized design of metal plate cooling systems for single concentrator solar cells
5
作者 崔敏 陈诺夫 邓金祥 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第3期283-288,共6页
A metal plate cooling model for 400~ single concentrator solar cells was established. The effects of the thickness and the radius of the metal plate, and the air environment on the temperature of the solar cells were ... A metal plate cooling model for 400~ single concentrator solar cells was established. The effects of the thickness and the radius of the metal plate, and the air environment on the temperature of the solar cells were analyzed in detail. It is shown that the temperature of the solar cells decreased sharply at the beginning, with the increase in the thickness of the metal plate, and then changed more smoothly. When the radius of the metal plate was 4 cm and the thickness increased to 2 mm or thicker, the temperature of the solar cell basically stabilized at about 53℃. Increasing the radius of the metal plate and the convective transfer coefficient made the temperature of the solar cell decrease remarkably. The effects of A1 and Cu as the metal plate material on cooling were analyzed contrastively, and demonstrated the superiority of A1 material for the cooling system. Furthermore, considering cost reduction, space holding and the stress of the system, we optimized the structural design of the metal plate. The simulated results can be referred to the design of the structure for the metal plate. Finally, a method to devise the structure of the metal plate for single concentrator solar cells was given. 展开更多
关键词 metal plate MODELING concentrator solar cells COOLING
下载PDF
Thermal modeling optimization and experimental validation for a single concentrator solar cell system with a heat sink
6
作者 崔敏 陈诺夫 +1 位作者 邓金祥 刘立英 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第8期456-461,共6页
A single concentrator solar cell model with a heat sink is established to simulate the thermal performance of the system by varying the number, height, and thickness of fins, the base thickness and thermal resistance ... A single concentrator solar cell model with a heat sink is established to simulate the thermal performance of the system by varying the number, height, and thickness of fins, the base thickness and thermal resistance of the thermal conductive adhesive. Influence disciplines of those parameters on temperatures of the solar cell and heat sink are obtained. With optimized number, height and thickness of fins, and the thickness values of base of 8, 1.4 cm, 1.5 mm, and 2 mm, the lowest temperatures of the solar cell and heat sink are 41.7 ~C and 36.3 ~C respectively. A concentrator solar cell prototype with a heat sink fabricated based on the simulation optimized structure is built. Outdoor temperatures of the prototype are tested. Temperatures of the solar cell and heat sink are stabilized with time continuing at about 37 ℃-38 ℃ and 35 ℃-36 ℃respectively, slightly lower than the simulation results because of effects of the wind and cloud. Thus the simulation model enables to predict the thermal performance of the system, and the simulation results can be a reference for designing heat sinks in the field of single concentrator solar cells. 展开更多
关键词 heat sink concentrator solar cell thermal model COOLING
下载PDF
Strategic comparison of membrane-assisted and membrane-less water electrolyzers and their potential application in direct seawater splitting(DSS)
7
作者 Abdul Malek Xu Lu +2 位作者 Paul R.Shearing Dan J.L.Brett Guanjie He 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第4期989-1005,共17页
