Actin, a highly conserved protein, plays a dominant role in Non-small cell lung cancer (NSCLC). Late diagnosis and the aggressive nature of NSCLC pose a significant threat. Studying the clinic pathological properties ...Actin, a highly conserved protein, plays a dominant role in Non-small cell lung cancer (NSCLC). Late diagnosis and the aggressive nature of NSCLC pose a significant threat. Studying the clinic pathological properties of NSCLC proteins is a potential alternative for developing treatment strategies. Towards this, 35 downregulated actin cytoskeletal proteins on NSCLC prognosis and treatment were studied by examining their protein-protein interactions, gene ontology enrichment terms, and signaling pathways. Using PubMed, various proteins in NSCLC were identified. The protein-protein interactions and functional associations of these proteins were examined using the STRING database. The focal adhesion signaling pathway was selected from all available KEGG and Wiki pathways because of its role in regulating gene expression, facilitating cell movement and reproduction, and significantly impacting NSCLC. The protein-protein interaction network of the 35 downregulated actin cytoskeleton proteins revealed that ACTG1, ACTR2, ACTR3, ANXA2, ARPC4, FLNA, TLN1, CALD1, MYL6, MYH9, MYH10, TPM1, TPM3, TPM4, PFN1, IQGAP1, MSN, and ZXY exhibited the highest number of interactions. Whereas HSPB1, CTNNA1, KRT17, KRT7, FLNB, SEPT2, and TUBA1B displayed medium interactions, while UTRN, TUBA1B, and DUSP23 had relatively fewer interactions. It was discovered that focal adhesions are critical in connecting membrane receptors with the actin cytoskeleton. In addition, protein kinases, phosphatases, and adapter proteins were identified as key signaling molecules in this process, greatly influencing cell shape, motility, and gene expression. Our analysis shows that the focal adhesion pathway plays a crucial role in NSCLC and is essential for developing effective treatment strategies and improving patient outcomes.展开更多
Despite the continuous developments and advancements in the treatment of gastric cancer(GC),which is one of the most prevalent types of cancer in China,the overall survival is still poor for most patients with advance...Despite the continuous developments and advancements in the treatment of gastric cancer(GC),which is one of the most prevalent types of cancer in China,the overall survival is still poor for most patients with advanced GC.In recent years,with the progress in tumor immunology research,attention has shifted toward immunotherapy as a therapeutic approach for GC.Programmed cell death protein 1(PD-1)inhibitors,as novel immunosuppressive medications,have been widely utilized in the treatment of GC.However,many patients are still resistant to PD-1 inhibitors and experience recurrence in the advanced stages of PD-1 immunotherapy.To reduce the occurrence of drug resistance and recurrence in GC patients receiving PD-1 immunotherapy,to maximize the clinical activity of immunosuppressive drugs,and to elicit a lasting immune response,it is essential to research the tumor microenvironment mechanisms leading to PD-1 inhibitor resistance in GC patients.This article reviews the progress in studying the factors influencing the resistance to PD-1 inhibitors in the GC tumor microenvironment,aiming to provide insights and a basis for reducing resistance to PD-1 inhibitors for GC patients in the future.展开更多
Introduction:Transplantation of mesenchymal stromal cells(MSCs)is a promising therapy for type 1 diabetes(T1D).However,whether the infused MSCs affect the endoplasmic reticulum stress or subsequent unfolded protein re...Introduction:Transplantation of mesenchymal stromal cells(MSCs)is a promising therapy for type 1 diabetes(T1D).However,whether the infused MSCs affect the endoplasmic reticulum stress or subsequent unfolded protein response inβcells remains unclear.Methods:To investigate this,we induced early-onset T1D in non-obese diabetic mice using streptozotocin.Subsequently,T1D mice were randomly assigned to receive either MSCs or phosphate-buffered saline.We observed the in vivo homing of MSCs and assessed their effectiveness by analyzing blood glucose levels,body weight,histopathology,pancreatic protein expression,and serum levels of cytokines,proinsulin,and C-peptide.Results:Infused MSCs were found in the lungs,liver,spleen,and pancreas of T1D mice.They exhibited various effects,including reducing blood glucose levels,regulating immunity,inhibiting inflammation,increasingβ-cell areas,and reducing the expression of key proteins in the unfolded protein response pathway.Fasting serum proinsulin and C-peptide levels were significantly higher in the MSCs treatment group than in the T1D model group.However,there was no significant difference in the biomarker ofβ-cell endoplasmic reticulum stress,the ratio of fasting serum proinsulin to C-peptide,between the two groups.Conclusion:Ourfindings reveal that MSCs infusion does not alleviate endoplasmic reticulum stress inβcells directly but modulates the unfolded protein response pathway to preserveβ-cell mass and function in T1D mice.展开更多
BACKGROUND Over the years,programmed cell death-1(PD-1)inhibitors have been routinely used for hepatocellular carcinoma(HCC)treatment and yielded improved survival outcomes.Nonetheless,significant heterogeneity surrou...BACKGROUND Over the years,programmed cell death-1(PD-1)inhibitors have been routinely used for hepatocellular carcinoma(HCC)treatment and yielded improved survival outcomes.Nonetheless,significant heterogeneity surrounds the outcomes of most studies.Therefore,it is critical to search for biomarkers that predict the efficacy of PD-1 inhibitors in patients with HCC.AIM To investigate the role of the C-reactive protein to albumin ratio(CAR)in evaluating the efficacy of PD-1 inhibitors for HCC.METHODS The clinical data of 160 patients with HCC treated with PD-1 inhibitors from January 2018 to November 2022 at the First Affiliated Hospital of Guangxi Medical University were retrospectively analyzed.RESULTS The optimal cut-off value for CAR based on progression-free survival(PFS)was determined to be 1.20 using x-tile software.Cox proportional risk model was used to determine the factors affecting prognosis.Eastern Cooperative Oncology Group performance status[hazard ratio(HR)=1.754,95%confidence interval(95%CI)=1.045-2.944,P=0.033],CAR(HR=2.118,95%CI=1.057-4.243,P=0.034)and tumor number(HR=2.932,95%CI=1.246-6.897,P=0.014)were independent prognostic factors for overall survival.CAR(HR=2.730,95%CI=1.502-4.961,P=0.001),tumor number(HR=1.584,95%CI=1.003-2.500,P=0.048)and neutrophil to lymphocyte ratio(HR=1.120,95%CI=1.022-1.228,P=0.015)were independent prognostic factors for PFS.Two nomograms were constructed based on independent prognostic factors.The C-index index and calibration plots confirmed that the nomogram is a reliable risk prediction tool.The ROC curve and decision curve analysis confirmed that the nomogram has a good predictive effect as well as a net clinical benefit.CONCLUSION Overall,we reveal that the CAR is a potential predictor of short-and long-term prognosis in patients with HCC treated with PD-1 inhibitors.If further verified,CAR-based nomogram may increase the number of markers that predict individualized prognosis.展开更多
BACKGROUND Thrombocytopenia 2,an autosomal dominant inherited disease characterized by moderate thrombocytopenia,predisposition to myeloid malignancies and normal platelet size and function,can be caused by 5’-untran...BACKGROUND Thrombocytopenia 2,an autosomal dominant inherited disease characterized by moderate thrombocytopenia,predisposition to myeloid malignancies and normal platelet size and function,can be caused by 5’-untranslated region(UTR)point mutations in ankyrin repeat domain containing 26(ANKRD26).Runt related transcription factor 1(RUNX1)and friend leukemia integration 1(FLI1)have been identified as negative regulators of ANKRD26.However,the positive regulators of ANKRD26 are still unknown.AIM To prove the positive regulatory effect of GATA binding protein 2(GATA2)on ANKRD26 transcription.METHODS Human induced pluripotent stem cells derived from bone marrow(hiPSC-BM)INTRODUCTION Ankyrin repeat domain containing protein 26(ANKRD26)acts as a regulator of adipogenesis and is involved in the regulation of feeding behavior[1-3].The ANKRD26 gene is located on chromosome 10 and shares regions of homology with the primate-specific gene family POTE.According to the Human Protein Atlas database,the ANKRD26 protein is localized to the Golgi apparatus and vesicles,and its expression can be detected in nearly all human tissues[4].Moreover,UniProt annotation revealed that ANKRD26 is localized in the centrosome and contains coiled-coil domains formed by spectrin helices and ankyrin repeats[5,6].The most common disease related to ANKRD26 is thrombocytopenia 2(THC2),which is a rare autosomal dominant inherited disease characterized by lifelong mild-to-moderate thrombocytopenia and mild bleeding[7-9].Caused by the variants in the 5’-untranslated region(UTR)of ANKRD26,THC2 is defined by a decrease in the number of platelets in circulating blood and results in increased bleeding and decreased clotting ability[8,10].Due to the point mutations that occur in the 5’-UTR of ANKRD26,its negative transcription factors(TFs),Runt related transcription factor 1(RUNX1)and friend leukemia integration 1(FLI1),lose their repression effect[11].The persistent expression of ANKRD26 increases the activity of the mitogen activated protein kinase and extracellular signal regulated kinase 1/2 signaling pathways,which are potentially involved in the regulation of thrombopoietin-dependent signaling and further impair proplatelet formation by megakaryocytes(MKs)[11].However,the positive regulators of ANKRD26,which might be associated with THC2 pathology,are still unknown.展开更多
