Aim: To evaluate the antiproliferative activity of contragestazol (DL111-IT) on the human prostate cancer cell line PC3 in vitro and in vivo and to elucidate its potential molecular mechanisms. Methods: The cell k...Aim: To evaluate the antiproliferative activity of contragestazol (DL111-IT) on the human prostate cancer cell line PC3 in vitro and in vivo and to elucidate its potential molecular mechanisms. Methods: The cell killing ability of DL111-IT was measured by the 3-(4,5-dimethylthia-zol,2-yl)-2,5-diphenyltetrazolium bromide (MTT) reagent assay method and the tumor xenograft model. The cell cycle was analyzed by flow cytometry and protein expression, including retinoblastoma (pRb), cyclin-dependent kinase 4 (CDK4) and cyclin D 1, was detected by Western blotting. Results: DL111-IT exhibited high efficiency on cell growth inhibition of the human androgen-independent prostate cancer cell line PC3. The drug concentration that yielded 50 % cell inhibition (IC50 value) was 9.9 mg/mL. In the PC3 tumor xenograft study, DL111-IT (1.25 mg/kg-20.0 mg/kg) given once a day for 10 days significantly inhibited tumor growth, with the inhibition rate ranging from 21% to 50 %. Flow cytometric analysis indicated that DL111-IT could cause GI arrest in the PC3 cell line, but not apoptosis. DL111-IT enhanced pRb expression and down-regulated CDK4 and cyclin D 1 expression, suggesting that cell cycle regulation might contribute to the anticancer property of DL 111- IT. Conclusion: DL111-1T inhibits the proliferation of human androgen-independent prostate cancer cell line PC3 in vitro and in vivo by a cell cycle regulation pathway.展开更多
The cytogenetics of HNE- 1 cell line derived from the biopsy of nasopharyngeal carcinoma of a 27- year- old Chinese male has been investigated by chromosomal banding technique. A karyotypic characterization of subtera...The cytogenetics of HNE- 1 cell line derived from the biopsy of nasopharyngeal carcinoma of a 27- year- old Chinese male has been investigated by chromosomal banding technique. A karyotypic characterization of subteraploid and a modal number of 74 - 77 have been revealed in this cell line. All cells contained a series of non- random chromosomal rearrangements. 18 of them, including 5 isochromosomes. were present in all metaphases and 3 of them in a few one. These findings indicated that the severe DNA damage and increase of gene copies may be occurred in genome of HNE- 1 cells.展开更多
Objective To determine whether transforming growth factor betal (TGF-β1)/Smad signaling pathway mediates p53-dependent apoptosis in hepatoma cell lines.Methods Three human hepatic carcinoma cell lines, HepG2, Huh-7, ...Objective To determine whether transforming growth factor betal (TGF-β1)/Smad signaling pathway mediates p53-dependent apoptosis in hepatoma cell lines.Methods Three human hepatic carcinoma cell lines, HepG2, Huh-7, and Hep3B, were used in this study.TGF-β1-induced apoptosis in hepatic carcinoma cell lines was analyzed using TUNEL assay.For identifying the mechanism of apoptosis induced by TGF-β1, cell lines were transfected with a TGF-β1-inducible luciferase reportor plasmid containing Smad4 binding elements.After transfection, cells were treated with TGF-β1, then assayed for luciferase activity.Results The apoptosis rate of HepG2 cell lines (48.51%± 8.21%) was significantly higher than control ( 12.72%±2.18%, P<0.05).But TGF-β1 was not able to induce apoptosis of Huh-7 and Hep3B cell lines.The relative luciferase activity of TGF-β1-treated HepG2 cell lines (4.38) was significantly higher than control (1.00, P< 0.05).But the relative luciferase activity of TGF-β1-treated Huh-7 and Hep3B cell lines less increased compared with control.Conclusions HepG2 cells seem to be highly susceptible to TGF-β1-induced apoptosis compared with Hep3B and Huh-7 cell lines.Smad4 is a central mediator of TGF-β1 signaling transdution pathway.TGF-β1/Smad signaling pathway might mediate p53-dependent apoptosis in hepatoma cell lines.展开更多
The aim of this study was to evaluate the effects of low concentrations of DEHP and MEHP on steroidogenesis in a murine Leydig tumor cell line (MLTC-1) in vitro. The result of flow cytometry analysis revealed that t...The aim of this study was to evaluate the effects of low concentrations of DEHP and MEHP on steroidogenesis in a murine Leydig tumor cell line (MLTC-1) in vitro. The result of flow cytometry analysis revealed that the proportion of apoptotic cells was significantly increased after the exposure to DEHP. All three genes (P450scc, P450c17, and 38HSD) under study showed an increased expression following exposure to DEHP or MEHP, although some insignificant inhibitory effects appeared in the 10μmol/L treatment group as compared with the controls. It was also found that DEHP or MEHP stimulated INSL3 mRNA and protein especially in the 0.001 μmol/L treatment group. Testosterone secretions were stimulated after the exposure to DEHP or MEHP. Alterations of steroidogenic enzymes and INSL3 in MLTC-1 cells might be involved in the biphasic effects of DEHP/MEHP on androgen production.展开更多
The inhibitory effect of parvovirus H-1 on the colonyforming ability in vitro of QGY-7703, a cultured human hepatoma cell line, and on the formation and growth of its tumors in nude mice was studied. With higher multi...The inhibitory effect of parvovirus H-1 on the colonyforming ability in vitro of QGY-7703, a cultured human hepatoma cell line, and on the formation and growth of its tumors in nude mice was studied. With higher multiplicity of infection (MOI) of H-1 given, survival of the QGY-7703 cells was found to be decreased. H-1 DNA amplification level at 30 h postinfection(p.i.) was detected to be 7.4 times higher than that at 2 h by dispersed cells assay, while the cells were delayed to enter into S phase.Plaques were formed in the indicator cells (new-born human kidney cell line, NBK) by progeny H-1 virus particles released from the infected QGY-7703 cells by infectious cell center assay. The formation of tumors in nude mice by QGY-7703 cells which were injected s c at 2 h postinfection was observed to be prevented in 2 groups with given MOI 25 and 50. The tumor growth of MOI 10 group occurred at a lower exponential rate than that of control,after a 20 d latent period. It was evident that parvovirus H-1 exhibited a direct inhibitory effect on the formation and growth of human hepatoma cells in vivo as well as in vitro.展开更多
Summary: The HL-60 cells were transfected with chkl antisense and sense chain, and 24 h later subjected to irradiation. Twenty-four h after irradiation, the changes in the chk1 protein expression was assayed by Weste...Summary: The HL-60 cells were transfected with chkl antisense and sense chain, and 24 h later subjected to irradiation. Twenty-four h after irradiation, the changes in the chk1 protein expression was assayed by Western blot, and the cell cycles and apoptosis rate detected by FCM. The irradiated apoptosis sensitivity was increased by antisense blocking of chk1 gene in HL-60 cell line with the apoptosis rate being 26.31 %, significantly higher than that by the sense blocking (10.34 %, 0. 025〈P〈0.05). In HL-60 cells transfected with chkl antisense chain, the G2/M phase arrest was attenua:ted and the cells in G2/M phase were accounted for 38.42 %, significantly lower than those of the cells transfected with chkl sense chain (54.64 %, 0. 005〈P〈0.01). It was concluded that antisense blocking of chk1 gene could increase the apoptosis sensitivity to irradiation.展开更多
The nonstructural protein 1 (NS1) of influenza A virus, which is absent from the viral particle, but highly expressed in infected cells, strongly antagonizes the interferon (IFN)-mediated antiviral response. We en...The nonstructural protein 1 (NS1) of influenza A virus, which is absent from the viral particle, but highly expressed in infected cells, strongly antagonizes the interferon (IFN)-mediated antiviral response. We engineered an NS1-expressing 293 (293-NS1) cell line with no response to IFN stimulation. Compared with the parental 293 cells,展开更多
