Green hydrogen produced by water electrolysis combined with renewable energy is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.Among water electrolysis technologies,t...Green hydrogen produced by water electrolysis combined with renewable energy is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.Among water electrolysis technologies,the anion exchange membrane(AEM) water electrolysis has gained intensive attention and is considered as the next-generation emerging technology due to its potential advantages,such as the use of low-cost non-noble metal catalysts,the relatively mature stack assembly process,etc.However,the AEM water electrolyzer is still in the early development stage of the kW-level stack,which is mainly attributed to severe performance decay caused by the core component,i.e.,AEM.Here,the review comprehensively presents the recent progress of advanced AEM from the view of the performance of water electrolysis cells.Herein,fundamental principles and critical components of AEM water electrolyzers are introduced,and work conditions of AEM water electrolyzers and AEM performance improvement strategies are discussed.The challenges and perspectives are also analyzed.展开更多
This work focuses on the development of high temperature polymer electrolyte membranes(HT-PEMs)as key materials for HT-PEM fuel cells(HT-PEMFCs).Recognizing the challenges associated with the phosphoric acid(PA) doped...This work focuses on the development of high temperature polymer electrolyte membranes(HT-PEMs)as key materials for HT-PEM fuel cells(HT-PEMFCs).Recognizing the challenges associated with the phosphoric acid(PA) doped polybenzimidazole(PBI) membranes,including the use of carcinogenic monomers and complex synthesis procedures,this study aims to develop more cost-effective,readily synthesized,and high-performance alternatives.A series of superacid-catalyzed polyhydroxyalkylation reactions have been carefully designed between p-terphenyl and aldehydes bearing imidazole moieties,resulting in a new class of HT-PEMs.It is found that the chemical structure of aldehyde-substituted N-heterocycles significantly impacts the polymerization reaction.Specifically,the use of 1-methyl-2-imidazole-formaldehyde and 1 H-imidazole-4-formaldehyde monomers leads to the formation of high-viscosity,rigid,and ether-free polymers,denoted as PTIm-a and PTIm-b.Membranes fabricated from these polymers,due to their pendent imidazole groups,exhibit an exceptional capacity for PA absorption.Notably,PTIm-a,carrying methylimidazole moieties,demonstrates a superior chemical stability by maintaining morphology and structural stability during 350 h of Fenton testing.After being immersed in 75 wt% PA at 40℃,the PTIm-a membrane reaches a PA content of 152%,maintains a good tensile strength of 13.6 MPa,and exhibits a moderate conductivity of 50.2 mS cm^(-1) at 180℃.Under H_(2)/O_(2) operational conditions,a single cell based on the PTIm-a membrane attains a peak power density of 732 mW cm^(-2) at 180℃ without backpressure.Furthermore,the membrane demonstrates stable cycle stability over 173 h within 18 days at a current density of 200 mA cm^(-2),indicating its potential for practical application in HT-PEMFCs.This work highlights innovative strategies for the synthesis of advanced HT-PEMs,offering significant improvements in membrane properties and fuel cell performance,thus expanding the horizons of HT-PEMFC technology.展开更多
Milk fat globule membrane(MFGM),which contains abundant glycoproteins and phospholipids,exerts beneficial effects on intestinal health and immunomodulation.The aim of this study was to evaluate the protective effects ...Milk fat globule membrane(MFGM),which contains abundant glycoproteins and phospholipids,exerts beneficial effects on intestinal health and immunomodulation.The aim of this study was to evaluate the protective effects and possible underlying mechanisms of MFGM on cow’s milk allergy(CMA)in aβ-lactoglobulin(BLG)-induced allergic mice model.MFGM was supplemented to allergic mice induced by BLG at a dose of 400 mg/kg body weight.Results demonstrated that MFGM alleviated food allergy symptoms,decreased serum levels of lipopolysaccharide,pro-inflammatory cytokines,immunoglobulin(Ig)E,Ig G1,and Th2 cytokines including interleukin(IL)-4,while increased serum levels of Th1 cytokines including interferon-γand regulatory T cells(Tregs)cytokines including IL-10 and transforming growth factor-β.MFGM modulated gut microbiota and enhanced intestinal barrier of BLG-allergic mice,as evidenced by decreased