BACKGROUND The bone remodeling during orthodontic treatment for malocclusion often requires a long duration of around two to three years,which also may lead to some complications such as alveolar bone resorption or to...BACKGROUND The bone remodeling during orthodontic treatment for malocclusion often requires a long duration of around two to three years,which also may lead to some complications such as alveolar bone resorption or tooth root resorption.Low-intensity pulsed ultrasound(LIPUS),a noninvasive physical therapy,has been shown to promote bone fracture healing.It is also reported that LIPUS could reduce the duration of orthodontic treatment;however,how LIPUS regulates the bone metabolism during the orthodontic treatment process is still unclear.AIM To investigate the effects of LIPUS on bone remodeling in an orthodontic tooth movement(OTM)model and explore the underlying mechanisms.METHODS A rat model of OTM was established,and alveolar bone remodeling and tooth movement rate were evaluated via micro-computed tomography and staining of tissue sections.In vitro,human bone marrow mesenchymal stem cells(hBMSCs)were isolated to detect their osteogenic differentiation potential under compression and LIPUS stimulation by quantitative reverse transcription-polymerase chain reaction,Western blot,alkaline phosphatase(ALP)staining,and Alizarin red staining.The expression of Yes-associated protein(YAP1),the actin cytoskeleton,and the Lamin A/C nucleoskeleton were detected with or without YAP1 small interfering RNA(siRNA)application via immunofluorescence.RESULTS The force treatment inhibited the osteogenic differentiation potential of hBMSCs;moreover,the expression of osteogenesis markers,such as type 1 collagen(COL1),runt-related transcription factor 2,ALP,and osteocalcin(OCN),decreased.LIPUS could rescue the osteogenic differentiation of hBMSCs with increased expression of osteogenic marker inhibited by force.Mechanically,the expression of LaminA/C,F-actin,and YAP1 was downregulated after force treatment,which could be rescued by LIPUS.Moreover,the osteogenic differentiation of hBMSCs increased by LIPUS could be attenuated by YAP siRNA treatment.Consistently,LIPUS increased alveolar bone density and decreased vertical bone absorption in vivo.The decreased expression of COL1,OCN,and YAP1 on the compression side of the alveolar bone was partially rescued by LIPUS.CONCLUSION LIPUS can accelerate tooth movement and reduce alveolar bone resorption by modulating the cytoskeleton-Lamin A/C-YAP axis,which may be a promising strategy to reduce the orthodontic treatment process.展开更多
Circulating tumor cells(CTCs)play an important role in tumor metastases,which is positively correlated with an increased risk of death.Actin-binding proteins,including cofilin(CFL1),profilin 1(PFN1),and adenylate cycl...Circulating tumor cells(CTCs)play an important role in tumor metastases,which is positively correlated with an increased risk of death.Actin-binding proteins,including cofilin(CFL1),profilin 1(PFN1),and adenylate cyclase-associated protein 1(CAP1),are thought to be involved in tumor cell motility and metastasis,specifically in head and neck squamous cell carcinoma(HNSCC).However,currently,there are no published studies on CFL1,PFN1,and CAP1 in CTCs and leukocytes in HNSCC patients.We assessed serum levels of CFL1,PFN1,and CAP1 and the number of CTCs and leukocytes containing these proteins in blood from 31 HNSCC patients(T1-4N0-2M0).The analysis used flow cytometry and an enzyme-linked immunosorbent assay kit.We found that CAP1+CTCs and CAP1+leukocyte subpopulations were prevalent in these HNSCC patient samples,while the prevalence rates of CFL1+and PFN1+CTCs were relatively low.Patients with stage T2-4N1-2M0 had CFL1+and PFN1+CTCs with an elevated PFN1 serum level,compared with the T1-3N0M0 group.In summary,the PFN1 serum level and the relative number of PFN1+CD326+CTCs could be valuable prognostic markers for HNSCC metastases.The current study is the first to obtain data regarding the contents of actin-binding proteins(ABPs)in CTCs,and leukocytes in blood from HNSCC patients.This is also the first to assess the relationship between the number of CTCs subgroups and disease characteristics.展开更多
Objective: To explore the effect of L158, 809 (angiatensin Ⅱ receptorMockers, ARBs) and Cilazapril (Angiotensin converting enzyme inhibitor, ACEI) on the expression oftransforming growth factor-β_1 (TGF-β_1) and se...Objective: To explore the effect of L158, 809 (angiatensin Ⅱ receptorMockers, ARBs) and Cilazapril (Angiotensin converting enzyme inhibitor, ACEI) on the expression oftransforming growth factor-β_1 (TGF-β_1) and secretion of fibronectin, laminin and type Ⅳcollagen from the cultured human mesangial cells . Methods: Human mesangial cells were cultured indifferent glucose (5.6 mmol/L and 30 mmol/L) and agents (1, 10, 100 and 500 μmol/L) concentrations. The proliferation of mesangial cells were detected at 24, 48 and 72 h . Then the mesangial cellsare divided into four groups, low glucose (5.6 mmol/L) control group, high glucose (30 mmol/L)control group , L158, 809 (10 μmol/L) group and cilazapril (10 μmol/L) group. Forty- eight hourslater, the expression of TGF-β_1 were detected by RT-PCR. Concentrations of TGF-β_1 ,fibronection, laminin and type Ⅳ collagen in the su-pematants of the, mesangial cells weredetermined by EUSA and radioimmunoassay methods. Results: Compared with low glucose control group,the mesangial cells under high glucose medium show excessive proliferation and more TGF-β_1,fibronectin, laminin and type Ⅳ collagen in the supernatant. The expression of TGF-β_1 mRNA wasalso significantly increased under high glucose. The levels of TGF-β_1 and ECM (extracellularmatrix) proteins in the L158, 809 group and cilazapril group are obviously lower than that of thehigh glucose control group. The expression of TGF-β_1 mRNA was markedly decreased in the L158, 809group and cilazapril group compared with that of high glucose control group . Conclusion: Highglucose stimulated the cultured human mesangial cells to excessively proliferate, express TGF-β_1and secrete ECM proteins, and the high glucose-indeced changes were suppressed by either L158, 809and cilazapril.展开更多
The extracellular matrix-associated bone morphogenetic proteins(BMPs) govern a plethora of biological processes. The BMPs are members of the transforming growth factor-β protein superfamily, and they actively partici...The extracellular matrix-associated bone morphogenetic proteins(BMPs) govern a plethora of biological processes. The BMPs are members of the transforming growth factor-β protein superfamily, and they actively participate to kidney development, digit and limb formation, angiogenesis, tissue fibrosis and tumor development. Since their discovery, they have attracted attention for their fascinating perspectives in the regenerative medicine and tissue engineering fields. BMPs have been employed in many preclinical and clinical studies exploring their chondrogenic or osteoinductive potential in several animal model defects and in human diseases. During years of research in particular two BMPs, BMP2 and BMP7 have gained the podium for their use in the treatment of various cartilage and bone defects. In particular they have been recently approved for employment in non-union fractures as adjunct therapies. On the other hand, thanks to their potentialities in biomedical applications, there is a growing interest in studying the biology of mesenchymal stem cell(MSC), the rules underneath their differentiation abilities, and to test their true abilities in tissue engineering. In fact, the specific differentiation of MSCs into targeted celltype lineages for transplantation is a primary goal of the regenerative medicine. This review provides an overview on the current knowledge of BMP roles and signaling in MSC biology and differentiation capacities. In particular the article focuses on the potential clinical use of BMPs and MSCs concomitantly, in cartilage and bone tissue repair.展开更多
Ischemic stroke can cause blood-brain barrier(BBB)injury,which worsens brain damage induced by stroke.Abnormal expression of tight junction proteins in endothelial cells(ECs)can increase intracellular space and BBB le...Ischemic stroke can cause blood-brain barrier(BBB)injury,which worsens brain damage induced by stroke.Abnormal expression of tight junction proteins in endothelial cells(ECs)can increase intracellular space and BBB leakage.Selective inhibition of mitogen-activated protein kinase,the negative regulatory substrate of mitogen-activated protein kinase phosphatase(MKP)-1,improves tight junction protein function in ECs,and genetic deletion of MKP-1 aggravates ischemic brain injury.However,whether the latter affects BBB integrity,and the cell type-specific mechanism underlying this process,remain unclear.In this study,we established an adult male mouse model of ischemic stroke by occluding the middle cerebral artery for 60 minutes and overexpressed MKP-1 in ECs on the injured side via lentiviral transfection before stroke.We found that overexpression of MKP-1 in ECs reduced infarct volume,reduced the level of inflammatory factors interleukin-1β,interleukin-6,and chemokine C-C motif ligand-2,inhibited vascular injury,and promoted the recovery of sensorimotor and memory/cognitive function.Overexpression of MKP-1 in ECs also inhibited the activation of cerebral ischemia-induced extracellular signal-regulated kinase(ERK)1/2 and the downregulation of occludin expression.Finally,to investigate the mechanism by which MKP-1 exerted these functions in ECs,we established an ischemic stroke model in vitro by depriving the primary endothelial cell of oxygen and glucose,and pharmacologically inhibited the activity of MKP-1 and ERK1/2.Our findings suggest that MKP-1 inhibition aggravates oxygen and glucose deprivation-induced cell death,cell monolayer leakage,and downregulation of occludin expression,and that inhibiting ERK1/2 can reverse these effects.In addition,co-inhibition of MKP-1 and ERK1/2 exhibited similar effects to inhibition of ERK1/2.These findings suggest that overexpression of MKP-1 in ECs can prevent ischemia-induced occludin downregulation and cell death via deactivating ERK1/2,thereby protecting the integrity of BBB,alleviating brain injury,and improving post-stroke prognosis.展开更多