Electrocatalytic splitting of water by means of renewable energy as the electricity supply is one of the most promising methods for storing green renewable energy as hydrogen. Although two-thirds of the earth’s surfa... Electrocatalytic splitting of water by means of renewable energy as the electricity supply is one of the most promising methods for storing green renewable energy as hydrogen. Although two-thirds of the earth’s surface is covered with water, there is inadequacy of freshwater in most parts of the world. Hence, splitting seawater instead of freshwater could be a truly sustainable alternative. However, direct seawater splitting faces challenges because of the complex composition of seawater. The composition, and hence, the local chemistry of seawater may vary depending on its origin, and in most cases, tracking of the side reactions and standardizing and customizing the catalytic process will be an extra challenge. The corrosion of catalysts and competitive side reactions due to the presence of various inorganic and organic pollutants create challenges for developing stable electro-catalysts. Hence, seawater splitting generally involves a two-step process, i.e., purification of seawater using reverse osmosis and then subsequent fresh water splitting. However, this demands two separate chambers and larger space, and increases complexity of the reactor design. Recently, there have been efforts to directly split seawater without the reverse osmosis step. Herein, we represent the most recent innovative approaches to avoid the two-step process, and compare the potential application of membrane-assisted and membrane-less electrolyzers in direct seawater splitting(DSS). We particularly discuss the device engineering, and propose a novel electrolyzer design strategies for concentration gradient based membrane-less microfluidic electrolyzer. 展开更多
关键词 Electrocatalytic seawater splitting Direct seawater splitting Osmosis concentration cells Membrane-less electrolyzer Microfluidic electrolyzer
下载PDF
Mixed Conduction in BaCe0.8Pr0.2O3-α Ceramic 被引量:1
8
作者 Mao-yuan Wang Li-gan Qiu 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 北大核心 2008年第3期286-290,共5页
BaCe0.8Pr0.2O3-α ceramic was synthesized by high temperature solid-state reaction. The structural characteristics and the phase purity of the crystal were determined using powder X-ray diffraction analysis. By using ... BaCe0.8Pr0.2O3-α ceramic was synthesized by high temperature solid-state reaction. The structural characteristics and the phase purity of the crystal were determined using powder X-ray diffraction analysis. By using the methods of AC impedance spectroscopy, gas concentration cell and electrochemical pumping of hydrogen, the conductivity and ionic transport number of BaCe0.8Pr0.2O3-α were measured, and the electrical conduction behavior of the material was investigated in different gases in the temperature range of 500-900℃. The results indicate that the material was of a single perovskite-type orthorhombic phase. From 500℃ to 900 ℃, electronic-hole conduction was dominant in dry and wet oxygen, air or nitrogen, and the total conductivity of the material increased slightly with increasing oxygen partial pressure in the oxygen partial pressure range studied. Ionic conduction was dominant in wet hydrogen, and the total conductivity was about one or two orders of magnitude higher than that in hydrogen-free atmosphere (oxygen, air or nitrogen) 展开更多
关键词 BaCe0.8Pr0.2O3-α AC impedance Gas concentration cell Electrochemical pumping of hy-drogen Mixed conduction
下载PDF
Study on Preparation and Electrical Properties of Ba_(1.03)Ce_(0.8)Eu_(0.2)O_(3-α) Solid Electrolyte 被引量:1
9
作者 仇立干 马桂林 闻荻江 《Journal of Rare Earths》 SCIE EI CAS CSCD 2004年第5期678-682,共5页
Ba_(1.03)Ce_(0.8)Eu_(0.2)O_(3-α) solid electrolyte with nonstoichiometric composition was prepared by high temperature solid-state reaction. Phase composition, surface and fracture morphologies of the specimen were c... Ba_(1.03)Ce_(0.8)Eu_(0.2)O_(3-α) solid electrolyte with nonstoichiometric composition was prepared by high temperature solid-state reaction. Phase composition, surface and fracture morphologies of the specimen were characterized by using XRD and SEM, respectively. Ionic conduction was researched by gas concentration cell, the performance of hydrogen-air fuel cell was measured in the temperature range of 600~1000 ℃, and compared them with those of BaCe_(0.8)Eu_(0.2)O_(3-α) and Ba_(0.98)Ce_(0.8)Eu_(0.2)O_(3-α). The results indicate that Ba_(1.03)Ce_(0.8)Eu_(0.2)O_(3-α) is a single-phase perovskite-type orthorhombic system. It is a pure proton conductor in the temperature range of 600~1000 ℃ in hydrogen atmosphere, and its proton conduction is superior to that of BaCe_(0.8)Eu_(0.2)O_(3-α) and Ba_(0.98)Ce_(0.8)Eu_(0.2)O_(3-α). It is a mixed conductor of oxide ion and electron hole in oxygen atmosphere. At 1000 ℃, the performance of the fuel cell in which Ba_(1.03)Ce_(0.8)Eu_(0.2)O_(3-α) as electrolyte is higher than that of BaCe_(0.8)Eu_(0.2)O_(3-α) or Ba_(0.98)Ce_(0.8)Eu_(0.2)O_(3-α). 展开更多