Nanopharmaceuticals containing quantum dot nanoparticles (Q-Dot NPs) for treating serious cancers such as breast cancer have made fantastic proposals. In this study, ZnO quantum dot NPs are formulated via ZnO@PVP nano...Nanopharmaceuticals containing quantum dot nanoparticles (Q-Dot NPs) for treating serious cancers such as breast cancer have made fantastic proposals. In this study, ZnO quantum dot NPs are formulated via ZnO@PVP nanopolymer as co-assistants coordinating with efficacious suitable wetting agents, PEG-binding compound, and W/O emulsifier for producing eco-friendly water-based nanodrug. Several characterization techniques containing SEM, TEM, FTIR, photoluminescence, zeta potential, and UV-Vis absorption were employed for ZnO Q-Dot NPs in nanodrug. This work aims to investigate the anti-tumor effects of such nanomedicine on the 4T1 breast cancer cell line in BALB/c mice, being elaborated through intraperitoneal, injection (IVP) and oral therapy. The impressive findings showed that ZnO nanodrug caused changes in blood factors, having the most effectiveness at 40 μg/ml concentration after two weeks of oral treatments. The significant increase in white blood cells (WBC) neutrophils and meaningful decreases in lymphocytes and especially cholesterol were powerful simultaneous impacts, successfully treating malignant breast cancer masses. In this significant animal model research for breast cancer, the sick mice recovered entirely and even had a safe space to mate. Histopathological results showed no evidence of breast tumor formation or metastasis in the group treated with nanodrug and their children. This nanomedicine has a therapeutic effect, and is ready to be applied for treating volunteer breast cancer patients. However, its prevention (inhibitory) effect can also be analyzed and added to current data in future studies.展开更多
AIM: To investigate the potential roles of enhancer of zeste homolog2(EZH2), Bmi-1 and mi R-203 in cell proliferation and invasion in hepatocellular carcinoma(HCC) cell line Hep3 B.METHODS: A total of 73 patients who ...AIM: To investigate the potential roles of enhancer of zeste homolog2(EZH2), Bmi-1 and mi R-203 in cell proliferation and invasion in hepatocellular carcinoma(HCC) cell line Hep3 B.METHODS: A total of 73 patients who underwent surgical resection at Fuzong Clinical Medical College of Fujian Medical University were enrolled in this study. Hep3 B cells were cultivated in RPMI 1640 medium supplemented with 10% fetal bovine serum at 37?℃. Vectors that containing c DNA of the EZH2 gene or mi R-203 targeted sh RNA plasmid were constructed, and then transfected into Hep3 B cells. The m RNA expression of mi R-203, EZH2, and Bmi-1 was analyzed using quantitative real-time polymerase chain reaction analysis, and the protein levels of EZH2 and Bmi-1 were detected by Western blot analysis. Effect of EZH2 or mi R-203 on cell proliferation was observed by methyl thiazolyl tetrazolium assay, and cell apoptosis was assessed using flow cytometry. Besides, effect of EZH2 or mi R-203 on tumor cell invasion was detected using Transwell assay.RESULTS: The m RNA levels of EZH2 and Bmi-1 in HCC tissues and in Hep3 B cells were significantly higher compared with those in normal samples(P < 0.01), while mi R-203 level was significantly lower in HCC tissues(P < 0.01). Hep3 B cells transfected with EZH2-sh RNA or mi R-203-sh RNA showed lower expression levels of EZH2 and Bmi-1(P < 0.05). Compared with controls, Hep3 B cells transfected with EZH2-sh RNA had relative slow cell proliferation, indicating that low expression of EZH2 and Bmi-1 and overexpression of mi R-203 could inhibit Hep3 B cell proliferation(P < 0.05). The average apoptosis rate of Hep3 B cells transfected with EZH2-sh RNA vector was about 18.631%, while that of Hep3 B cells transfected with sh RNA vector was about 5.33%, suggesting that EZH2 was down-regulated by transfecting with EZH2-sh RNA, and the down-regulated EZH2 contributed to the cell apoptosis. Low expression of EZH2 and Bmi-1 and overexpression of mi R-203 could reduce Hep3 B cell invasion(P < 0.05).CONCLUSION: Our study suggests that EZH2 and Bmi-1 are up-regulated while mi R-203 is downregulated in Hep3 B cells. Mi R-203 may contribute to the metastasis and enhance apoptosis of HCC cells by regulating EZH2 and Bmi-1. Our study may provide a theoretical basis for metastasis of HCC and targeted therapy of HCC.展开更多
Objective:To investigate the effects of miR-25-3p on the occurrence,development and proliferation of tongue squamous cell carcinoma cells.Methods:To establish tongue squamous cell carcinoma cell line Tca8113 that stab...Objective:To investigate the effects of miR-25-3p on the occurrence,development and proliferation of tongue squamous cell carcinoma cells.Methods:To establish tongue squamous cell carcinoma cell line Tca8113 that stably and highly express miR-25-3p using recombinant reiroviral vector-mediated gene transfer method.The proliferation of transfected Tca8113 was detected by thiazolyl blue tetrazolium bromide(MTT)and cell colony formation assays.eyclnD1,p21^(cipt)and p27^(kipt)mRNA expressions in the transfected Tca-8113 were detected by quantitative PCR.cyclinD1,p21^(cipt),p27^(kipt),AKT,p-AKT,FOXOt and p-FOX01 expressions in the transfected Tca8113 were detected by western blot analysis.In addition,miR-25-3p expression in the tongue squamous cell carcinoma cell line and tissue specimen was also detected by quantitative PCR.Results:Quantitative PCR showed that mitt-25-3p expression in the tongue squamous cell carcinoma cell lines and tissue specimen was significantly lower than that in the adjacent tissue.MTT and cell colony formation assays showed that after miR-25-3p overexpression,the proliferation of transfected Tca8113 was obviously attenuated.Western blot analysis and quantitative PCR showed that after miR-25-3p overexpression.p21^(cipt)and p27^(kipt)expressions were upregulated,while cyclinD1,AKT,FOXO1 expressions were downregulated,and AKT and FOXO1 phosphorylation was inactivated in the transfected Tca8113 cells.Conclusions:MiR-25-3p inhibited the proliferation of tongue squamous cell carcinoma cells and regulated cell cycle-related protein expression,playing an important role in the occurrence and development of squamous cell carcinoma of the tongue.展开更多
Background: The human serine palmitoyltransferase-1, SPTLC1, subunit is emerging as a stress responsive protein with putative role in modulating cellular stress response behavior. When compared to the parental cell li...Background: The human serine palmitoyltransferase-1, SPTLC1, subunit is emerging as a stress responsive protein with putative role in modulating cellular stress response behavior. When compared to the parental cell line, recombinant Glioma cells expressing C-terminal modified SPTLC1 are found to show resistance to the cytotoxic effect of polycyclic hydrocarbons, PHs, including the environmental contaminant 3-methylcholanthrene. This novel functional association of SPTLC1 expression with proliferative capacity is thought to be due, in part, to its ability for crosstalk with protein regulators of different biological processes. Whether the effect of SPTLC1 on sensitivity to PHs extends to therapeutic drugs and the progression of the malignant phenotype is of research interest. Methods: In the current study, sub-cellular localization was by immunostaining for SPTLC1 in untreated and chemical treated cells and detection with confocal microscopy. The effect expressing C-terminal modified SPTLC1, in cancer cell lines of the inflammation-associated type, has on chemosensitivity and gene expression was also assessed. Parent Glioma LN18 and SKN-SH cells and their SPTLC1 recombinants were each treated with Glutamate, an excitatory neurotransmitter that can participate in both neuronal and excitotoxic signaling. In addition to the Glioma and SKN-SH cells, the PC3 prostate cancer and 647V bladder cancer cell lines were also treated with Celecoxib, a potent inhibitor of cyclooxygenase 2, COX-2, and an anti-inflammatory drug recently found to have anti-neoplastic activity against several malignancies. Results: Confocal microscopy revealed that Celecoxib mediates both rapid and enhanced redistribution of SPTLC1 and COX-2, to focal adhesion sites. In cell viability assay, SPTLC1 recombinant cells exhibited differential but dose-dependent resistance to excitotoxic levels of Glutamate. Drug co-treatment with a non-lethal dose of the potent kinase inhibitor, Sulfasalazine, increased the anti-proliferation effect of Celecoxib in a dose-dependent manner for all the cell lines tested. Conclusions: The effect of SPTLC1 expression on cellular chemosensitivity seen in the present study further highlights possible role of a C-terminal modified SPTLC1 variant in the biologic modulation of cellular behavior in response to therapeutic anticancer drugs.展开更多