Aim: To produce biologically active recombinant human (rh) ZP proteins in a human cell for use in sperm function tests. Methods: The human embryonic kidney cell line 293T was employed to produce rhZP1, rhZP2 and rhZP3...Aim: To produce biologically active recombinant human (rh) ZP proteins in a human cell for use in sperm function tests. Methods: The human embryonic kidney cell line 293T was employed to produce rhZP1, rhZP2 and rhZP3 proteins individually and together by co-expression. Presence of these proteins in the culture medium and cell lysate was assessed by Western blotting analysis. The effect of the recombinant proteins on the human AR was assessed. Results: RhZP2 and rhZP3 were secreted into the culture medium, whereas rhZPl was found only in the cell lysate. Interestingly, when all zona pellucida proteins were co-expressed in the same cells, rhZPl was also secreted into the culture medium. However, despite the presence of all three ZP proteins in sufficient concentration and evidence of heavy glycosylation on gel electrophoresis, biological activity to induce the AR was not observed. Conclusion: RhZP1, rhZP2 and rhZP3 were successfully expressed in the human embryonic kidney cell line 293T. It appears that an interaction amongst these proteins may be required for release of rhZPl from the cell. Although this approach is not satisfactory for producing active human ZP proteins, it makes a significant contribution to the understanding of the structural and functional characteristics of the ZP proteins.展开更多
Diabetic peripheral neuropathy is a common complication of diabetes mellitus.Elucidating the pathophysiological metabolic mechanism impels the generation of ideal therapies.However,existing limited treatments for diab...Diabetic peripheral neuropathy is a common complication of diabetes mellitus.Elucidating the pathophysiological metabolic mechanism impels the generation of ideal therapies.However,existing limited treatments for diabetic peripheral neuropathy expose the urgent need for cell metabolism research.Given the lack of comprehensive understanding of energy metabolism changes and related signaling pathways in diabetic peripheral neuropathy,it is essential to explore energy changes and metabolic changes in diabetic peripheral neuropathy to develop suitable treatment methods.This review summarizes the pathophysiological mechanism of diabetic peripheral neuropathy from the perspective of cellular metabolism and the specific interventions for different metabolic pathways to develop effective treatment methods.Various metabolic mechanisms(e.g.,polyol,hexosamine,protein kinase C pathway)are associated with diabetic peripheral neuropathy,and researchers are looking for more effective treatments through these pathways.展开更多
AIM:To develop a new method to produce recombinant reprogramming proteins,c Myc,Klf4,Oct4,and Sox2,in soluble format with low cost for the generation of induced pluripotent stem cells(i PSCs).METHODS:A short polyp...AIM:To develop a new method to produce recombinant reprogramming proteins,c Myc,Klf4,Oct4,and Sox2,in soluble format with low cost for the generation of induced pluripotent stem cells(i PSCs).METHODS:A short polypeptide sequence derived from the HIV trans-activator of transcription protein(TAT) and the nucleus localization signal(NLS) polypeptide were fused to the N terminus of the reprogramming proteins and they were constructed into p Cold-SUMO vector which can extremely improve the solubility of recombinant proteins.Then these vector plasmids were transformed into E.coli BL21(DE3) Chaperone competent cells for amplification.The solubility of these recombinant proteins was determined by SDS-PAGE and Coomassie brilliant blue staining.The recombinant proteins were purified by NiNTA resin and identified by Western blot.The transduction of these proteins into HEK 293 T cells were evaluated by immunofluorescence staining.RESULTS:These four reprogramming proteins could be produced in soluble format in p Cold-SUMO expression vector system with the assistance of chaperone proteins in bacteria.The proteins were purified successfully with a purity of over 70% with a relative high transduction rate into 293 cells.CONCLUSION:The results in the present study indicate the four important reprogramming proteins,c Myc,Klf4,Oct4,and Sox2,can be produced in soluble format in bacteria with low cost.Our new method thus might be expected to greatly contribute to the future study of i PSCs.展开更多
AIM: To explore different roles of TGF-β (transforming growth factor beta) and bone morphogenetic proteins (BMPs)in hepatic stellate cell proliferation and trans-differentiation.METHODS: Hepatic stellate cells were i...AIM: To explore different roles of TGF-β (transforming growth factor beta) and bone morphogenetic proteins (BMPs)in hepatic stellate cell proliferation and trans-differentiation.METHODS: Hepatic stellate cells were isolated from male Sprague-Dawley rats. Sub-cultured hepatic stellate cells were employed for cell proliferation assay with WST-1 reagent and Western blot analysis with antibody against smooth muscle alpha actin (SMA).RESULTS: The results indicated that TGF-β1 significantly inhibited cell proliferation at concentration as low as 0.1 ng/ml, but both BMP-2 and BMP-4 did not affect cell proliferation at concentration as high as 10 ng/ml. The effect on hepatic stellate cell trans-differentiation was similar between TGFβ1 and BMPs. However, BMPs was more potent at transdifferentiation of hepatic stellate cells than TGF-β1. In addition, we observed that TGF-β1 transient reduced the abundance of SMA in hepatic stellate cells.CONCLUSION: TGF-β may be more important in regulation of hepatic stellate cell proliferation while BMPs may be the major cytokines regulating hepatic stellate cell transdifferentiation.展开更多
BACKGROUND Hepatic arterial infusion chemotherapy(HAIC)has been proven to be an ideal choice for treating unresectable hepatocellular carcinoma(uHCC).HAIC-based treatment showed great potential for treating uHCC.Howev...BACKGROUND Hepatic arterial infusion chemotherapy(HAIC)has been proven to be an ideal choice for treating unresectable hepatocellular carcinoma(uHCC).HAIC-based treatment showed great potential for treating uHCC.However,large-scale studies on HAIC-based treatments and meta-analyses of first-line treatments for uHCC are lacking.AIM To investigate better first-line treatment options for uHCC and to assess the safety and efficacy of HAIC combined with angiogenesis inhibitors,programmed cell death of protein 1(PD-1)and its ligand(PD-L1)blockers(triple therapy)under real-world conditions.METHODS Several electronic databases were searched to identify eligible randomized controlled trials for this meta-analysis.Study-level pooled analyses of hazard ratios(HRs)and odds ratios(ORs)were performed.This was a retrospective single-center study involving 442 patients with uHCC who received triple therapy or angiogenesis inhibitors plus PD-1/PD-L1 blockades(AIPB)at Sun Yat-sen University Cancer Center from January 2018 to April 2023.Propensity score matching(PSM)was performed to balance the bias between the groups.The Kaplan-Meier method and cox regression were used to analyse the survival data,and the log-rank test was used to compare the suvival time between the groups.RESULTS A total of 13 randomized controlled trials were included.HAIC alone and in combination with sorafenib were found to be effective treatments(P values for ORs:HAIC,0.95;for HRs:HAIC+sorafenib,0.04).After PSM,176 HCC patients were included in the analysis.The triple therapy group(n=88)had a longer median overall survival than the AIPB group(n=88)(31.6 months vs 14.6 months,P<0.001)and a greater incidence of adverse events(94.3%vs 75.4%,P<0.001).CONCLUSION This meta-analysis suggests that HAIC-based treatments are likely to be the best choice for uHCC.Our findings confirm that triple therapy is more effective for uHCC patients than AIPB.展开更多
Background: Cinnamicaldehyde(CA) is a key flavor compound in cinnamon essential oil possessing various bioactivities. Tight junction(TJ) proteins are vital for the maintenance of intestinal epithelial barrier fun...Background: Cinnamicaldehyde(CA) is a key flavor compound in cinnamon essential oil possessing various bioactivities. Tight junction(TJ) proteins are vital for the maintenance of intestinal epithelial barrier function,transport, absorption and utilization of dietary amino acids and other nutrients. In this study, we tested the hypothesis that CA may regulate the expression of TJ proteins and amino acid transporters in intestinal porcine epithelial cells(IPEC-1) isolated from neonatal pigs.Results: Compared with the control, cells incubated with 25 μmol/L CA had increased transepithelial electrical resistance(TEER) and decreased paracellular intestinal permeability. The beneficial effect of CA on mucosal barrier function was associated with enhanced protein abundance for claudin-4, zonula occludens(ZO)-1, ZO-2, and ZO-3. Immunofluorescence staining showed that 25 μmol/L CA promoted the localization of claudin-1 and claudin-3 to the plasma membrane without affecting the localization of other TJ proteins, including claudin-4, occludin,ZO-1, ZO-2, and ZO-3, compared with the control cells. Moreover, protein abundances for rBAT, xCT and LAT2 in IPEC-1 cells were enhanced by 25 μmol/L CA, while that for EAAT3 was not affected.Conclusions: CA improves intestinal mucosal barrier function by regulating the distribution of claudin-1 and claudin-3 in enterocytes, as well as enhancing protein abundance for amino acid transporters rBAT, xCT and LAT2 in enterocytes. Supplementation with CA may provide an effective nutritional strategy to improve intestinal integrity and amino acid transport and absorption in piglets.展开更多