关键词 inorganic nonmetallic materials Ba_(1.03)Ce_(0.8)Eu_(0.2)O_(3-α) NONSTOICHIOMETRY gas concentration cell solid oxide fuel cell rare earths
下载PDF
Electrical Conductivity of SrCe_(0.9)Ho_ (0.1)O_ (3-α) Ceramics
10
作者 Yu Jie Kang Xinhua +1 位作者 Ma Guilin Qiu Ligan 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第3期319-319,共1页
Proton-conducting SrCe0.9Ho0.1O3-α ceramics was prepared by high-temperature solid state reaction. X-ray powder diffraction patterns show that the ceramics is of a single orthorhombic phase of perovskite-type SrCe03.... Proton-conducting SrCe0.9Ho0.1O3-α ceramics was prepared by high-temperature solid state reaction. X-ray powder diffraction patterns show that the ceramics is of a single orthorhombic phase of perovskite-type SrCe03. Using the ceramics as solid electrolyte and porous platinum as electrodes, the protonic conduction in the ceramics was investigated by using ac impedance spectroscopy and gas concentration cell methods in the temperature range of 600 ~ 1000 ℃. 展开更多
关键词 perovskite-type oxide proton conductor gas concentration cell impedance spectroscopy rare earths
下载PDF
Ionic conduction in Ba_xCe_(0.8)Pr_(0.2)O_(3–α)
11
作者 王茂元 仇立干 孙玉凤 《Journal of Rare Earths》 SCIE EI CAS CSCD 2009年第5期819-824,共6页
BaxCe0.8Pr0.2O3-α (x=0.98-1.03) ceramics were prepared by high temperature solid-state reaction. X-ray diffraction (XRD) patterns showed that the materials were perovskite-type orthorhombic single phase. By using gas... BaxCe0.8Pr0.2O3-α (x=0.98-1.03) ceramics were prepared by high temperature solid-state reaction. X-ray diffraction (XRD) patterns showed that the materials were perovskite-type orthorhombic single phase. By using gas concentration cell and AC impedance spectroscopy methods, the electrical conduction behavior of the materials was investigated in different gases at 500-900 °C. The influence of non-stoichiometry in the materials with x≠1 on conduction properties was studied and compared with that in the material with x=1. The results indicated that Ba1.03Ce0.8Pr0.2O3-α was a pure protonic conductor, and Ba0.98Ce0.8Pr0.2O3-α was a mixed conductor of protons and electrons in wet hydrogen at 500-900 °C. BaCe0.8Pr0.2O3-α was a pure protonic conductor in 500-600 °C, and a mixed conductor of protons and electrons above 600 °C in wet hydrogen. In 500-900 °C, they were all mixed conductors of oxide ions and electronic holes in dry air, and mixed conductors of protons, oxide ions and electronic holes in wet air. Both the protonic and oxide ionic conductivities increased with increasing barium content in the materials in wet hydrogen, dry air and wet air, respectively. 展开更多
关键词 BaxCe0.8Pr0.2O3-α ionic conduction gas concentration cell AC impedance NONSTOICHIOMETRY rare earths
下载PDF
Performance Improving of a Concentrating Photovoltaic System by Using a New Optical Adhesive
12
作者 Intissar Benrhouma Nabil Ben Hafsia +2 位作者 Bechir Chaouachi Marta Victoria Ignacio Anton 《Journal of Modern Physics》 2021年第12期1607-1617,共11页
The objective of this present study is to manufacture a new silicone-based adhesive which is used for gluing and bonding the second optical elements (SOE) with Concentrating Photovoltaic solar cell (CPV) in order to g... The objective of this present study is to manufacture a new silicone-based adhesive which is used for gluing and bonding the second optical elements (SOE) with Concentrating Photovoltaic solar cell (CPV) in order to guarantee a thickness that can provide a good silicone adherence to obtain long term stability and keeping a good solar transmittance performance, too. This new adhesive is made up of a mixture of silicone and transparent glass balls. The experimental part consists of the choice of the best size of glass balls with the suitable