AIM:To study the molecular mechanism of laterally spreading tumor (LST), a cell line [Laterally Spreading Tumor-Rectum 1 (LST-R1)] was derived and the characteristics of this cell line were investigated. METHODS:A new...AIM:To study the molecular mechanism of laterally spreading tumor (LST), a cell line [Laterally Spreading Tumor-Rectum 1 (LST-R1)] was derived and the characteristics of this cell line were investigated. METHODS:A new cell line (LST-R1) originated from laterally spreading tumor was established. Properties of the cell line were characterized using scanning and transmission electron microscopy, immunohistochemistry method, cytogenetic analysis and nude mice xenograft experiments. In vitro invasion assay, cDNA microarray and Western blotting were used to compare the difference between the LST-R1 and other colorectal cancer cell lines derived from prudent colon cancer. RESULTS:Our study demonstrated that both epithelial special antigen (ESA) and cytokeratin-20 (CK20) were expressed in LST-R1. The cells presented microvilli and tight junction with large nuclei. The karyotypic analysis showed hyperdiploid features with structural chromosome aberrations. The in vivo tumorigenicity was also demonstrated in nude mice xenograft experiments. The invasion assay suggested this cell line has a higher invasive ability. cDNA microarray and Western blotting show the loss of the expression of E-cadherin in LST-R1 cells.CONCLUSION:We established and characterized a colorectal cancer cell line, LST-R1 and LST-R1 has an obvious malignant tendency, which maybe partially attributed to the changes of the expression of some adhesion molecules, such as E-cadherin. It is also a versatile tool for exploring the original and progressive mechanisms of laterally spreading tumor and the early colon cancer genesis.展开更多
Rapid diagnostic methods for classifying avian leukosis subgroups in the field were needed for routine, large-scale screening. As a first step in method development, we inserted the avian leukosis virus subgroup A (A...Rapid diagnostic methods for classifying avian leukosis subgroups in the field were needed for routine, large-scale screening. As a first step in method development, we inserted the avian leukosis virus subgroup A (ALV-A) env gene into plasmid pcDNA3.1/Zeo (+) and used this construct to transfect DF-1 cells. Zeocin-resistant cells were obtained after 2 weeks of zeocin selection. Then, the cells were analyzed using PCR, immunofluorescence, and Western blot for expression of the envA-encoded envelope protein after 30 serial passages. The DF-1/A cell line was completely resistant to 104 TCIDso/0.1 mL (50% tissue culture infective dose)ALV-A and was partially resistant to 10~ TCIDs0/0.1 mL ALV-A viral particles. By comparing the DF-1/A and DF-1 cell lines, an ALV-A isolate was identified using a gag-specific ELISAfor capsid protein p27. Thus, we established a DF-1/A cell line that was resistant to ALV-A infection. This cell line will be useful as a diagnostic tool.展开更多
AIM: Activated pancreatic stellate cells (PSCs) have been implicated in the pathogenesis of pancreatic fibrosis and inflammation. Primary PSCs can be subcultured only several times because of their limited growth pote...AIM: Activated pancreatic stellate cells (PSCs) have been implicated in the pathogenesis of pancreatic fibrosis and inflammation. Primary PSCs can be subcultured only several times because of their limited growth potential. A continuous cell line may therefore be valuable in studying molecular mechanisms of these pancreatic disorders. The aim of this study was to establish a cell line of rat PSCs by spontaneous immortalization.METHODS: PSCs were isolated from the pancreas of male Wistar rats, and conventional subcultivation was performed repeatedly. Telomerase activity was measured using the telomere repeat amplification protocol. Activation of transcription factors was assessed by electrophoretic mobility shift assay.Activation of mitogen-activated protein (MAP) kinases was examined by Western blotting using anti-phosphospecific antibodies. Expression of cytokine-induced neutrophil chemoattractant-1 was determined by enzyme immunoassay.RESULTS: Conventional subcultivation yielded actively growing cells. One clone was obtained after limiting dilution,and designated as SIPS. This cell line has been passaged repeatedly more than 2 years, and is thus likely immortalized.SIPS cells retained morphological characteristics of primary,culture-activated PSCs. SIPS expressed α-smooth muscle actin, glial acidic fibrillary protein, vimentin, desmin, type Ⅰ collagen, fibronectin, and prolyl hydroxylases. Telomerase activity and p53 expression were negative. Proliferation of SIPS cells was serum-dependent, and stimulated with platelet-derived growth factor-BB through the activation of extracellular signal-regulated kinase. Interleukin-1β activated nuclear factor-κB, activator protein-1, and MAP kinases.Interleukin-1β induced cytokine-induced neutrophil chemoattractant-1 expression through the activation of nuclear factor-κB and MAP kinases.CONCLUSION: SIPS cells can be useful for in vitro studies of cell biology and signal transduction of PSCs.展开更多
AIM: The GFAP was traditionally considered to be a biomarker for neural gila (mainly astrocytes and nonmyelinating Schwann cells). Genetically, a 2.2-kb human GFAP promoter has been successfully used to target astr...AIM: The GFAP was traditionally considered to be a biomarker for neural gila (mainly astrocytes and nonmyelinating Schwann cells). Genetically, a 2.2-kb human GFAP promoter has been successfully used to target astrocytes in vitro and in vivo. More recently, GFAP was also established as one of the several makers for identifying hepatic stellate cells (HSC). In this project, possible application of the same 2.2-kb human GFAP promoter for targeting HSC was investigated. METHODS: The GFAP-lacZ transgene was transfected into various cell lines (HSC, hepatocyte, and other nonHSC cell types). The transgene expression specificity was determined by X-gal staining of the β-galactosidase activity. And the responsiveness of the transgene was tested with a typical pro-fibrotic cytokine TGF-β1. The expression of endogenous GFAP gene was assessed by real-time RT-PCR, providing a reference for the transgene expression. RESULTS: The results demonstrated for the first time that the 2.2 kb hGFAP promoter was not only capable of directing HSC-specific expression, but also responding to a known pro-fibrogenic cytokine TGF-β1 by upregulation in a doseand time-dependent manner, similar to the endogenous GFAP. CONCLUSION: In conclusion, these findings suggested novel utilities for using the GFAP promoter to specifically manipulate HSC for therapeutic purpose.展开更多
BACKGROUND: Substantia nigra is deep in position and limited in range, the glial cell line-derived neurotrophic factor (GDNF) injection directly into substantia nigra has relatively greater damages with higher diff...BACKGROUND: Substantia nigra is deep in position and limited in range, the glial cell line-derived neurotrophic factor (GDNF) injection directly into substantia nigra has relatively greater damages with higher difficulty. GDNF injection into striatum, the target area of dopaminergic neuron, may protect the dopaminergic neurons in the compact part of substantia nigra through retrograde transport. OBJECTIVE: To investigate the protective effect of intrastriatal GDNF on dopaminergic neurons in the substantia nigra of mice with Parkinson disease (PD), and analyze the action pathway. DESIGN: A controlled observation. SETTING: Neurobiological Laboratory of Xuzhou Medical College. MATERIALS: Twenty-four male Kunming mice of 7 - 8 weeks old were used. GDNF, 1-methy1-4-pheny1-1,2,3,6-tetrahydropyridine (MPTP) were purchased from Sigma Company (USA); LEICAQWin image processing and analytical system. METHODS: The experiments were carded out in the Neurobiological Laboratory of Xuzhou Medical College from September 2005 to October 2006. The PD models were established in adult KunMing mice by intraperitoneal injection of MPTP. The model