Mesenchymal stem cells(MSCs)originate from many sources,including the bone marrow and adipose tissue,and differentiate into various cell types,such as osteoblasts and adipocytes.Recent studies on MSCs have revealed th...Mesenchymal stem cells(MSCs)originate from many sources,including the bone marrow and adipose tissue,and differentiate into various cell types,such as osteoblasts and adipocytes.Recent studies on MSCs have revealed that many transcription factors and signaling pathways control osteogenic development.Osteogenesis is the process by which new bones are formed;it also aids in bone remodeling.Wnt/β-catenin and bone morphogenetic protein(BMP)signaling pathways are involved in many cellular processes and considered to be essential for life.Wnt/β-catenin and BMPs are important for bone formation in mammalian development and various regulatory activities in the body.Recent studies have indicated that these two signaling pathways contribute to osteogenic differen-tiation.Active Wnt signaling pathway promotes osteogenesis by activating the downstream targets of the BMP signaling pathway.Here,we briefly review the molecular processes underlying the crosstalk between these two pathways and explain their participation in osteogenic differentiation,emphasizing the canonical pathways.This review also discusses the crosstalk mechanisms of Wnt/BMP signaling with Notch-and extracellular-regulated kinases in osteogenic differentiation and bone development.展开更多
AIM: To find and identify specific nuclear matrix proteins associated with proliferation and differentiation of carcinoma cells, which will be potential markers for cancer diagnosis and targets in cancer therapy. MET...AIM: To find and identify specific nuclear matrix proteins associated with proliferation and differentiation of carcinoma cells, which will be potential markers for cancer diagnosis and targets in cancer therapy. METHODS: Nuclear matrix proteins were selectively extracted from MGcS0-3 cells treated with or without hexamethylamine bisacetamide (HMBA), and subjected to 2-D gel electrophoresis. The resulted protein patterns were analyzed by Melanie software. Spots of nuclear matrix proteins differentially expressed were excised and subjected to in situ digestion with trypsin. Peptide masses were obtained by matrix-assisted laser-desorption/ ionization time of flight mass spectrometry (MALDI-TOFMS) analysis and submitted for database searching using Mascot tool. RESULTS: The MGc80-3 cells were induced into differentiation by HMBA. There were 22 protein spots which changed remarkably in the nuclear matrix, from differentiation of MGcS0-3 cells compared to control. Eleven of which were identified. Seven proteinsactin, prohibitin, porin 31HL, heterogeneous nuclear dbonucleoprotein A2/B1, vimentin, ATP synthase, and heat shock protein 60 were downregulated, whereas three proteins - heat shock protein gp96, heat shock protein 90-beta, and valosin-containing protein were upregulated, and the oxygen-regulated protein was only found in the differentiated MGc80-3 cells. CONCLUSION: The induced differentiation of carcinoma cells is accompanied by the changes of nuclear matrix proteins. Further characterization of those proteins will show the mechanism of cellular proliferation and differentiation, as well as cancer differentiation.展开更多
AIM: To investigate the association between the configurational and compositional changes of nuclear matrix and the differentiation of carcinoma cells. METHODS: Cells cultured with or without 5 × 10^-3 mmol/L o...AIM: To investigate the association between the configurational and compositional changes of nuclear matrix and the differentiation of carcinoma cells. METHODS: Cells cultured with or without 5 × 10^-3 mmol/L of hexamethylene bisacetamide (HMBA) on Nickel grids were treated by selective extraction and prepared for whole mount observation under electron microscopy. The samples were examined under transmission electron microscope. Nuclear matrix proteins were selectively extracted and subjected to subcellular proteomics study. The protein expression patterns were analyzed by PDQuest software. Spots of differentially expressed nuclear matrix proteins were excised and subjected to in situ digestion with trypsin. The peptides were analyzed by matrix-assisted laser- desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS). Data were submitted for database searching using Mascot tool (www.matrixscience.com). RESULTS: The nuclear matrix (NM) and intermediate filament (IF) in SMMC-7721 hepatocarcinoma cells were found relatively sparse and arranged irregularly. The nuclear lamina was non-uniform, and two kinds of filaments were not tightly connected. After induction for differentiation by HMBA, the NM-IF filaments were concentrated and distributed uniformly. The heterogeneous population of filaments, including highly branched utrathin filaments could also be seen in the regular meshwork. The connection between the two kinds of filaments and the relatively thin, condensed and sharply demarcated lamina composed of intermediate- sized filaments was relatively fastened. Meanwhile, 21 NM proteins changed remarkably during SMMC-7721 cell differentiation. Four proteins, i.e. mutant Pystl, hypothetical protein, nucleophosminl, and LBP were downregulated, whereas four other proteins, eIF6, p44 subunit, 13-tubulin, and SIN3B were upregulated with the last one, SR2/ASF found only in the differentiated SMMC-7721 cells. CONCLUSION: The induced differentiation of SMMC-7721 cells by HMBA is accompanied by the configurational changes of nuclear matrix-intermediate filament (NM-IF) system and the compositional changes of nuclear matrix protein expression. These changes may be important morphological or functional indications of the cancer cell reversion.展开更多
To investigate whether the Bcl- 2 gene family is involved in m odulating mechanism of apoptosis and change of cell cycle protein induced by curcumin in acute myeloid leukemia HL - 6 0 cell line and primary acute m y...To investigate whether the Bcl- 2 gene family is involved in m odulating mechanism of apoptosis and change of cell cycle protein induced by curcumin in acute myeloid leukemia HL - 6 0 cell line and primary acute m yelogenous leukem ic cells,the Bcl- 2 family member Mcl- 1,Bax and Bak and cell cycle proteins including P2 7kipl,P2 1wafl,cyclin D3and p Rbp- were selected and their ex- pression detected by SABC imm uno- histochem ical stain m ethod.The attitude of sub- G1 peak in DNA histogram was determined by FCM.The TU NEL positive cell percentage was identified by term inal deoxynucleotidyl transferase (Td T ) - m ediated Biotin d U NP end labeling technique.It was found that when HL - 6 0 cells were treated with 2 5μm ol/ L curcumin for 2 4 h,the expression level of Mcl- 1was down- regulated,but that of Bax and Bak up- regulated time- dependently.There was significant difference in the expression level of Mcl- 1,Bax and Bak between the curcumin- treated groups and control group(P<0 .0 5 - 0 .0 1) .At the sam e time,curcumin had no effect on progress of cell cycle in prim aty acute m yelogenous leukemia at newly diagnosis,but could in- crease the peak of Sub- G1 (P<0 .0 5 ) ,and down- regulate the expression of Mcl- 1and up- regulate the expression of Bax and Bak with the difference being statistically significant.The expression of P2 7kipl,P2 1wafl and p Rbp- were elevated and thatof cyclin D3decreased in the presence of curcum in. These findings suggested thatthe Bcl- 2 gene fam ily indeed participated in the regulatory process of apoptosis induced by curcumin in HL - 6 0 cells and AML cells.Curcumin can induce apoptosis of primary acute myelogenous leukemic cells and disturb cell cycle progression of HL - 6 0 cells.The m echanism appeared to be m ediated by perturbing G0 / G1 phases checkpoints which associated with up- regulation of P2 7kipl,P2 1wafl and p Rbp- expression,and down- regulation of cyclin D3.展开更多
文摘Actin, a highly conserved protein, plays a dominant role in Non-small cell lung cancer (NSCLC). Late diagnosis and the aggressive nature of NSCLC pose a significant threat. Studying the clinic pathological properties of NSCLC proteins is a potential alternative for developing treatment strategies. Towards this, 35 downregulated actin cytoskeletal proteins on NSCLC prognosis and treatment were studied by examining their protein-protein interactions, gene ontology enrichment terms, and signaling pathways. Using PubMed, various proteins in NSCLC were identified. The protein-protein interactions and functional associations of these proteins were examined using the STRING database. The focal adhesion signaling pathway was selected from all available KEGG and Wiki pathways because of its role in regulating gene expression, facilitating cell movement and reproduction, and significantly impacting NSCLC. The protein-protein interaction network of the 35 downregulated actin cytoskeleton proteins revealed that ACTG1, ACTR2, ACTR3, ANXA2, ARPC4, FLNA, TLN1, CALD1, MYL6, MYH9, MYH10, TPM1, TPM3, TPM4, PFN1, IQGAP1, MSN, and ZXY exhibited the highest number of interactions. Whereas HSPB1, CTNNA1, KRT17, KRT7, FLNB, SEPT2, and TUBA1B displayed medium interactions, while UTRN, TUBA1B, and DUSP23 had relatively fewer interactions. It was discovered that focal adhesions are critical in connecting membrane receptors with the actin cytoskeleton. In addition, protein kinases, phosphatases, and adapter proteins were identified as key signaling molecules in this process, greatly influencing cell shape, motility, and gene expression. Our analysis shows that the focal adhesion pathway plays a crucial role in NSCLC and is essential for developing effective treatment strategies and improving patient outcomes.