relative abundance of Desulfobacterota,Rikenellaceae,Lachnospiraceae,and Desulfovibrionaceae,while increased relative abundance of Bacteroidetes,Lactobacillaceae and Muribaculaceae,and enhanced expressions of tight junction proteins including Occludin,Claudin-1 and zonula occludens-1.Furthermore,MFGM increased fecal short-chain fatty acids(SCFAs)levels,which elevated G protein-coupled receptor(GPR)43 and GPR109A expressions.The increased expressions of GPR43 and GPR109A induced CD103+dendritic cells accumulation and promoted Tregs differentiation in mesenteric lymph node to a certain extent.In summary,MFGM alleviated CMA in a BLG-induced allergic mice model through enhancing intestinal barrier and promoting Tregs differentiation,which may be correlated with SCFAs-mediated activation of GPRs.These findings suggest that MFGM may be useful as a promising functional ingredient against CMA.展开更多
PPMG-based composite electrolytes were fabricated via the solution method using the polyvinyl alcohol and polyvinylpyrrolidone blend reinforced with various contents of sulfonated inorganic filler.Sulfuric acid was em...PPMG-based composite electrolytes were fabricated via the solution method using the polyvinyl alcohol and polyvinylpyrrolidone blend reinforced with various contents of sulfonated inorganic filler.Sulfuric acid was employed as the sulfonating agent to functionalize the external surface of the inorganic filler,i.e.,graphene oxide.The proton conductivities of the newly prepared proton exchange membranes(PEMs)were increased by increasing the temperature and content of sulfonated graphene oxide(SGO),i.e.,ranging from 0.025 S/cm to 0.060 S/cm.The induction of the optimum level of SGO is determined to be an excellent route to enhance ionic conductivity.The single-cell performance test was conducted by sandwiching the newly prepared PEMs between an anode(0.2 mg/cm^(2) Pt/Ru)and a cathode(0.2 mg/cm^(2) Pt)to prepare membrane electrode assemblies,followed by hot pressing under a pressure of approximately 100 kg/cm^(2) at 60℃for 5–10 min.The highest power densities achieved with PPMG PEMs were 14.9 and 35.60 mW/cm^(2) at 25℃and 70℃,respectively,at ambient pressure with 100%relative humidity.Results showed that the newly prepared PEMs exhibit good electrochemical performance.The results indicated that the prepared composite membrane with 6 wt%filler can be used as an alternative membrane for applications of high-performance proton exchange membrane fuel cell.展开更多
In order to improve the performance degradation prediction accuracy of proton exchange membrane fuel cell(PEMFC),a fusion prediction method(CKDG)based on adaptive noise complete ensemble empirical mode decomposition(C...In order to improve the performance degradation prediction accuracy of proton exchange membrane fuel cell(PEMFC),a fusion prediction method(CKDG)based on adaptive noise complete ensemble empirical mode decomposition(CEEMDAN),kernel principal component analysis(KPCA)and dual attention mechanism gated recurrent unit neural network(DA-GRU)was proposed.CEEMDAN and KPCA were used to extract the input feature data sequence,reduce the influence of random factors,and capture essential feature components to reduce the model complexity.The DA-GRU network helps to learn the feature mapping relationship of data in long time series and predict the changing trend of performance degradation data more accurately.The actual aging experimental data verify the performance of the CKDG method.The results show that under the steady-state condition of 20%training data prediction,the CKDA method can reduce the root mean square error(RMSE)by 52.7%and 34.6%,respectively,compared with the traditional LSTM and GRU neural networks.Compared with the simple DA-GRU network,RMSE is reduced by 15%,and the degree of over-fitting is reduced,which has higher accuracy.It also shows excellent prediction performance under the dynamic condition data set and has good universality.展开更多