mice were were randomly divided into four groups with 6 mice in each group: GDNF 4-day group, phosphate buffer solution (PSB) 4-day group, GDNF 6-day group and PSB 6-day group. Mice in the GDNF 4 and 6-day groups were administrated with 1 μ L GDNF solution (20 μ g/L, dispensed with 0.01 mol/L PBS) injected into right striatum at 4 and 6 days after model establishment. Mice in the PSB 4 and 6-day groups were administrated with 0.01 mol/L PBS of the same volume to the same injection at corresponding time points. ② On the 12^th day after model establishment, the midbrain tissue section of each mice was divided into 3 areas from rostral to caudal sides. The positive neurons of tyroxine hydroxylase (TH) and calcium binding protein (CB) with obvious nucleolus and clear outline were randomly selected for the measurement, and the number of positive neurons in unit area was counted. MAIN OUTCOME MEASURES: Number of positive neurons of TH and CB in midbrain substantia nigra of mice in each group. RESULTS: All the 24 mice were involved in the analysis of results. The numbers of TH^+ and CB^+ neurons in the GDNF 4-day group (54.33±6.92, 46.33±5.54) were obviously more than those in the PBS 4-day group (27.67±5.01, 21.50±5.96, P 〈 0.01). The numbers of TH^+ and CB^+ neurons in the GDNF 6-day group (75.67±5.39, 69.67±8.69) were obviously more than those in the PBS 6-day group (27.17±4.50, 21.33 ±5.72, P 〈 0.01) and those in the GDNF 4-day group (P 〈 0.01 ). CONCLUSION: Intrastriatal GDNF can protect dopaminergic neurons in substantia nigra of PD mice, and it may be related to the increase of CB expression.展开更多
Objective To establish a method cloning the exon 3 of eck gene from normal tissue and ZR 75 1 cell line (a human breast cancer cell line)and study whether these genes exist mutant. Methods Designed a pair of s...Objective To establish a method cloning the exon 3 of eck gene from normal tissue and ZR 75 1 cell line (a human breast cancer cell line)and study whether these genes exist mutant. Methods Designed a pair of specific primers and amplified the exon 3 of eck gene fragment from the extracted genomic DNA derived from normal epithelial cells from skin tissue and ZR 75 1 cell line respectively by PCR technique. Transformed the E.coil. JM109 with recombinant plamids constructed by inserting the amplified fragments into medium vector pUCm T and sequenced these amplified fragments after primary screening of endonuclease restriction digestion and PCR amplification. Results ① Obtained the genomic DNA of human normal epithelial cells and ZR 75 1 cell line respectively. ② Obtained the amplified fragments of human exon 3 of eck gene through PCR technique. ③ Obtained the cloning vectors of exon 3 of eck gene of human normal epithelial cells and ZR 75 1 cell line respectively. ④ ZR 75 1 cell line exists mutation of nucleotides. Conclusion Successfully established the method of cloning the human exon 3 of eck gene and found some mutations in the detected samples. This study lays a foundation for further studying the function of eck gene in tumorgenesis.展开更多
In order to study the effect of 5, 6-Dichloro-l-13-D-ribofuranosyl-benzimidazole (DRB) on the biological characteristics of human laryngeal carcinoma Hep-2 cell line in vitro, Hep-2 cells cultured in vitro were trea...In order to study the effect of 5, 6-Dichloro-l-13-D-ribofuranosyl-benzimidazole (DRB) on the biological characteristics of human laryngeal carcinoma Hep-2 cell line in vitro, Hep-2 cells cultured in vitro were treated with different concentrations of DRB. Changes in cell proliferation, apoptotic rate and invasiveness were detected by MTT assay, flow cytometry (FCM) and matrigel in vitro invasion assay, respectively. It was found that DRB inhibited the proliferation of Hep-2 cells in a dose- and time-dependent manner. After being treated with 0, 10, 20, 40, 80 μmmol/L DRB for 24 h, the apoptotic rate in Hep-2 cells was (0.68±0.19)%, (1.95±0.12)%, (8.51±0.26)%, (11.26±0.17)% and (14.99±0.32)%, respectively. The matrigel in vitro invasion assay revealed that DRB began to inhibit the invasion of Hep-2 cells at the concentration of 5 μmmol/L, and with the increase of DRB concentration, the inhibitory effect was enhanced. It was suggested that DRB could influence the essential biological characteristics of Hep-2 cells, inhibit Hep-2 cells proliferation, reduce invasive ability and induce apoptosis of Hep-2 cells.展开更多
Cannabinoids, the active components of Cannabis sativa Linnaeus, have received renewed interest in recent years due to their diverse pharmacologic activities such as cell growth inhibition, anti-inflammatory effects a...Cannabinoids, the active components of Cannabis sativa Linnaeus, have received renewed interest in recent years due to their diverse pharmacologic activities such as cell growth inhibition, anti-inflammatory effects and tumor regression, but their use in chemotherapy is limited by their psychotropic activity. To date, cannabinoids have been successfully used in the treatment of nausea and vomiting, two common side effects that accompany chemotherapy in cancer patients. Most non-THC plant cannabinoids e.g. cannabidiol and cannabigerol, seem to be devoid of psychotropic properties. However, the precise pathways through which these molecules produce an antitumor effect have not yet been fully characterized. We therefore investigated the antitumor and anti-inflammatory activities of cannabidiol (CBD) in human prostate cancer cell lines LNCaP, DU145, PC3, and assessed whether there is any advantage in using cannabis extracts enriched in cannabidiol and low in THC. Results obtained in a panel of prostate cancer cell lines clearly indicate that cannabidiol is a potent inhibitor of cancer cell growth, with significantly lower potency in non-cancer cells. The mRNA expression level of cannabinoid receptors CB1 and CB2, vascular endothelial growth factor (VEGF), PSA (prostate specific antigen) are significantly higher in human prostate cell lines. Treatment with Cannabis extract containing high CBD down regulates CB1, CB2, VEGF, PSA, pro-inflammatory cytokines/chemokine IL-6/IL-8. Our overall findings support the concept that cannabidiol, which lacks psychotropic activity, may possess anti-inflammatory property and down regulates both cannabinoid receptors, PSA, VEGF, IL-6 and IL-8. High CBD cannabis extracts are cytotoxic to androgen responsive LNCaP cells and may effectively inhibit spheroid formation in cancer stem cells. This activity may contribute to its anticancer and chemosensitizing effect against prostate cancer. Cannabidiol and other non-habit forming cannabinoids could be used as novel therapeutic agents for the treatment of prostate cancer.展开更多
DNA methyltransferase 3A (Dnmt3a), a de novo methyltransferase, has attracted a great deal of attention for its important role played in tumorigenesis. We have previously demonstrated that melanoma is unable to grow i...DNA methyltransferase 3A (Dnmt3a), a de novo methyltransferase, has attracted a great deal of attention for its important role played in tumorigenesis. We have previously demonstrated that melanoma is unable to grow in-vivo in conditions of Dnmt3a depletion in a mouse model. In this study, we cultured the Dnmt3a depletion B16 melanoma (Dnmt3a-D) cell line to conduct a comparative analysis of protein expression con-comitant with Dnmt3a depletion in a melanoma cell line. After two-dimensional separation, by gel electro-phoresis and liquid chromatography, combined with mass spectrometry analysis (1DE-LC-MS/MS), the re-sults demonstrated that 467 proteins were up-regulated and 535 proteins were down-regulated in the Dnmt3a-D cell line compared to the negative control (NC) cell line. The Genome Ontology (GO) and KEGG pathway were used to further analyze the altered proteins. KEGG pathway analysis indicated that the MAPK signaling pathway exhibited a greater alteration in proteins, an interesting finding due to the close relation-ship with tumorigenesis. The results strongly suggested that Dnmt3a potentially controls the process of tu-morigenesis through the regulation of the proteins (JNK1, p38α, ERK1, ERK2, and BRAF) involved in tu-mor-related pathways, such as the MAPK signaling pathway and melanoma pathway.展开更多
基金This study received financial support from the National Natural Science Foundation of China(No.30000209).