proportion of the glass balls weight in the mixture. For this purpose, ten samples were manufactured for every category of glass balls and weight ratio. Glass ball sizes between 100 and 1100 μm, and weight ratios between 1 and 10% were analyzed. For each category of glass balls, four proportions were mixed with the silicone. The thicknesses and transmittance of every sample were measured with appropriate instruments. The experimental results illustrate that the mixture containing balls with sizes inferior to 106 μm, is the best mixture which assures adhesive minimum thickness value necessary for an efficient mechanical bond and preserves also a good transmittance of solar irradiance. 展开更多
关键词 Secondary Optical Elements (SOE) Concentrating Photovoltaic Solar cell (CPV) New Adhesive Thickness TRANSMITTANCE
下载PDF
Thermal analysis and test for single concentrator solar cells 被引量:4
13
作者 崔敏 陈诺夫 +3 位作者 杨晓丽 汪宇 白一鸣 张兴旺 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2009年第4期63-66,共4页
A thermal model for concentrator solar cells based on energy conservation principles was designed. Under 400X concentration with no cooling aid, the cell temperature would get up to about 1200 ?C. Metal plates were u... A thermal model for concentrator solar cells based on energy conservation principles was designed. Under 400X concentration with no cooling aid, the cell temperature would get up to about 1200 ?C. Metal plates were used as heat sinks for cooling the system, which remarkably reduce the cell temperature. For a fixed concentration ratio, the cell temperature reduced as the heat sink area increased. In order to keep the cell at a constant temperature, the heat sink area needs to increase linearly as a function of the concentration ratio. GaInP/GaAs/Ge triple-junction solar cells were fabricated to verify the model. A cell temperature of 37 ?C was measured when using a heat sink at 400X concentration. 展开更多
关键词 heat sink COOLING concentrator solar cells thermal dissipation
原文传递
Enhanced Heat Transfer of Carbon Nanotube Nanofluid Microchannels Applied on Cooling Gallium Arsenide Cell 被引量:5
14
作者 ZHANG Huiying YAN Suying +3 位作者 WANG Tao WU Yuting ZHAO Xiaoyan ZHAO Ning 《Journal of Thermal Science》 SCIE EI CAS CSCD 2020年第6期1475-1486,共12页
Carbon nanotube nanofluids have wide application prospects due to their unique structure and excellent properties.In this study,the thermal conductivity properties of carbon nanotube nanofluids and SiO2/water nanoflui... Carbon nanotube nanofluids have wide application prospects due to their unique structure and excellent properties.In this study,the thermal conductivity properties of carbon nanotube nanofluids and SiO2/water nanofluids were compared and analyzed experimentally using different preparation methods.The physical properties of nanofluids were tested using a Malvern Zetasizer Nano Instrument and a Hot Disk Thermal Constant Analyzer.Combined with field synergy theory analysis of the heat transfer performance of nanofluids,results show that the thermal conductivity of carbon nanotube nanofluids is higher than that of SiO2/water nanofluids,and the thermal conductivity of nanofluid rises with the increase of mass fraction and temperature.Moreover,the synergistic performance of carbon nanotube nanofluids is also superior to that of SiO2/water nanofluids.When the mass fraction of the carbon nanotube nanofluids is 10%and the SiO2/water nanofluids is 8%,their field synergy numbers and heat transfer enhancement factors both reach maximum.From the perspective of the preparation method,the thermal conductivity of nanofluids dispersed by high shear microfluidizer is higher than that by ultrasonic dispersion.This result provides some reference for the selection and use of working substance in a microchannel cooling concentrated photovoltaic and thermal(CPV/T)system. 展开更多
关键词 concentrated photovoltaic solar cell thermal conductivity carbon nanotube nanofluids field synergy principle heat transfer property
原文传递
Optimization of grid design for solar cells
15
作者 刘雯 李越强 +3 位作者 陈建军 陈燕凌 王晓东 杨富华 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2010年第1期42-45,共4页