This study used a three-dimensional numerical model of a proton exchange membrane fuel cell with five types of channels:a smooth channel(Case 1);eight rectangular baffles were arranged in the upstream(Case 2),midstrea...This study used a three-dimensional numerical model of a proton exchange membrane fuel cell with five types of channels:a smooth channel(Case 1);eight rectangular baffles were arranged in the upstream(Case 2),midstream(Case 3),downstream(Case 4),and the entire cathode flow channel(Case 5)to study the effects of baffle position on mass transport,power density,net power,etc.Moreover,the effects of back pressure and humidity on the voltage were investigated.Results showed that compared to smooth channels,the oxygen and water transport facilitation at the diffusion layer-channel interface were added 11.53%-20.60%and 7.81%-9.80%at 1.68 A·cm^(-2)by adding baffles.The closer the baffles were to upstream,the higher the total oxygen flux,but the lower the flux uniformity the worse the water removal.The oxygen flux of upstream baffles was 8.14%higher than that of downstream baffles,but oxygen flux uniformity decreased by 18.96%at 1.68 A·cm^(-2).The order of water removal and voltage improvement was Case 4>Case 5>Case 3>Case 2>Case 1.Net power of Case 4 was 9.87%higher than that of the smooth channel.To the Case 4,when the cell worked under low back pressure or high humidity,the voltage increments were higher.The potential increment for the back pressure of 0 atm was 0.9%higher than that of 2 atm(1 atm=101.325 kPa).The potential increment for the humidity of 100%was 7.89%higher than that of 50%.展开更多
In situ regeneration is a promising strategy for constructing tissue engineering heart valves(TEHVs).Currently,the decellularized heart valve(DHV)is extensively employed as a TEHV scaffold.Nevertheless,DHV exhibits li...In situ regeneration is a promising strategy for constructing tissue engineering heart valves(TEHVs).Currently,the decellularized heart valve(DHV)is extensively employed as a TEHV scaffold.Nevertheless,DHV exhibits limited blood compatibility and notable difficulties in endothelialization,resulting in thrombosis and graft failure.The red blood cell membrane(RBCM)exhibits excellent biocompatibility and prolonged circulation stability and is extensively applied in the camouflage of nanoparticles for drug delivery;however,there is no report on its application for large-scale modification of decellularized extracellular matrix(ECM).For the first time,we utilized a layer-by-layer assembling strategy to immobilize RBCM on the surface of DHV and construct an innovative TEHV scaffold.Our findings demonstrated that the scaffold significantly improved the hemocompatibility of DHV by effectively preventing plasma protein adsorption,activated platelet adhesion,and erythrocyte aggregation,and induced macrophage polarization toward the M2 phenotype in vitro.Moreover,RBCM modification significantly enhanced the mechanical properties and enzymatic stability of DHV.The rat models of subcutaneous embedding and abdominal aorta implantation showed that the scaffold regulated the polarization of macrophages into the anti-inflammatory and pro-modeling M2 phenotype and promoted endothelialization and ECM remodeling in the early stage without thrombosis and calcification.The novel TEHV exhibits excellent performance and can overcome the limitations of commonly used clinical prostheses.展开更多
Streptococcus suis serotype 2(S.suis 2)is a zoonotic pathogen that clinically causes severe swine and human infections(such as meningitis,endocarditis,and septicemia).In order to cause widespread diseases in different...Streptococcus suis serotype 2(S.suis 2)is a zoonotic pathogen that clinically causes severe swine and human infections(such as meningitis,endocarditis,and septicemia).In order to cause widespread diseases in different organs,S.suis 2 must colonize the host,break the blood barrier,and cause exaggerated inflammation.In the last few years,most studies have focused on a single virulence factor and its influences on the host.Membrane vesicles(MVs)can be actively secreted into the extracellular environment contributing to bacteria-host interactions.Gram-negative bacteria-derived outer membrane vesicles(OMVs)were recently shown to activate host Caspase-11-mediated non-canonical inflammasome pathway via deliverance of OMV-bound lipopolysaccharide(LPS),causing host cell pyroptosis.However,little is known about the effect of the MVs from S.suis 2(Gram-positive bacteria without LPS)on cell pyroptosis.Thus,we investigated the molecular mechanism by which S.suis 2 MVs participate in endothelial cell pyroptosis.In this study,we used proteomics,electron scanning microscopy,fluorescence microscope,Western blotting,and bioassays,to investigate the MVs secreted by S.suis 2.First,we demonstrated that S.suis 2 secreted MVs with an average diameter of 72.04 nm,and 200 proteins in MVs were identified.Then,we showed that MVs were transported to cells via mainly dynamin-dependent endocytosis.The S.suis 2 MVs activated NLRP3/Caspase-1/GSDMD canonical inflammasome signaling pathway,resulting in cell pyroptosis,but it did not activate the Caspase-4/-5 pathway.More importantly,endothelial cells produce large amounts of reactive oxygen species(ROS)and lost their mitochondrial membrane potential under induction by S.suis 2 MVs.The results in this study suggest for the first time that MVs from S.suis 2 were internalized by endothelial cells via mainly dynamin-dependent endocytosis and might promote NLRP3/Caspase-1/GSDMD pathway by mitochondrial damage,which produced mtDNA and ROS under induction,leading to the pyroptosis of endothelial cells.展开更多