文摘Aim: To evaluate the antiproliferative activity of contragestazol (DL111-IT) on the human prostate cancer cell line PC3 in vitro and in vivo and to elucidate its potential molecular mechanisms. Methods: The cell killing ability of DL111-IT was measured by the 3-(4,5-dimethylthia-zol,2-yl)-2,5-diphenyltetrazolium bromide (MTT) reagent assay method and the tumor xenograft model. The cell cycle was analyzed by flow cytometry and protein expression, including retinoblastoma (pRb), cyclin-dependent kinase 4 (CDK4) and cyclin D 1, was detected by Western blotting. Results: DL111-IT exhibited high efficiency on cell growth inhibition of the human androgen-independent prostate cancer cell line PC3. The drug concentration that yielded 50 % cell inhibition (IC50 value) was 9.9 mg/mL. In the PC3 tumor xenograft study, DL111-IT (1.25 mg/kg-20.0 mg/kg) given once a day for 10 days significantly inhibited tumor growth, with the inhibition rate ranging from 21% to 50 %. Flow cytometric analysis indicated that DL111-IT could cause GI arrest in the PC3 cell line, but not apoptosis. DL111-IT enhanced pRb expression and down-regulated CDK4 and cyclin D 1 expression, suggesting that cell cycle regulation might contribute to the anticancer property of DL 111- IT. Conclusion: DL111-1T inhibits the proliferation of human androgen-independent prostate cancer cell line PC3 in vitro and in vivo by a cell cycle regulation pathway.
文摘The cytogenetics of HNE- 1 cell line derived from the biopsy of nasopharyngeal carcinoma of a 27- year- old Chinese male has been investigated by chromosomal banding technique. A karyotypic characterization of subteraploid and a modal number of 74 - 77 have been revealed in this cell line. All cells contained a series of non- random chromosomal rearrangements. 18 of them, including 5 isochromosomes. were present in all metaphases and 3 of them in a few one. These findings indicated that the severe DNA damage and increase of gene copies may be occurred in genome of HNE- 1 cells.
文摘Objective To determine whether transforming growth factor betal (TGF-β1)/Smad signaling pathway mediates p53-dependent apoptosis in hepatoma cell lines.Methods Three human hepatic carcinoma cell lines, HepG2, Huh-7, and Hep3B, were used in this study.TGF-β1-induced apoptosis in hepatic carcinoma cell lines was analyzed using TUNEL assay.For identifying the mechanism of apoptosis induced by TGF-β1, cell lines were transfected with a TGF-β1-inducible luciferase reportor plasmid containing Smad4 binding elements.After transfection, cells were treated with TGF-β1, then assayed for luciferase activity.Results The apoptosis rate of HepG2 cell lines (48.51%± 8.21%) was significantly higher than control ( 12.72%±2.18%, P<0.05).But TGF-β1 was not able to induce apoptosis of Huh-7 and Hep3B cell lines.The relative luciferase activity of TGF-β1-treated HepG2 cell lines (4.38) was significantly higher than control (1.00, P< 0.05).But the relative luciferase activity of TGF-β1-treated Huh-7 and Hep3B cell lines less increased compared with control.Conclusions HepG2 cells seem to be highly susceptible to TGF-β1-induced apoptosis compared with Hep3B and Huh-7 cell lines.Smad4 is a central mediator of TGF-β1 signaling transdution pathway.TGF-β1/Smad signaling pathway might mediate p53-dependent apoptosis in hepatoma cell lines.
基金supported by the National Natural Science Foundation of China(No.81273028)
文摘The aim of this study was to evaluate the effects of low concentrations of DEHP and MEHP on steroidogenesis in a murine Leydig tumor cell line (MLTC-1) in vitro. The result of flow cytometry analysis revealed that the proportion of apoptotic cells was significantly increased after the exposure to DEHP. All three genes (P450scc, P450c17, and 38HSD) under study showed an increased expression following exposure to DEHP or MEHP, although some insignificant inhibitory effects appeared in the 10μmol/L treatment group as compared with the controls. It was also found that DEHP or MEHP stimulated INSL3 mRNA and protein especially in the 0.001 μmol/L treatment group. Testosterone secretions were stimulated after the exposure to DEHP or MEHP. Alterations of steroidogenic enzymes and INSL3 in MLTC-1 cells might be involved in the biphasic effects of DEHP/MEHP on androgen production.
文摘The inhibitory effect of parvovirus H-1 on the colonyforming ability in vitro of QGY-7703, a cultured human hepatoma cell line, and on the formation and growth of its tumors in nude mice was studied. With higher multiplicity of infection (MOI) of H-1 given, survival of the QGY-7703 cells was found to be decreased. H-1 DNA amplification level at 30 h postinfection(p.i.) was detected to be 7.4 times higher than that at 2 h by dispersed cells assay, while the cells were delayed to enter into S phase.Plaques were formed in the indicator cells (new-born human kidney cell line, NBK) by progeny H-1 virus particles released from the infected QGY-7703 cells by infectious cell center assay. The formation of tumors in nude mice by QGY-7703 cells which were injected s c at 2 h postinfection was observed to be prevented in 2 groups with given MOI 25 and 50. The tumor growth of MOI 10 group occurred at a lower exponential rate than that of control,after a 20 d latent period. It was evident that parvovirus H-1 exhibited a direct inhibitory effect on the formation and growth of human hepatoma cells in vivo as well as in vitro.
文摘Summary: The HL-60 cells were transfected with chkl antisense and sense chain, and 24 h later subjected to irradiation. Twenty-four h after irradiation, the changes in the chk1 protein expression was assayed by Western blot, and the cell cycles and apoptosis rate detected by FCM. The irradiated apoptosis sensitivity was increased by antisense blocking of chk1 gene in HL-60 cell line with the apoptosis rate being 26.31 %, significantly higher than that by the sense blocking (10.34 %, 0. 025〈P〈0.05). In HL-60 cells transfected with chkl antisense chain, the G2/M phase arrest was attenua:ted and the cells in G2/M phase were accounted for 38.42 %, significantly lower than those of the cells transfected with chkl sense chain (54.64 %, 0. 005〈P〈0.01). It was concluded that antisense blocking of chk1 gene could increase the apoptosis sensitivity to irradiation.