By theoretical simulation of two grid patterns that are often used in concentrator solar cells, we give a detailed and comprehensive analysis of the influence of the metal grid dimension and various losses directly as... By theoretical simulation of two grid patterns that are often used in concentrator solar cells, we give a detailed and comprehensive analysis of the influence of the metal grid dimension and various losses directly associated with it during optimization of grid design. Furthermore, we also perform the simulation under different concentrator factors, making the optimization of the front contact grid for solar cells complete. 展开更多
关键词 grid contact LOSSES concentrator solar cells concentrator factor simulation
原文传递
Ionic Conduction in In3+-doped ZrP2O7 at Intermediate Temperatures 被引量:4
16
作者 张红敏 肖佳 +2 位作者 杨志杰 王洪涛 马桂林 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2012年第8期1826-1830,共5页
A new series of Zr1-xInxP2O7 (x=0.03, 0.06, 0.09, 0.12) samples were prepared by a solid state reaction method. XRD patterns indicated that the samples of x=0.03–0.09 exhibited a single cubic phase structure, and t... A new series of Zr1-xInxP2O7 (x=0.03, 0.06, 0.09, 0.12) samples were prepared by a solid state reaction method. XRD patterns indicated that the samples of x=0.03–0.09 exhibited a single cubic phase structure, and the doping limit of In3+ in ZrP2O7 was x=0.09. The conduction behavior was investigated in wet hydrogen using various electrochemical methods including AC impedance spectroscopy, isotope effect, gas concentration cells at intermediate temperatures (373–573 K). The conductivities were affected by the doping levels, and increased in the order: σ (x=0.03)〈σ (x=0.12)〈σ (x=0.06)〈σ (x=0.09). The highest conductivity was observed for the sample Zr0.91In0.09P2O7 to be 1.59×10-2 S·cm-1 in wet hydrogen at 573 K. The isotope effect also confirmed the proton conduction of the sample under water vapor-containing atmosphere. It was found that in wet hydrogen atmosphere Zr0.91In0.09P2O7 was almost pure ionic conductor, the ionic conduction was contributed mainly to proton and partially to oxide ionic. The H2/air fuel cell using x=0.09 sample as electrolyte (thickness: 1.73 mm) generated a maximum power density of 13.5 mW·cm?2 at 423 K and 16.9 mW·cm?2 at 448 K, respectively. 展开更多
关键词 Zr1-xInxP2O7 ionic conduction CONDUCTIVITY isotope effect gas concentration cell fuel cell
原文传递
Properties and Application of Ceramic BaCe0.8Ho0.2O3-α
17
作者 仇立干 马桂林 闻荻江 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2005年第12期1641-1645,共5页
Ceramic BaCe0.8Ho0.2O3-α with orthorhombic perovskite structure was prepared by conventional solid state reaction, and its conductivity and ionic transport number were measured by ac impedance spectroscopy and gas co... Ceramic BaCe0.8Ho0.2O3-α with orthorhombic perovskite structure was prepared by conventional solid state reaction, and its conductivity and ionic transport number were measured by ac impedance spectroscopy and gas concentration cell methods in the temperature range of 600-1000 ℃ in wet hydrogen and wet air, respectively. Using the ceramics as solid electrolyte and porous platinum as electrodes, the hydrogen-air fuel cell was constructed, and the cell performance at temperature from 600-1000 ℃ was examined. The results indicate that the specimen was a pure protonic conductor with the protonic transport number of 1 at temperature from 600-900 ℃ in wet hydrogen, a mixed conductor of proton and electron with the protonic transport number of 0.99 at 1000 ℃. The electronic conduction could be neglected in this case, thus the total conductivity in wet hydrogen was approximately regarded as protonic conductivity. In wet air, the specimen was a mixed conductor of proton, oxide ion and electron hole. The protonic transport numbers were 0.01-0.09, and the oxide-ionic transport numbers were 0.27-0.32. The oxide ionic conductivity was increased with the increase of temperature, but the protonic conductivity displayed a maximum at 900 ℃, due to the combined increase in mobility and depletion of the carriers. The fuel cell could work stably. At 1000 ℃, the maximum short-circuit current density and power output density were 346 mA/cm^2 and 80 mW/cm^2, respectively. 展开更多