基金Natural Science Foundation of Gansu Province,No.21JR1RA186and the Health Industry Research Program of Gansu Province,No.GSWSKY2021-043.
文摘Despite the continuous developments and advancements in the treatment of gastric cancer(GC),which is one of the most prevalent types of cancer in China,the overall survival is still poor for most patients with advanced GC.In recent years,with the progress in tumor immunology research,attention has shifted toward immunotherapy as a therapeutic approach for GC.Programmed cell death protein 1(PD-1)inhibitors,as novel immunosuppressive medications,have been widely utilized in the treatment of GC.However,many patients are still resistant to PD-1 inhibitors and experience recurrence in the advanced stages of PD-1 immunotherapy.To reduce the occurrence of drug resistance and recurrence in GC patients receiving PD-1 immunotherapy,to maximize the clinical activity of immunosuppressive drugs,and to elicit a lasting immune response,it is essential to research the tumor microenvironment mechanisms leading to PD-1 inhibitor resistance in GC patients.This article reviews the progress in studying the factors influencing the resistance to PD-1 inhibitors in the GC tumor microenvironment,aiming to provide insights and a basis for reducing resistance to PD-1 inhibitors for GC patients in the future.
文摘Introduction:Transplantation of mesenchymal stromal cells(MSCs)is a promising therapy for type 1 diabetes(T1D).However,whether the infused MSCs affect the endoplasmic reticulum stress or subsequent unfolded protein response inβcells remains unclear.Methods:To investigate this,we induced early-onset T1D in non-obese diabetic mice using streptozotocin.Subsequently,T1D mice were randomly assigned to receive either MSCs or phosphate-buffered saline.We observed the in vivo homing of MSCs and assessed their effectiveness by analyzing blood glucose levels,body weight,histopathology,pancreatic protein expression,and serum levels of cytokines,proinsulin,and C-peptide.Results:Infused MSCs were found in the lungs,liver,spleen,and pancreas of T1D mice.They exhibited various effects,including reducing blood glucose levels,regulating immunity,inhibiting inflammation,increasingβ-cell areas,and reducing the expression of key proteins in the unfolded protein response pathway.Fasting serum proinsulin and C-peptide levels were significantly higher in the MSCs treatment group than in the T1D model group.However,there was no significant difference in the biomarker ofβ-cell endoplasmic reticulum stress,the ratio of fasting serum proinsulin to C-peptide,between the two groups.Conclusion:Ourfindings reveal that MSCs infusion does not alleviate endoplasmic reticulum stress inβcells directly but modulates the unfolded protein response pathway to preserveβ-cell mass and function in T1D mice.
基金Supported by the Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University),Ministry of Education,No.GKE-ZZ202117 and No.GKE-ZZ202334.
文摘BACKGROUND Over the years,programmed cell death-1(PD-1)inhibitors have been routinely used for hepatocellular carcinoma(HCC)treatment and yielded improved survival outcomes.Nonetheless,significant heterogeneity surrounds the outcomes of most studies.Therefore,it is critical to search for biomarkers that predict the efficacy of PD-1 inhibitors in patients with HCC.AIM To investigate the role of the C-reactive protein to albumin ratio(CAR)in evaluating the efficacy of PD-1 inhibitors for HCC.METHODS The clinical data of 160 patients with HCC treated with PD-1 inhibitors from January 2018 to November 2022 at the First Affiliated Hospital of Guangxi Medical University were retrospectively analyzed.RESULTS The optimal cut-off value for CAR based on progression-free survival(PFS)was determined to be 1.20 using x-tile software.Cox proportional risk model was used to determine the factors affecting prognosis.Eastern Cooperative Oncology Group performance status[hazard ratio(HR)=1.754,95%confidence interval(95%CI)=1.045-2.944,P=0.033],CAR(HR=2.118,95%CI=1.057-4.243,P=0.034)and tumor number(HR=2.932,95%CI=1.246-6.897,P=0.014)were independent prognostic factors for overall survival.CAR(HR=2.730,95%CI=1.502-4.961,P=0.001),tumor number(HR=1.584,95%CI=1.003-2.500,P=0.048)and neutrophil to lymphocyte ratio(HR=1.120,95%CI=1.022-1.228,P=0.015)were independent prognostic factors for PFS.Two nomograms were constructed based on independent prognostic factors.The C-index index and calibration plots confirmed that the nomogram is a reliable risk prediction tool.The ROC curve and decision curve analysis confirmed that the nomogram has a good predictive effect as well as a net clinical benefit.CONCLUSION Overall,we reveal that the CAR is a potential predictor of short-and long-term prognosis in patients with HCC treated with PD-1 inhibitors.If further verified,CAR-based nomogram may increase the number of markers that predict individualized prognosis.
基金Supported by General Program of National Natural Science Foundation of China,No.81770197Scientific and Technological Research Major Program of Chongqing Municipal Education Commission,No.KJZD-M202312802+1 种基金Chongqing Natural Science Foundation of China,No.CSTB2022NSCQ-MSX0190,No.CSTB2022NSCQ-MSX0176,and No.cstc2020jcyj-msxmX0051Xinqiao Young Postdoc Talent Incubation Program,No.2022YQB098.
文摘BACKGROUND Thrombocytopenia 2,an autosomal dominant inherited disease characterized by moderate thrombocytopenia,predisposition to myeloid malignancies and normal platelet size and function,can be caused by 5’-untranslated region(UTR)point mutations in ankyrin repeat domain containing 26(ANKRD26).Runt related transcription factor 1(RUNX1)and friend leukemia integration 1(FLI1)have been identified as negative regulators of ANKRD26.However,the positive regulators of ANKRD26 are still unknown.AIM To prove the positive regulatory effect of GATA binding protein 2(GATA2)on ANKRD26 transcription.METHODS Human induced pluripotent stem cells derived from bone marrow(hiPSC-BM)INTRODUCTION Ankyrin repeat domain containing protein 26(ANKRD26)acts as a regulator of adipogenesis and is involved in the regulation of feeding behavior[1-3].The ANKRD26 gene is located on chromosome 10 and shares regions of homology with the primate-specific gene family POTE.According to the Human Protein Atlas database,the ANKRD26 protein is localized to the Golgi apparatus and vesicles,and its expression can be detected in nearly all human tissues[4].Moreover,UniProt annotation revealed that ANKRD26 is localized in the centrosome and contains coiled-coil domains formed by spectrin helices and ankyrin repeats[5,6].The most common disease related to ANKRD26 is thrombocytopenia 2(THC2),which is a rare autosomal dominant inherited disease characterized by lifelong mild-to-moderate thrombocytopenia and mild bleeding[7-9].Caused by the variants in the 5’-untranslated region(UTR)of ANKRD26,THC2 is defined by a decrease in the number of platelets in circulating blood and results in increased bleeding and decreased clotting ability[8,10].Due to the point mutations that occur in the 5’-UTR of ANKRD26,its negative transcription factors(TFs),Runt related transcription factor 1(RUNX1)and friend leukemia integration 1(FLI1),lose their repression effect[11].The persistent expression of ANKRD26 increases the activity of the mitogen activated protein kinase and extracellular signal regulated kinase 1/2 signaling pathways,which are potentially involved in the regulation of thrombopoietin-dependent signaling and further impair proplatelet formation by megakaryocytes(MKs)[11].However,the positive regulators of ANKRD26,which might be associated with THC2 pathology,are still unknown.