In the realm of proton exchange membrane fuel cells(PEMFCs),the bipolar plates(BPs)are indispensable and serve pivotal roles in distributing reactant gases,collecting current,facilitating product water removal,and coo...In the realm of proton exchange membrane fuel cells(PEMFCs),the bipolar plates(BPs)are indispensable and serve pivotal roles in distributing reactant gases,collecting current,facilitating product water removal,and cooling the stack.Metal BPs,characterized by outstanding manufacturability,cost-effectiveness,higher power density,and mechanical strength,are emerging as viable alternatives to traditional graphite BPs.The foremost challenge for metal BPs lies in enhancing their corrosion resistance and conductivity under acidic conditions,necessitating the application of various coatings on their surfaces to ensure superior performance.This review summarizes and compares recent advancements in the research of eight distinct types of coatings for BPs in PEMFCs,including noble metal,carbide,ni-tride,and amorphous carbon(a-C)/metal compound composite coatings.The various challenges encountered in the manufacturing and fu-ture application of these coatings are also delineated.展开更多
To observe the process of invasion, retina of rat was used as a model to substitute the inner limiting membrane of retina for the basement membrane. Retina invaded by esophageal carcinoma cells and B16 melanoma cells ...To observe the process of invasion, retina of rat was used as a model to substitute the inner limiting membrane of retina for the basement membrane. Retina invaded by esophageal carcinoma cells and B16 melanoma cells upon the inner limiting membrane was studied by scanning and transmission electron microscopy. The results showed that the inner limiting membrane was destroyed by both kinds of tumor cells. The process of destruction was followed by a series of transformations in the inner limiting membrane, i.e. folding, swelling, thickening, and granular change. The inner limiting membrane was dissolved focally as a result of transformation, and then tumor cells invaded the retina through these dissolved regions. It seems that, as a barrier, the inner limiting membrane plays a similar role as the basement membrane.展开更多
With in vitro spin labeling electron spin resonance (ESR) spectroscopy, we have studied the effects of Bu Yang Huan Wu (BYHW) decoction and its effective constituents such as astragaloside IV ferulic acid, chua...With in vitro spin labeling electron spin resonance (ESR) spectroscopy, we have studied the effects of Bu Yang Huan Wu (BYHW) decoction and its effective constituents such as astragaloside IV ferulic acid, chuanxiongzine, rutin, chlorogenic acid, 9,10 dimethoxy pterocarpane 7 O β D glucoside, calycosin, formononetin, calycosin 7 O glucoside, paeoniflorin, paeonal and quercein on the cell membrane fluidity of a rat brain which was modeled after the dual cervical arteries were intercepted and released for realizing an ischemia reperfusion injury which was selected as a brain stroke model. Our results indicated that the cell membrane fluidity in the model group decreased approximately 8% compared with the control group, and after brain cells were incubatied with species, the membrane fluidity could be recovered closely to the control level depending on the BYHW decoction and its different constituents. As the membrane fluidity is a very sensitive biological index which reflectsd the cell status, our method will be useful to study the molecular mechanism of tradition Chinese medicine (TCM) and its combination recipe.展开更多