基金supported by China Mega-Project for Infectious Disease(2014ZX10004002-004-001)National Natural Science Foundation of China(31500152)National Key Technology R&D Program(2014BAI13B04)
文摘The nonstructural protein 1 (NS1) of influenza A virus, which is absent from the viral particle, but highly expressed in infected cells, strongly antagonizes the interferon (IFN)-mediated antiviral response. We engineered an NS1-expressing 293 (293-NS1) cell line with no response to IFN stimulation. Compared with the parental 293 cells,
文摘Nanopharmaceuticals containing quantum dot nanoparticles (Q-Dot NPs) for treating serious cancers such as breast cancer have made fantastic proposals. In this study, ZnO quantum dot NPs are formulated via ZnO@PVP nanopolymer as co-assistants coordinating with efficacious suitable wetting agents, PEG-binding compound, and W/O emulsifier for producing eco-friendly water-based nanodrug. Several characterization techniques containing SEM, TEM, FTIR, photoluminescence, zeta potential, and UV-Vis absorption were employed for ZnO Q-Dot NPs in nanodrug. This work aims to investigate the anti-tumor effects of such nanomedicine on the 4T1 breast cancer cell line in BALB/c mice, being elaborated through intraperitoneal, injection (IVP) and oral therapy. The impressive findings showed that ZnO nanodrug caused changes in blood factors, having the most effectiveness at 40 μg/ml concentration after two weeks of oral treatments. The significant increase in white blood cells (WBC) neutrophils and meaningful decreases in lymphocytes and especially cholesterol were powerful simultaneous impacts, successfully treating malignant breast cancer masses. In this significant animal model research for breast cancer, the sick mice recovered entirely and even had a safe space to mate. Histopathological results showed no evidence of breast tumor formation or metastasis in the group treated with nanodrug and their children. This nanomedicine has a therapeutic effect, and is ready to be applied for treating volunteer breast cancer patients. However, its prevention (inhibitory) effect can also be analyzed and added to current data in future studies.
文摘AIM: To investigate the potential roles of enhancer of zeste homolog2(EZH2), Bmi-1 and mi R-203 in cell proliferation and invasion in hepatocellular carcinoma(HCC) cell line Hep3 B.METHODS: A total of 73 patients who underwent surgical resection at Fuzong Clinical Medical College of Fujian Medical University were enrolled in this study. Hep3 B cells were cultivated in RPMI 1640 medium supplemented with 10% fetal bovine serum at 37?℃. Vectors that containing c DNA of the EZH2 gene or mi R-203 targeted sh RNA plasmid were constructed, and then transfected into Hep3 B cells. The m RNA expression of mi R-203, EZH2, and Bmi-1 was analyzed using quantitative real-time polymerase chain reaction analysis, and the protein levels of EZH2 and Bmi-1 were detected by Western blot analysis. Effect of EZH2 or mi R-203 on cell proliferation was observed by methyl thiazolyl tetrazolium assay, and cell apoptosis was assessed using flow cytometry. Besides, effect of EZH2 or mi R-203 on tumor cell invasion was detected using Transwell assay.RESULTS: The m RNA levels of EZH2 and Bmi-1 in HCC tissues and in Hep3 B cells were significantly higher compared with those in normal samples(P < 0.01), while mi R-203 level was significantly lower in HCC tissues(P < 0.01). Hep3 B cells transfected with EZH2-sh RNA or mi R-203-sh RNA showed lower expression levels of EZH2 and Bmi-1(P < 0.05). Compared with controls, Hep3 B cells transfected with EZH2-sh RNA had relative slow cell proliferation, indicating that low expression of EZH2 and Bmi-1 and overexpression of mi R-203 could inhibit Hep3 B cell proliferation(P < 0.05). The average apoptosis rate of Hep3 B cells transfected with EZH2-sh RNA vector was about 18.631%, while that of Hep3 B cells transfected with sh RNA vector was about 5.33%, suggesting that EZH2 was down-regulated by transfecting with EZH2-sh RNA, and the down-regulated EZH2 contributed to the cell apoptosis. Low expression of EZH2 and Bmi-1 and overexpression of mi R-203 could reduce Hep3 B cell invasion(P < 0.05).CONCLUSION: Our study suggests that EZH2 and Bmi-1 are up-regulated while mi R-203 is downregulated in Hep3 B cells. Mi R-203 may contribute to the metastasis and enhance apoptosis of HCC cells by regulating EZH2 and Bmi-1. Our study may provide a theoretical basis for metastasis of HCC and targeted therapy of HCC.
基金Supported by Key Disciplines Group Construetion Project of Pudong Health Bureau of Shanghai(Grant No.PWZxk2010-12)
文摘Objective:To investigate the effects of miR-25-3p on the occurrence,development and proliferation of tongue squamous cell carcinoma cells.Methods:To establish tongue squamous cell carcinoma cell line Tca8113 that stably and highly express miR-25-3p using recombinant reiroviral vector-mediated gene transfer method.The proliferation of transfected Tca8113 was detected by thiazolyl blue tetrazolium bromide(MTT)and cell colony formation assays.eyclnD1,p21^(cipt)and p27^(kipt)mRNA expressions in the transfected Tca-8113 were detected by quantitative PCR.cyclinD1,p21^(cipt),p27^(kipt),AKT,p-AKT,FOXOt and p-FOX01 expressions in the transfected Tca8113 were detected by western blot analysis.In addition,miR-25-3p expression in the tongue squamous cell carcinoma cell line and tissue specimen was also detected by quantitative PCR.Results:Quantitative PCR showed that mitt-25-3p expression in the tongue squamous cell carcinoma cell lines and tissue specimen was significantly lower than that in the adjacent tissue.MTT and cell colony formation assays showed that after miR-25-3p overexpression,the proliferation of transfected Tca8113 was obviously attenuated.Western blot analysis and quantitative PCR showed that after miR-25-3p overexpression.p21^(cipt)and p27^(kipt)expressions were upregulated,while cyclinD1,AKT,FOXO1 expressions were downregulated,and AKT and FOXO1 phosphorylation was inactivated in the transfected Tca8113 cells.Conclusions:MiR-25-3p inhibited the proliferation of tongue squamous cell carcinoma cells and regulated cell cycle-related protein expression,playing an important role in the occurrence and development of squamous cell carcinoma of the tongue.
文摘Background: The human serine palmitoyltransferase-1, SPTLC1, subunit is emerging as a stress responsive protein with putative role in modulating cellular stress response behavior. When compared to the parental cell line, recombinant Glioma cells expressing C-terminal modified SPTLC1 are found to show resistance to the cytotoxic effect of polycyclic hydrocarbons, PHs, including the environmental contaminant 3-methylcholanthrene. This novel functional association of SPTLC1 expression with proliferative capacity is thought to be due, in part, to its ability for crosstalk with protein regulators of different biological processes. Whether the effect of SPTLC1 on sensitivity to PHs extends to therapeutic drugs and the progression of the malignant phenotype is of research interest. Methods: In the current study, sub-cellular localization was by immunostaining for SPTLC1 in untreated and chemical treated cells and detection with confocal microscopy. The effect expressing C-terminal modified SPTLC1, in cancer cell lines of the inflammation-associated type, has on chemosensitivity and gene expression was also assessed. Parent Glioma LN18 and SKN-SH cells and their SPTLC1 recombinants were each treated with Glutamate, an excitatory neurotransmitter that can participate in both neuronal and excitotoxic signaling. In addition to the Glioma and SKN-SH cells, the PC3 prostate cancer and 647V bladder cancer cell lines were also treated with Celecoxib, a potent inhibitor of cyclooxygenase 2, COX-2, and an anti-inflammatory drug recently found to have anti-neoplastic activity against several malignancies. Results: Confocal microscopy revealed that Celecoxib mediates both rapid and enhanced redistribution of SPTLC1 and COX-2, to focal adhesion sites. In cell viability assay, SPTLC1 recombinant cells exhibited differential but dose-dependent resistance to excitotoxic levels of Glutamate. Drug co-treatment with a non-lethal dose of the potent kinase inhibitor, Sulfasalazine, increased the anti-proliferation effect of Celecoxib in a dose-dependent manner for all the cell lines tested. Conclusions: The effect of SPTLC1 expression on cellular chemosensitivity seen in the present study further highlights possible role of a C-terminal modified SPTLC1 variant in the biologic modulation of cellular behavior in response to therapeutic anticancer drugs.