基金Supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China,No.2022YFA1105800the National Natural Science Foundation of China,No.81970940.
文摘BACKGROUND The bone remodeling during orthodontic treatment for malocclusion often requires a long duration of around two to three years,which also may lead to some complications such as alveolar bone resorption or tooth root resorption.Low-intensity pulsed ultrasound(LIPUS),a noninvasive physical therapy,has been shown to promote bone fracture healing.It is also reported that LIPUS could reduce the duration of orthodontic treatment;however,how LIPUS regulates the bone metabolism during the orthodontic treatment process is still unclear.AIM To investigate the effects of LIPUS on bone remodeling in an orthodontic tooth movement(OTM)model and explore the underlying mechanisms.METHODS A rat model of OTM was established,and alveolar bone remodeling and tooth movement rate were evaluated via micro-computed tomography and staining of tissue sections.In vitro,human bone marrow mesenchymal stem cells(hBMSCs)were isolated to detect their osteogenic differentiation potential under compression and LIPUS stimulation by quantitative reverse transcription-polymerase chain reaction,Western blot,alkaline phosphatase(ALP)staining,and Alizarin red staining.The expression of Yes-associated protein(YAP1),the actin cytoskeleton,and the Lamin A/C nucleoskeleton were detected with or without YAP1 small interfering RNA(siRNA)application via immunofluorescence.RESULTS The force treatment inhibited the osteogenic differentiation potential of hBMSCs;moreover,the expression of osteogenesis markers,such as type 1 collagen(COL1),runt-related transcription factor 2,ALP,and osteocalcin(OCN),decreased.LIPUS could rescue the osteogenic differentiation of hBMSCs with increased expression of osteogenic marker inhibited by force.Mechanically,the expression of LaminA/C,F-actin,and YAP1 was downregulated after force treatment,which could be rescued by LIPUS.Moreover,the osteogenic differentiation of hBMSCs increased by LIPUS could be attenuated by YAP siRNA treatment.Consistently,LIPUS increased alveolar bone density and decreased vertical bone absorption in vivo.The decreased expression of COL1,OCN,and YAP1 on the compression side of the alveolar bone was partially rescued by LIPUS.CONCLUSION LIPUS can accelerate tooth movement and reduce alveolar bone resorption by modulating the cytoskeleton-Lamin A/C-YAP axis,which may be a promising strategy to reduce the orthodontic treatment process.
文摘Circulating tumor cells(CTCs)play an important role in tumor metastases,which is positively correlated with an increased risk of death.Actin-binding proteins,including cofilin(CFL1),profilin 1(PFN1),and adenylate cyclase-associated protein 1(CAP1),are thought to be involved in tumor cell motility and metastasis,specifically in head and neck squamous cell carcinoma(HNSCC).However,currently,there are no published studies on CFL1,PFN1,and CAP1 in CTCs and leukocytes in HNSCC patients.We assessed serum levels of CFL1,PFN1,and CAP1 and the number of CTCs and leukocytes containing these proteins in blood from 31 HNSCC patients(T1-4N0-2M0).The analysis used flow cytometry and an enzyme-linked immunosorbent assay kit.We found that CAP1+CTCs and CAP1+leukocyte subpopulations were prevalent in these HNSCC patient samples,while the prevalence rates of CFL1+and PFN1+CTCs were relatively low.Patients with stage T2-4N1-2M0 had CFL1+and PFN1+CTCs with an elevated PFN1 serum level,compared with the T1-3N0M0 group.In summary,the PFN1 serum level and the relative number of PFN1+CD326+CTCs could be valuable prognostic markers for HNSCC metastases.The current study is the first to obtain data regarding the contents of actin-binding proteins(ABPs)in CTCs,and leukocytes in blood from HNSCC patients.This is also the first to assess the relationship between the number of CTCs subgroups and disease characteristics.
基金National Science and Technology Ninth 5-year Project of Medicine(96-906-05-0)
文摘Objective: To explore the effect of L158, 809 (angiatensin Ⅱ receptorMockers, ARBs) and Cilazapril (Angiotensin converting enzyme inhibitor, ACEI) on the expression oftransforming growth factor-β_1 (TGF-β_1) and secretion of fibronectin, laminin and type Ⅳcollagen from the cultured human mesangial cells . Methods: Human mesangial cells were cultured indifferent glucose (5.6 mmol/L and 30 mmol/L) and agents (1, 10, 100 and 500 μmol/L) concentrations. The proliferation of mesangial cells were detected at 24, 48 and 72 h . Then the mesangial cellsare divided into four groups, low glucose (5.6 mmol/L) control group, high glucose (30 mmol/L)control group , L158, 809 (10 μmol/L) group and cilazapril (10 μmol/L) group. Forty- eight hourslater, the expression of TGF-β_1 were detected by RT-PCR. Concentrations of TGF-β_1 ,fibronection, laminin and type Ⅳ collagen in the su-pematants of the, mesangial cells weredetermined by EUSA and radioimmunoassay methods. Results: Compared with low glucose control group,the mesangial cells under high glucose medium show excessive proliferation and more TGF-β_1,fibronectin, laminin and type Ⅳ collagen in the supernatant. The expression of TGF-β_1 mRNA wasalso significantly increased under high glucose. The levels of TGF-β_1 and ECM (extracellularmatrix) proteins in the L158, 809 group and cilazapril group are obviously lower than that of thehigh glucose control group. The expression of TGF-β_1 mRNA was markedly decreased in the L158, 809group and cilazapril group compared with that of high glucose control group . Conclusion: Highglucose stimulated the cultured human mesangial cells to excessively proliferate, express TGF-β_1and secrete ECM proteins, and the high glucose-indeced changes were suppressed by either L158, 809and cilazapril.
文摘The extracellular matrix-associated bone morphogenetic proteins(BMPs) govern a plethora of biological processes. The BMPs are members of the transforming growth factor-β protein superfamily, and they actively participate to kidney development, digit and limb formation, angiogenesis, tissue fibrosis and tumor development. Since their discovery, they have attracted attention for their fascinating perspectives in the regenerative medicine and tissue engineering fields. BMPs have been employed in many preclinical and clinical studies exploring their chondrogenic or osteoinductive potential in several animal model defects and in human diseases. During years of research in particular two BMPs, BMP2 and BMP7 have gained the podium for their use in the treatment of various cartilage and bone defects. In particular they have been recently approved for employment in non-union fractures as adjunct therapies. On the other hand, thanks to their potentialities in biomedical applications, there is a growing interest in studying the biology of mesenchymal stem cell(MSC), the rules underneath their differentiation abilities, and to test their true abilities in tissue engineering. In fact, the specific differentiation of MSCs into targeted celltype lineages for transplantation is a primary goal of the regenerative medicine. This review provides an overview on the current knowledge of BMP roles and signaling in MSC biology and differentiation capacities. In particular the article focuses on the potential clinical use of BMPs and MSCs concomitantly, in cartilage and bone tissue repair.