Upregulation of vascular endothelial growth factor A/basic fibroblast growth factor(VEGFA/b FGF)expression in the penumbra of cerebral ischemia can increase vascular volume,reduce lesion volume,and enhance neural cell...Upregulation of vascular endothelial growth factor A/basic fibroblast growth factor(VEGFA/b FGF)expression in the penumbra of cerebral ischemia can increase vascular volume,reduce lesion volume,and enhance neural cell proliferation and differentiation,thereby exerting neuroprotective effects.However,the beneficial effects of endogenous VEGFA/b FGF are limited as their expression is only transiently increased.In this study,we generated multilayered nanofiber membranes loaded with VEGFA/b FGF using layer-by-layer self-assembly and electrospinning techniques.We found that a membrane containing 10 layers had an ideal ultrastructure and could efficiently and stably release growth factors for more than 1 month.This 10-layered nanofiber membrane promoted brain microvascular endothelial cell tube formation and proliferation,inhibited neuronal apoptosis,upregulated the expression of tight junction proteins,and improved the viability of various cellular components of neurovascular units under conditions of oxygen/glucose deprivation.Furthermore,this nanofiber membrane decreased the expression of Janus kinase-2/signal transducer and activator of transcription-3(JAK2/STAT3),Bax/Bcl-2,and cleaved caspase-3.Therefore,this nanofiber membrane exhibits a neuroprotective effect on oxygen/glucose-deprived neurovascular units by inhibiting the JAK2/STAT3 pathway.展开更多
Cell membranes play a crucial role in many biological functions of cells. A small change in the composition of cell membranes can strongly influence the functions of membrane-associated proteins, such as ion and water...Cell membranes play a crucial role in many biological functions of cells. A small change in the composition of cell membranes can strongly influence the functions of membrane-associated proteins, such as ion and water channels, and thus mediate the chemical and physical balance in cells. Such composition change could originate from the introduction of short-chain alcohols, or other anesthetics into membranes. In this work, we have applied sum frequency generation vibrational spectroscopy (SFG-VS), supplemented by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), to investigate interaction between methanol and 1,2-dimyristoyl-d54-sn-glycero-3-phosphocholine (d54-DMPC) lipid bilayers. Lipid's hydrocarbon interior is deuterated while its head group is hydrogenated. At the same time, CH3 symmetric stretch from methanol and lipid head amine group has different frequency, thus we can distinguish the behaviors of methanol, lipid head amine group, and lipid hydrocarbon interior. Based on the spectral feature of the bending mode of the water molecules replaced by methanol, we determined that the methanol molecules are intercalated into the region between amine and phosphate groups at the lipid hydrophilic head. The dipole of CH3 groups of methanol and lipid head, and the water O-H M1 adopt the same orientation directions. The introduction of methanol into the lipid hydrophilic head group can strongly perturb the entire length of the alkyl chains, resulting that the signals of CD2 and CD3 groups from both leaflets can not cancel each other.展开更多
AIM: To establish an untransfected human corneal epithelial (HCEP) cell line and characterize its biocompatibility with denuded amniotic membrane (dAM). METHODS: The torn HCEP pieces were primarily cultured in DMEM/F1...AIM: To establish an untransfected human corneal epithelial (HCEP) cell line and characterize its biocompatibility with denuded amniotic membrane (dAM). METHODS: The torn HCEP pieces were primarily cultured in DMEM/F12 media (pH 7.2) supplemented with 20% fetal bovine serum and other necessary factors, yielding an HCEP cell line which was its growth performance, chromosome morphology, tumorigenicity and expression of marker proteins analyzed. In addition, the biocompatibility of HCEP cells with dAM was evaluated through histological and immunocytochemistry analyses and with light, electron and slit-lamp microscopies. RESULTS: HCEP cells proliferated to confluence in 3 weeks, which have been subcultured to passage 160. A continuous untransfected HCEP cell line, designated as utHCEPC01, was established with a population doubling time of 45.42 hours as was determined at passage 100. The cells retained HCEP cell properties as were approved by chromosomal morphology and the expression of keratin 3. They, with no tumorigenicity, formed a multilayer epithelium-like structure on dAMs through proliferation and differentiation during air-liquid interface culture, maintained expression of marker proteins including keratin 3 and integrin p 1 and attached tightly to dAMs. The reconstructed HCEP was highly transparent and morphologically and structurally similar to the original. CONCLUSION: An untransfected and non-tumorigenic HCEP cell line was established in this study. The cells maintained expression of marker proteins. The cell line was biocompatible with dAM. It holds the potential of being used for in vitro reconstruction of tissue-engineered HCEP, promising for the treatment of diseases caused by corneal epithelial disorders.展开更多