基金The Research Fund for the Doctoral Program of Higher Education, No. 20069981008
文摘AIM:To study the molecular mechanism of laterally spreading tumor (LST), a cell line [Laterally Spreading Tumor-Rectum 1 (LST-R1)] was derived and the characteristics of this cell line were investigated. METHODS:A new cell line (LST-R1) originated from laterally spreading tumor was established. Properties of the cell line were characterized using scanning and transmission electron microscopy, immunohistochemistry method, cytogenetic analysis and nude mice xenograft experiments. In vitro invasion assay, cDNA microarray and Western blotting were used to compare the difference between the LST-R1 and other colorectal cancer cell lines derived from prudent colon cancer. RESULTS:Our study demonstrated that both epithelial special antigen (ESA) and cytokeratin-20 (CK20) were expressed in LST-R1. The cells presented microvilli and tight junction with large nuclei. The karyotypic analysis showed hyperdiploid features with structural chromosome aberrations. The in vivo tumorigenicity was also demonstrated in nude mice xenograft experiments. The invasion assay suggested this cell line has a higher invasive ability. cDNA microarray and Western blotting show the loss of the expression of E-cadherin in LST-R1 cells.CONCLUSION:We established and characterized a colorectal cancer cell line, LST-R1 and LST-R1 has an obvious malignant tendency, which maybe partially attributed to the changes of the expression of some adhesion molecules, such as E-cadherin. It is also a versatile tool for exploring the original and progressive mechanisms of laterally spreading tumor and the early colon cancer genesis.
基金The work was founded by the National Key R&D Program of China(2016YFD0501606)the Public Industry Research Program,the Ministry of Agriculture of China(201203055)+2 种基金the Program of Science and Technology Development of Guangdong Province,China(2015A020209145)the China Meat-Type Chicken Research System(CARS-42-G09)the Modern Agriculture Talents Support Program,Ministry of Agriculture of China([2012] no.160)
文摘Rapid diagnostic methods for classifying avian leukosis subgroups in the field were needed for routine, large-scale screening. As a first step in method development, we inserted the avian leukosis virus subgroup A (ALV-A) env gene into plasmid pcDNA3.1/Zeo (+) and used this construct to transfect DF-1 cells. Zeocin-resistant cells were obtained after 2 weeks of zeocin selection. Then, the cells were analyzed using PCR, immunofluorescence, and Western blot for expression of the envA-encoded envelope protein after 30 serial passages. The DF-1/A cell line was completely resistant to 104 TCIDso/0.1 mL (50% tissue culture infective dose)ALV-A and was partially resistant to 10~ TCIDs0/0.1 mL ALV-A viral particles. By comparing the DF-1/A and DF-1 cell lines, an ALV-A isolate was identified using a gag-specific ELISAfor capsid protein p27. Thus, we established a DF-1/A cell line that was resistant to ALV-A infection. This cell line will be useful as a diagnostic tool.
基金Grant-in-Aid for Encouragement of Young Scientists from Japan Society for the Promotion of Science(to A.M.)Pancreas Research Foundation of Japan(to A.M.)
文摘AIM: Activated pancreatic stellate cells (PSCs) have been implicated in the pathogenesis of pancreatic fibrosis and inflammation. Primary PSCs can be subcultured only several times because of their limited growth potential. A continuous cell line may therefore be valuable in studying molecular mechanisms of these pancreatic disorders. The aim of this study was to establish a cell line of rat PSCs by spontaneous immortalization.METHODS: PSCs were isolated from the pancreas of male Wistar rats, and conventional subcultivation was performed repeatedly. Telomerase activity was measured using the telomere repeat amplification protocol. Activation of transcription factors was assessed by electrophoretic mobility shift assay.Activation of mitogen-activated protein (MAP) kinases was examined by Western blotting using anti-phosphospecific antibodies. Expression of cytokine-induced neutrophil chemoattractant-1 was determined by enzyme immunoassay.RESULTS: Conventional subcultivation yielded actively growing cells. One clone was obtained after limiting dilution,and designated as SIPS. This cell line has been passaged repeatedly more than 2 years, and is thus likely immortalized.SIPS cells retained morphological characteristics of primary,culture-activated PSCs. SIPS expressed α-smooth muscle actin, glial acidic fibrillary protein, vimentin, desmin, type Ⅰ collagen, fibronectin, and prolyl hydroxylases. Telomerase activity and p53 expression were negative. Proliferation of SIPS cells was serum-dependent, and stimulated with platelet-derived growth factor-BB through the activation of extracellular signal-regulated kinase. Interleukin-1β activated nuclear factor-κB, activator protein-1, and MAP kinases.Interleukin-1β induced cytokine-induced neutrophil chemoattractant-1 expression through the activation of nuclear factor-κB and MAP kinases.CONCLUSION: SIPS cells can be useful for in vitro studies of cell biology and signal transduction of PSCs.
基金Supported by the Biomedical Research Councilthe Institute of Bioengineering and Nanotechnology,the Republic of Singapore
文摘AIM: The GFAP was traditionally considered to be a biomarker for neural gila (mainly astrocytes and nonmyelinating Schwann cells). Genetically, a 2.2-kb human GFAP promoter has been successfully used to target astrocytes in vitro and in vivo. More recently, GFAP was also established as one of the several makers for identifying hepatic stellate cells (HSC). In this project, possible application of the same 2.2-kb human GFAP promoter for targeting HSC was investigated. METHODS: The GFAP-lacZ transgene was transfected into various cell lines (HSC, hepatocyte, and other nonHSC cell types). The transgene expression specificity was determined by X-gal staining of the β-galactosidase activity. And the responsiveness of the transgene was tested with a typical pro-fibrotic cytokine TGF-β1. The expression of endogenous GFAP gene was assessed by real-time RT-PCR, providing a reference for the transgene expression. RESULTS: The results demonstrated for the first time that the 2.2 kb hGFAP promoter was not only capable of directing HSC-specific expression, but also responding to a known pro-fibrogenic cytokine TGF-β1 by upregulation in a doseand time-dependent manner, similar to the endogenous GFAP. CONCLUSION: In conclusion, these findings suggested novel utilities for using the GFAP promoter to specifically manipulate HSC for therapeutic purpose.