基金supported by Research Start-up Funding of Shenzhen Traditional Chinese Medicine Hospital,No.2021-07(to FB)Sanming Project of Medicine in Shenzhen,No.SZZYSM 202111011(to XDQ and FB)+1 种基金Key Discipline Established by Zhejiang Province,Jiaxing City Jointly-Pain Medicine,No.2019-ss-ttyx(to LSX)Jiaxing Key Laboratory of Neurology and Pain Medicine,No.[2014]81(to LSX)。
文摘Ischemic stroke can cause blood-brain barrier(BBB)injury,which worsens brain damage induced by stroke.Abnormal expression of tight junction proteins in endothelial cells(ECs)can increase intracellular space and BBB leakage.Selective inhibition of mitogen-activated protein kinase,the negative regulatory substrate of mitogen-activated protein kinase phosphatase(MKP)-1,improves tight junction protein function in ECs,and genetic deletion of MKP-1 aggravates ischemic brain injury.However,whether the latter affects BBB integrity,and the cell type-specific mechanism underlying this process,remain unclear.In this study,we established an adult male mouse model of ischemic stroke by occluding the middle cerebral artery for 60 minutes and overexpressed MKP-1 in ECs on the injured side via lentiviral transfection before stroke.We found that overexpression of MKP-1 in ECs reduced infarct volume,reduced the level of inflammatory factors interleukin-1β,interleukin-6,and chemokine C-C motif ligand-2,inhibited vascular injury,and promoted the recovery of sensorimotor and memory/cognitive function.Overexpression of MKP-1 in ECs also inhibited the activation of cerebral ischemia-induced extracellular signal-regulated kinase(ERK)1/2 and the downregulation of occludin expression.Finally,to investigate the mechanism by which MKP-1 exerted these functions in ECs,we established an ischemic stroke model in vitro by depriving the primary endothelial cell of oxygen and glucose,and pharmacologically inhibited the activity of MKP-1 and ERK1/2.Our findings suggest that MKP-1 inhibition aggravates oxygen and glucose deprivation-induced cell death,cell monolayer leakage,and downregulation of occludin expression,and that inhibiting ERK1/2 can reverse these effects.In addition,co-inhibition of MKP-1 and ERK1/2 exhibited similar effects to inhibition of ERK1/2.These findings suggest that overexpression of MKP-1 in ECs can prevent ischemia-induced occludin downregulation and cell death via deactivating ERK1/2,thereby protecting the integrity of BBB,alleviating brain injury,and improving post-stroke prognosis.
文摘Aim: To produce biologically active recombinant human (rh) ZP proteins in a human cell for use in sperm function tests. Methods: The human embryonic kidney cell line 293T was employed to produce rhZP1, rhZP2 and rhZP3 proteins individually and together by co-expression. Presence of these proteins in the culture medium and cell lysate was assessed by Western blotting analysis. The effect of the recombinant proteins on the human AR was assessed. Results: RhZP2 and rhZP3 were secreted into the culture medium, whereas rhZPl was found only in the cell lysate. Interestingly, when all zona pellucida proteins were co-expressed in the same cells, rhZPl was also secreted into the culture medium. However, despite the presence of all three ZP proteins in sufficient concentration and evidence of heavy glycosylation on gel electrophoresis, biological activity to induce the AR was not observed. Conclusion: RhZP1, rhZP2 and rhZP3 were successfully expressed in the human embryonic kidney cell line 293T. It appears that an interaction amongst these proteins may be required for release of rhZPl from the cell. Although this approach is not satisfactory for producing active human ZP proteins, it makes a significant contribution to the understanding of the structural and functional characteristics of the ZP proteins.
基金supported by the Projects of the National Key R&D Program of China,Nos.2021YFC2400803(to YO),2021YFC2400801(to YQ)the National Natural Science Foundation of China,Nos.82002290(to YQ),82072452(to YO),82272475(to YO)+5 种基金the Young Elite Scientist Sponsorship Program by Cast,No.YESS20200153(to YQ)the Sino-German Mobility Programme,No.M-0699(to YQ)the Excellent Youth Cultivation Program of Shanghai Sixth People’s Hospital,No.ynyq202201(to YQ)the Shanghai Sailing Program,No.20YF1436000(to YQ)the Medical Engineering Co-Project of University of Shanghai for Science and Technology,10-22-310-520(to YO)a grant from Shanghai Municipal Health Commission,No.202040399(to YO).
文摘Diabetic peripheral neuropathy is a common complication of diabetes mellitus.Elucidating the pathophysiological metabolic mechanism impels the generation of ideal therapies.However,existing limited treatments for diabetic peripheral neuropathy expose the urgent need for cell metabolism research.Given the lack of comprehensive understanding of energy metabolism changes and related signaling pathways in diabetic peripheral neuropathy,it is essential to explore energy changes and metabolic changes in diabetic peripheral neuropathy to develop suitable treatment methods.This review summarizes the pathophysiological mechanism of diabetic peripheral neuropathy from the perspective of cellular metabolism and the specific interventions for different metabolic pathways to develop effective treatment methods.Various metabolic mechanisms(e.g.,polyol,hexosamine,protein kinase C pathway)are associated with diabetic peripheral neuropathy,and researchers are looking for more effective treatments through these pathways.
基金Supported by the Foundation of Heilongjiang Provincial Foundation for Youths Project(No.QC2011C119)
文摘AIM:To develop a new method to produce recombinant reprogramming proteins,c Myc,Klf4,Oct4,and Sox2,in soluble format with low cost for the generation of induced pluripotent stem cells(i PSCs).METHODS:A short polypeptide sequence derived from the HIV trans-activator of transcription protein(TAT) and the nucleus localization signal(NLS) polypeptide were fused to the N terminus of the reprogramming proteins and they were constructed into p Cold-SUMO vector which can extremely improve the solubility of recombinant proteins.Then these vector plasmids were transformed into E.coli BL21(DE3) Chaperone competent cells for amplification.The solubility of these recombinant proteins was determined by SDS-PAGE and Coomassie brilliant blue staining.The recombinant proteins were purified by NiNTA resin and identified by Western blot.The transduction of these proteins into HEK 293 T cells were evaluated by immunofluorescence staining.RESULTS:These four reprogramming proteins could be produced in soluble format in p Cold-SUMO expression vector system with the assistance of chaperone proteins in bacteria.The proteins were purified successfully with a purity of over 70% with a relative high transduction rate into 293 cells.CONCLUSION:The results in the present study indicate the four important reprogramming proteins,c Myc,Klf4,Oct4,and Sox2,can be produced in soluble format in bacteria with low cost.Our new method thus might be expected to greatly contribute to the future study of i PSCs.
文摘AIM: To explore different roles of TGF-β (transforming growth factor beta) and bone morphogenetic proteins (BMPs)in hepatic stellate cell proliferation and trans-differentiation.METHODS: Hepatic stellate cells were isolated from male Sprague-Dawley rats. Sub-cultured hepatic stellate cells were employed for cell proliferation assay with WST-1 reagent and Western blot analysis with antibody against smooth muscle alpha actin (SMA).RESULTS: The results indicated that TGF-β1 significantly inhibited cell proliferation at concentration as low as 0.1 ng/ml, but both BMP-2 and BMP-4 did not affect cell proliferation at concentration as high as 10 ng/ml. The effect on hepatic stellate cell trans-differentiation was similar between TGFβ1 and BMPs. However, BMPs was more potent at transdifferentiation of hepatic stellate cells than TGF-β1. In addition, we observed that TGF-β1 transient reduced the abundance of SMA in hepatic stellate cells.CONCLUSION: TGF-β may be more important in regulation of hepatic stellate cell proliferation while BMPs may be the major cytokines regulating hepatic stellate cell transdifferentiation.
基金Supported by Natural Science Foundation of Guangdong Province,No.2020A1515011539.
文摘BACKGROUND Hepatic arterial infusion chemotherapy(HAIC)has been proven to be an ideal choice for treating unresectable hepatocellular carcinoma(uHCC).HAIC-based treatment showed great potential for treating uHCC.However,large-scale studies on HAIC-based treatments and meta-analyses of first-line treatments for uHCC are lacking.AIM To investigate better first-line treatment options for uHCC and to assess the safety and efficacy of HAIC combined with angiogenesis inhibitors,programmed cell death of protein 1(PD-1)and its ligand(PD-L1)blockers(triple therapy)under real-world conditions.METHODS Several electronic databases were searched to identify eligible randomized controlled trials for this meta-analysis.Study-level pooled analyses of hazard ratios(HRs)and odds ratios(ORs)were performed.This was a retrospective single-center study involving 442 patients with uHCC who received triple therapy or angiogenesis inhibitors plus PD-1/PD-L1 blockades(AIPB)at Sun Yat-sen University Cancer Center from January 2018 to April 2023.Propensity score matching(PSM)was performed to balance the bias between the groups.The Kaplan-Meier method and cox regression were used to analyse the survival data,and the log-rank test was used to compare the suvival time between the groups.RESULTS A total of 13 randomized controlled trials were included.HAIC alone and in combination with sorafenib were found to be effective treatments(P values for ORs:HAIC,0.95;for HRs:HAIC+sorafenib,0.04).After PSM,176 HCC patients were included in the analysis.The triple therapy group(n=88)had a longer median overall survival than the AIPB group(n=88)(31.6 months vs 14.6 months,P<0.001)and a greater incidence of adverse events(94.3%vs 75.4%,P<0.001).CONCLUSION This meta-analysis suggests that HAIC-based treatments are likely to be the best choice for uHCC.Our findings confirm that triple therapy is more effective for uHCC patients than AIPB.