关键词 BaCe0.8Ho0.2O3-α ac impedance gas concentration cell fuel cell protonic conductor
原文传递
Ionic Conduction in Ba0.95Ce0.8Ho0.2O3-α
18
作者 王茂元 仇立干 马桂林 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2007年第9期1273-1277,共5页
Ba0.95Ce0.8Ho0.2O3-a was prepared by high temperature solid-state reaction. X-ray diffraction (XRD) pattern showed that the material was of a single perovskite-type orthorhombic phase. Using the material as solid el... Ba0.95Ce0.8Ho0.2O3-a was prepared by high temperature solid-state reaction. X-ray diffraction (XRD) pattern showed that the material was of a single perovskite-type orthorhombic phase. Using the material as solid electrolyte and porous platinum as electrodes, the measurements of ionic transport number and conductivity of Ba0.95Ce0.8Ho0.2O3-a were performed by gas concentration cell and ac impedance spectroscopy methods in the temperature range of 600---1000 ℃in wet hydrogen, dry and wet air respectively. Ionic conduction of the material was investigated and compared with that of BaCe0.8Ho0.2O3-a. The results indicated that Ba0.95Ce0.8Ho0.2O3-a was a pure protonic conductor with the protonic transport number of 1 during 600---700℃ in wet hydrogen, a mixed conductor of protons and electrons with the protonic transport number of 0.97--0.93 in 800---1000 ℃. But BaCe0.8Ho0.2O3-a was almost a pure protonic conductor with the protonic transport number of 1 in 600---900 ℃ and 0.99 at 1000 ℃ in wet hydrogen. In dry air and in the temperature range of 600---1000 ℃, they were both mixed conductors of oxide ions and electronic holes, and the oxide-ionic transport numbers were 0.24--0.33 and 0.17--0.30 respectively. In wet air and in the temperature range of 600---1000 ℃, they were both mixed conductors of protons, oxide ions and electronic holes, the protonic transport numbers were 0.11--0.00 and 0.09--0.01 respectively, and the oxide-ionic transport numbers were 0.41--0.33 and 0.27--0.30 respectively. Protonic conductivity of Ba0.95Ce0.8Ho0.2O3-a in both wet hydrogen and wet air was higher than that of BaCe0.8Ho0.2O3-a in 600--- 800 ℃, but lower in 900--1000 ℃. Oxide-ionic conductivity of the material was higher than that of BaCe0.8Ho0.2O3-a in both dry air and wet air in 600---1000 ℃. 展开更多
关键词 Ba0.95Ce0.8Ho0.2O3-a gas concentration cell ac impedance protonic conductor.
原文传递
Ionic Conduction and Application of Ba1.03Ce0.8Tm0.2O3-a Ceramic
19
作者 仇立干 王茂元 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2011年第4期698-702,共5页
BaBa1.03Ce0.8Tm0.2O3-aceramic with orthorhombic perovskite structure was prepared by conventional solid-state reaction. The conductivity and ionic transport number of BaBa1.03Ce0.8Tm0.2O3-a a were measured by ac imped... BaBa1.03Ce0.8Tm0.2O3-aceramic with orthorhombic perovskite structure was prepared by conventional solid-state reaction. The conductivity and ionic transport number of BaBa1.03Ce0.8Tm0.2O3-a a were measured by ac impedance spectroscopy and gas concentration cell methods in the temperature range of 500-900 ℃ in wet hydrogen and wet air. Using the ceramic as solid electrolyte and porous platinum as electrodes, the hydrogen-air fuel cell was constructed, and the cell performance was examined at 500-900℃. The results indicate that the specimen is a pure ionic conductor with the ionic transport number of 1 at 500-900 ℃ in wet hydrogen. In wet air, the specimen is a mixed conductor of proton, oxide ion and electron hole. The protonic transport numbers are 0.071-0.018, and the oxide ionic transport numbers are 0.273-0.365. The conductivities of Bal.03Ceo.sTmo.203 a under wet hydrogen, wet air or fuel cell atmosphere are higher than those of BaBa1.03Ce0.8Tm0.2O3-a a (RE=Y, Eu, Ho) reported previously by us. The fuel cell can work stably. At 900℃ the maximum power output density is 122.7 mWocm 2, which is higher than that of our previous cell using BaBa1.03Ce0.8Tm0.2O3-a(RE=Y, Eu, Ho) as electrolyte. 展开更多
关键词 BaBa1.03Ce0.8Tm0.2O3-a ionic conductor ac impedance gas concentration cell fuel cell
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部