基金the Natural Science Foundation of Jiangsu Department of Education, No. 02KJB310009
文摘BACKGROUND: Substantia nigra is deep in position and limited in range, the glial cell line-derived neurotrophic factor (GDNF) injection directly into substantia nigra has relatively greater damages with higher difficulty. GDNF injection into striatum, the target area of dopaminergic neuron, may protect the dopaminergic neurons in the compact part of substantia nigra through retrograde transport. OBJECTIVE: To investigate the protective effect of intrastriatal GDNF on dopaminergic neurons in the substantia nigra of mice with Parkinson disease (PD), and analyze the action pathway. DESIGN: A controlled observation. SETTING: Neurobiological Laboratory of Xuzhou Medical College. MATERIALS: Twenty-four male Kunming mice of 7 - 8 weeks old were used. GDNF, 1-methy1-4-pheny1-1,2,3,6-tetrahydropyridine (MPTP) were purchased from Sigma Company (USA); LEICAQWin image processing and analytical system. METHODS: The experiments were carded out in the Neurobiological Laboratory of Xuzhou Medical College from September 2005 to October 2006. The PD models were established in adult KunMing mice by intraperitoneal injection of MPTP. The model mice were were randomly divided into four groups with 6 mice in each group: GDNF 4-day group, phosphate buffer solution (PSB) 4-day group, GDNF 6-day group and PSB 6-day group. Mice in the GDNF 4 and 6-day groups were administrated with 1 μ L GDNF solution (20 μ g/L, dispensed with 0.01 mol/L PBS) injected into right striatum at 4 and 6 days after model establishment. Mice in the PSB 4 and 6-day groups were administrated with 0.01 mol/L PBS of the same volume to the same injection at corresponding time points. ② On the 12^th day after model establishment, the midbrain tissue section of each mice was divided into 3 areas from rostral to caudal sides. The positive neurons of tyroxine hydroxylase (TH) and calcium binding protein (CB) with obvious nucleolus and clear outline were randomly selected for the measurement, and the number of positive neurons in unit area was counted. MAIN OUTCOME MEASURES: Number of positive neurons of TH and CB in midbrain substantia nigra of mice in each group. RESULTS: All the 24 mice were involved in the analysis of results. The numbers of TH^+ and CB^+ neurons in the GDNF 4-day group (54.33±6.92, 46.33±5.54) were obviously more than those in the PBS 4-day group (27.67±5.01, 21.50±5.96, P 〈 0.01). The numbers of TH^+ and CB^+ neurons in the GDNF 6-day group (75.67±5.39, 69.67±8.69) were obviously more than those in the PBS 6-day group (27.17±4.50, 21.33 ±5.72, P 〈 0.01) and those in the GDNF 4-day group (P 〈 0.01 ). CONCLUSION: Intrastriatal GDNF can protect dopaminergic neurons in substantia nigra of PD mice, and it may be related to the increase of CB expression.
文摘Objective To establish a method cloning the exon 3 of eck gene from normal tissue and ZR 75 1 cell line (a human breast cancer cell line)and study whether these genes exist mutant. Methods Designed a pair of specific primers and amplified the exon 3 of eck gene fragment from the extracted genomic DNA derived from normal epithelial cells from skin tissue and ZR 75 1 cell line respectively by PCR technique. Transformed the E.coil. JM109 with recombinant plamids constructed by inserting the amplified fragments into medium vector pUCm T and sequenced these amplified fragments after primary screening of endonuclease restriction digestion and PCR amplification. Results ① Obtained the genomic DNA of human normal epithelial cells and ZR 75 1 cell line respectively. ② Obtained the amplified fragments of human exon 3 of eck gene through PCR technique. ③ Obtained the cloning vectors of exon 3 of eck gene of human normal epithelial cells and ZR 75 1 cell line respectively. ④ ZR 75 1 cell line exists mutation of nucleotides. Conclusion Successfully established the method of cloning the human exon 3 of eck gene and found some mutations in the detected samples. This study lays a foundation for further studying the function of eck gene in tumorgenesis.
基金This project was supported by a grant from the Teaching and Research Award Program for Outstanding Young Teacher in Higher Education Institution of Ministry of Education of China.
文摘In order to study the effect of 5, 6-Dichloro-l-13-D-ribofuranosyl-benzimidazole (DRB) on the biological characteristics of human laryngeal carcinoma Hep-2 cell line in vitro, Hep-2 cells cultured in vitro were treated with different concentrations of DRB. Changes in cell proliferation, apoptotic rate and invasiveness were detected by MTT assay, flow cytometry (FCM) and matrigel in vitro invasion assay, respectively. It was found that DRB inhibited the proliferation of Hep-2 cells in a dose- and time-dependent manner. After being treated with 0, 10, 20, 40, 80 μmmol/L DRB for 24 h, the apoptotic rate in Hep-2 cells was (0.68±0.19)%, (1.95±0.12)%, (8.51±0.26)%, (11.26±0.17)% and (14.99±0.32)%, respectively. The matrigel in vitro invasion assay revealed that DRB began to inhibit the invasion of Hep-2 cells at the concentration of 5 μmmol/L, and with the increase of DRB concentration, the inhibitory effect was enhanced. It was suggested that DRB could influence the essential biological characteristics of Hep-2 cells, inhibit Hep-2 cells proliferation, reduce invasive ability and induce apoptosis of Hep-2 cells.
文摘Cannabinoids, the active components of Cannabis sativa Linnaeus, have received renewed interest in recent years due to their diverse pharmacologic activities such as cell growth inhibition, anti-inflammatory effects and tumor regression, but their use in chemotherapy is limited by their psychotropic activity. To date, cannabinoids have been successfully used in the treatment of nausea and vomiting, two common side effects that accompany chemotherapy in cancer patients. Most non-THC plant cannabinoids e.g. cannabidiol and cannabigerol, seem to be devoid of psychotropic properties. However, the precise pathways through which these molecules produce an antitumor effect have not yet been fully characterized. We therefore investigated the antitumor and anti-inflammatory activities of cannabidiol (CBD) in human prostate cancer cell lines LNCaP, DU145, PC3, and assessed whether there is any advantage in using cannabis extracts enriched in cannabidiol and low in THC. Results obtained in a panel of prostate cancer cell lines clearly indicate that cannabidiol is a potent inhibitor of cancer cell growth, with significantly lower potency in non-cancer cells. The mRNA expression level of cannabinoid receptors CB1 and CB2, vascular endothelial growth factor (VEGF), PSA (prostate specific antigen) are significantly higher in human prostate cell lines. Treatment with Cannabis extract containing high CBD down regulates CB1, CB2, VEGF, PSA, pro-inflammatory cytokines/chemokine IL-6/IL-8. Our overall findings support the concept that cannabidiol, which lacks psychotropic activity, may possess anti-inflammatory property and down regulates both cannabinoid receptors, PSA, VEGF, IL-6 and IL-8. High CBD cannabis extracts are cytotoxic to androgen responsive LNCaP cells and may effectively inhibit spheroid formation in cancer stem cells. This activity may contribute to its anticancer and chemosensitizing effect against prostate cancer. Cannabidiol and other non-habit forming cannabinoids could be used as novel therapeutic agents for the treatment of prostate cancer.
文摘DNA methyltransferase 3A (Dnmt3a), a de novo methyltransferase, has attracted a great deal of attention for its important role played in tumorigenesis. We have previously demonstrated that melanoma is unable to grow in-vivo in conditions of Dnmt3a depletion in a mouse model. In this study, we cultured the Dnmt3a depletion B16 melanoma (Dnmt3a-D) cell line to conduct a comparative analysis of protein expression con-comitant with Dnmt3a depletion in a melanoma cell line. After two-dimensional separation, by gel electro-phoresis and liquid chromatography, combined with mass spectrometry analysis (1DE-LC-MS/MS), the re-sults demonstrated that 467 proteins were up-regulated and 535 proteins were down-regulated in the Dnmt3a-D cell line compared to the negative control (NC) cell line. The Genome Ontology (GO) and KEGG pathway were used to further analyze the altered proteins. KEGG pathway analysis indicated that the MAPK signaling pathway exhibited a greater alteration in proteins, an interesting finding due to the close relation-ship with tumorigenesis. The results strongly suggested that Dnmt3a potentially controls the process of tu-morigenesis through the regulation of the proteins (JNK1, p38α, ERK1, ERK2, and BRAF) involved in tu-mor-related pathways, such as the MAPK signaling pathway and melanoma pathway.