基金supported the National Natural Science Foundation of China(31572410,31572412,31625025)the 111 Project(B16044)+2 种基金the Program for New Century Excellent Talents in University(NCET-12-0522)the Agriculture and Food Research Initiative Competitive Grant from the USDA National Institute of Food and Agriculture(No.2014-6701521770)Texas A&M Agri Life Research(H-8200)
文摘Background: Cinnamicaldehyde(CA) is a key flavor compound in cinnamon essential oil possessing various bioactivities. Tight junction(TJ) proteins are vital for the maintenance of intestinal epithelial barrier function,transport, absorption and utilization of dietary amino acids and other nutrients. In this study, we tested the hypothesis that CA may regulate the expression of TJ proteins and amino acid transporters in intestinal porcine epithelial cells(IPEC-1) isolated from neonatal pigs.Results: Compared with the control, cells incubated with 25 μmol/L CA had increased transepithelial electrical resistance(TEER) and decreased paracellular intestinal permeability. The beneficial effect of CA on mucosal barrier function was associated with enhanced protein abundance for claudin-4, zonula occludens(ZO)-1, ZO-2, and ZO-3. Immunofluorescence staining showed that 25 μmol/L CA promoted the localization of claudin-1 and claudin-3 to the plasma membrane without affecting the localization of other TJ proteins, including claudin-4, occludin,ZO-1, ZO-2, and ZO-3, compared with the control cells. Moreover, protein abundances for rBAT, xCT and LAT2 in IPEC-1 cells were enhanced by 25 μmol/L CA, while that for EAAT3 was not affected.Conclusions: CA improves intestinal mucosal barrier function by regulating the distribution of claudin-1 and claudin-3 in enterocytes, as well as enhancing protein abundance for amino acid transporters rBAT, xCT and LAT2 in enterocytes. Supplementation with CA may provide an effective nutritional strategy to improve intestinal integrity and amino acid transport and absorption in piglets.
基金Indian Council of Medical Research,2020-0282/SCR/ADHOC-BMSDepartment of Science and Technology,India,DST/INSPIRE Fellowship:2021/IF210073.
文摘Mesenchymal stem cells(MSCs)originate from many sources,including the bone marrow and adipose tissue,and differentiate into various cell types,such as osteoblasts and adipocytes.Recent studies on MSCs have revealed that many transcription factors and signaling pathways control osteogenic development.Osteogenesis is the process by which new bones are formed;it also aids in bone remodeling.Wnt/β-catenin and bone morphogenetic protein(BMP)signaling pathways are involved in many cellular processes and considered to be essential for life.Wnt/β-catenin and BMPs are important for bone formation in mammalian development and various regulatory activities in the body.Recent studies have indicated that these two signaling pathways contribute to osteogenic differen-tiation.Active Wnt signaling pathway promotes osteogenesis by activating the downstream targets of the BMP signaling pathway.Here,we briefly review the molecular processes underlying the crosstalk between these two pathways and explain their participation in osteogenic differentiation,emphasizing the canonical pathways.This review also discusses the crosstalk mechanisms of Wnt/BMP signaling with Notch-and extracellular-regulated kinases in osteogenic differentiation and bone development.
基金Supported by the National Natural Science Foundation of China,No. 30470877the Natural Science Foundation of Fujian Province, No. C0310003
文摘AIM: To find and identify specific nuclear matrix proteins associated with proliferation and differentiation of carcinoma cells, which will be potential markers for cancer diagnosis and targets in cancer therapy. METHODS: Nuclear matrix proteins were selectively extracted from MGcS0-3 cells treated with or without hexamethylamine bisacetamide (HMBA), and subjected to 2-D gel electrophoresis. The resulted protein patterns were analyzed by Melanie software. Spots of nuclear matrix proteins differentially expressed were excised and subjected to in situ digestion with trypsin. Peptide masses were obtained by matrix-assisted laser-desorption/ ionization time of flight mass spectrometry (MALDI-TOFMS) analysis and submitted for database searching using Mascot tool. RESULTS: The MGc80-3 cells were induced into differentiation by HMBA. There were 22 protein spots which changed remarkably in the nuclear matrix, from differentiation of MGcS0-3 cells compared to control. Eleven of which were identified. Seven proteinsactin, prohibitin, porin 31HL, heterogeneous nuclear dbonucleoprotein A2/B1, vimentin, ATP synthase, and heat shock protein 60 were downregulated, whereas three proteins - heat shock protein gp96, heat shock protein 90-beta, and valosin-containing protein were upregulated, and the oxygen-regulated protein was only found in the differentiated MGc80-3 cells. CONCLUSION: The induced differentiation of carcinoma cells is accompanied by the changes of nuclear matrix proteins. Further characterization of those proteins will show the mechanism of cellular proliferation and differentiation, as well as cancer differentiation.
基金Supported by the National Natural Science Foundation of China, No. 30470877
文摘AIM: To investigate the association between the configurational and compositional changes of nuclear matrix and the differentiation of carcinoma cells. METHODS: Cells cultured with or without 5 × 10^-3 mmol/L of hexamethylene bisacetamide (HMBA) on Nickel grids were treated by selective extraction and prepared for whole mount observation under electron microscopy. The samples were examined under transmission electron microscope. Nuclear matrix proteins were selectively extracted and subjected to subcellular proteomics study. The protein expression patterns were analyzed by PDQuest software. Spots of differentially expressed nuclear matrix proteins were excised and subjected to in situ digestion with trypsin. The peptides were analyzed by matrix-assisted laser- desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS). Data were submitted for database searching using Mascot tool (www.matrixscience.com). RESULTS: The nuclear matrix (NM) and intermediate filament (IF) in SMMC-7721 hepatocarcinoma cells were found relatively sparse and arranged irregularly. The nuclear lamina was non-uniform, and two kinds of filaments were not tightly connected. After induction for differentiation by HMBA, the NM-IF filaments were concentrated and distributed uniformly. The heterogeneous population of filaments, including highly branched utrathin filaments could also be seen in the regular meshwork. The connection between the two kinds of filaments and the relatively thin, condensed and sharply demarcated lamina composed of intermediate- sized filaments was relatively fastened. Meanwhile, 21 NM proteins changed remarkably during SMMC-7721 cell differentiation. Four proteins, i.e. mutant Pystl, hypothetical protein, nucleophosminl, and LBP were downregulated, whereas four other proteins, eIF6, p44 subunit, 13-tubulin, and SIN3B were upregulated with the last one, SR2/ASF found only in the differentiated SMMC-7721 cells. CONCLUSION: The induced differentiation of SMMC-7721 cells by HMBA is accompanied by the configurational changes of nuclear matrix-intermediate filament (NM-IF) system and the compositional changes of nuclear matrix protein expression. These changes may be important morphological or functional indications of the cancer cell reversion.
基金This project wassupport by a grantfrom National NaturalSciences Foundation ofChina(No. 39770 934)
文摘To investigate whether the Bcl- 2 gene family is involved in m odulating mechanism of apoptosis and change of cell cycle protein induced by curcumin in acute myeloid leukemia HL - 6 0 cell line and primary acute m yelogenous leukem ic cells,the Bcl- 2 family member Mcl- 1,Bax and Bak and cell cycle proteins including P2 7kipl,P2 1wafl,cyclin D3and p Rbp- were selected and their ex- pression detected by SABC imm uno- histochem ical stain m ethod.The attitude of sub- G1 peak in DNA histogram was determined by FCM.The TU NEL positive cell percentage was identified by term inal deoxynucleotidyl transferase (Td T ) - m ediated Biotin d U NP end labeling technique.It was found that when HL - 6 0 cells were treated with 2 5μm ol/ L curcumin for 2 4 h,the expression level of Mcl- 1was down- regulated,but that of Bax and Bak up- regulated time- dependently.There was significant difference in the expression level of Mcl- 1,Bax and Bak between the curcumin- treated groups and control group(P<0 .0 5 - 0 .0 1) .At the sam e time,curcumin had no effect on progress of cell cycle in prim aty acute m yelogenous leukemia at newly diagnosis,but could in- crease the peak of Sub- G1 (P<0 .0 5 ) ,and down- regulate the expression of Mcl- 1and up- regulate the expression of Bax and Bak with the difference being statistically significant.The expression of P2 7kipl,P2 1wafl and p Rbp- were elevated and thatof cyclin D3decreased in the presence of curcum in. These findings suggested thatthe Bcl- 2 gene fam ily indeed participated in the regulatory process of apoptosis induced by curcumin in HL - 6 0 cells and AML cells.Curcumin can induce apoptosis of primary acute myelogenous leukemic cells and disturb cell cycle progression of HL - 6 0 cells.The m echanism appeared to be m ediated by perturbing G0 / G1 phases checkpoints which associated with up- regulation of P2 7kipl,P2 1wafl and p Rbp- expression,and down- regulation of cyclin D3.