Cell membrane coating technology is an approach to the biomimetic replication of cell membrane properties,and is an active area of ongoing research readily applicable to nanoscale biomedicine.Nanoparticles(NPs)coated ...Cell membrane coating technology is an approach to the biomimetic replication of cell membrane properties,and is an active area of ongoing research readily applicable to nanoscale biomedicine.Nanoparticles(NPs)coated with cell membranes offer an opportunity to unite natural cell membrane properties with those of the artificial inner core material.The coated NPs not only increase their biocompatibility but also achieve effective and extended circulation in vivo,allowing for the execution of targeted functions.Although cell membrane-coated NPs offer clear advantages,much work remains before they can be applied in clinical practice.In this review,we first provide a comprehensive overview of the theory of cell membrane coating technology,followed by a summary of the existing preparation and characterization techniques.Next,we focus on the functions and applications of various cell membrane types.In addition,we collate model drugs used in cell membrane coating technology,and review the patent applications related to this technology from the past 10 years.Finally,we survey future challenges and trends pertaining to this technology in an effort to provide a comprehensive overview of the future development of cell membrane coating technology.展开更多
Fabrication of novel electrode architectures with nanostructured ultrathin catalyst layers is an effective strategy to improve catalyst utilization and enhance mass transport for polymer electrolyte membrane fuel cell...Fabrication of novel electrode architectures with nanostructured ultrathin catalyst layers is an effective strategy to improve catalyst utilization and enhance mass transport for polymer electrolyte membrane fuel cells (PEMFCs).Herein,we report the design and construction of a nanostructured ultrathin catalyst layer with ordered Pt nanotube arrays,which were obtained by a hard-template strategy based on ZnO,via hydrothermal synthesis and magnetron sputtering for PEMFC application.Because of the crystallographically preferential growth of Pt (111) facets,which was attributed to the structural effects of ZnO nanoarrays on the Pt nanotubes,the catalyst layers exhibit obviously higher electrochemical activity with remarkable enhancement of specific activity and mass transport compared with the state-of-the-art randomly distributed Pt/C catalyst layer.The PEMFC fabricated with the as-prepared catalyst layer composed of optimized Pt nanotubes with an average diameter of 90(±10) nm shows excellent performance with a peak power density of 6.0W/mgPt at 1 A/cm^2,which is 11.6%greater than that of the conventional Pt/C electrode.展开更多
The aim of this study was to investigate antibacterial activity of Origanum compactum essential oils collected at three phenological stages on Escherichia coli and Bacillus subtilis. The antibacterial activity was eva...The aim of this study was to investigate antibacterial activity of Origanum compactum essential oils collected at three phenological stages on Escherichia coli and Bacillus subtilis. The antibacterial activity was evaluated using the agar-well diffusion assay. The MIC and MBC values were determined using the micro-dilution assay. The investigation of the antibacterial action was carried out by the evaluation of the effect of O. compactum essential oils on the antibacterial kinetic growth, the integrity of cell membrane and permeability of the cell membrane. The anti-quorum sensing activity was tested by the inhibition of the biofilm formation. The findings of this study showed that O. compactum essential oil has potent antibacterial activities against E. coli and B. subtilis. The lowest inhibition value against B. subtilis was obtained with O. compactum essential oil at the post-flowering stage (MIC=MBC=0.0312%(v/v)). The antibacterial mechanisms of O. compactum essential oils are related to the disturbing of the cell membrane integrity and the increasing of the membrane permeability, which leads to the leakage of genetic materials (DNA and RNA). Moreover, O. compactum essential oils inhibited the formation of the biofilms, a phenotype that has been known to be quorum sensing regulated.展开更多
Arc ion plating (AIP) is applied to form Ti/(Ti,Cr)N/CrN multilayer coating on the surface of 316L stainless steel (SS316L) as bipolar plates for proton exchange membrane fuel cells (PEMFCs). The characterizations of ...Arc ion plating (AIP) is applied to form Ti/(Ti,Cr)N/CrN multilayer coating on the surface of 316L stainless steel (SS316L) as bipolar plates for proton exchange membrane fuel cells (PEMFCs). The characterizations of the coating are analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Interfacial contact resistance (ICR) between the coated sample and carbon paper is 4.9 m Omega cm(2) under 150 N/cm(2), which is much lower than that of the SS316L substrate. Potentiodynamic and potentiostatic tests are performed in the simulated PEMFC working conditions to investigate the corrosion behaviors of the coated sample. Superior anticorrosion performance is observed for the coated sample, whose corrosion current density is 0.12 mu A/cm(2). Surface morphology results after corrosion tests indicate that the substrate is well protected by the multilayer coating. Performances of the single cell with the multilayer coated SS316L bipolar plate are improved significantly compared with that of the cell with the uncoated SS316L bipolar plate, presenting a great potential for PEMFC application. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.展开更多
In this study, we loaded human umbilical cord mesenchymal stem cells onto human amniotic membrane with epithelial cells to prepare nerve conduits, i.e., a relatively closed nerve regeneration chamber. After neurolysis...In this study, we loaded human umbilical cord mesenchymal stem cells onto human amniotic membrane with epithelial cells to prepare nerve conduits, i.e., a relatively closed nerve regeneration chamber. After neurolysis, the injured radial nerve was enwrapped with the prepared nerve conduit, which was fixed to the epineurium by sutures, with the cell on the inner surface of the conduit. Simultaneously, a 1.0 mL aliquot of human umbilical cord mesenchymal stem cell suspension was injected into the distal and proximal ends of the injured radial nerve with 1.0 cm intervals. A total of 1.75 x 107 cells were seeded on the amniotic membrane. In the control group, patients received only neurolysis. At 12 weeks after cell transplantation, more than 80% of patients exhibited obvious improvements in muscular strength, and touch and pain sensations. In contrast, these improvements were observed only in 55-65% of control patients. At 8 and 12 weeks, muscular electrophysiological function in the region dominated by the injured radial nerve was significantly better in the transplantation group than the control group. After cell transplantation, no immunological rejections were observed. These findings suggest that human umbilical cord mesenchymal stem cell-loaded amniotic membrane can be used for the repair of radial nerve injury.展开更多
基金supported by the National Key Research and Development Program(2022YFB4202200)the Fundamental Research Funds for the Central Universities and sponsored by Shanghai Pujiang Program(22PJ1413100)。
文摘Green hydrogen produced by water electrolysis combined with renewable energy is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.Among water electrolysis technologies,the anion exchange membrane(AEM) water electrolysis has gained intensive attention and is considered as the next-generation emerging technology due to its potential advantages,such as the use of low-cost non-noble metal catalysts,the relatively mature stack assembly process,etc.However,the AEM water electrolyzer is still in the early development stage of the kW-level stack,which is mainly attributed to severe performance decay caused by the core component,i.e.,AEM.Here,the review comprehensively presents the recent progress of advanced AEM from the view of the performance of water electrolysis cells.Herein,fundamental principles and critical components of AEM water electrolyzers are introduced,and work conditions of AEM water electrolyzers and AEM performance improvement strategies are discussed.The challenges and perspectives are also analyzed.
基金Natural Science Foundation of China (51603031)Liaoning Provincial Natural Science Foundation of China (2020-MS-087)China Scholarship Council(202306080157)。
文摘This work focuses on the development of high temperature polymer electrolyte membranes(HT-PEMs)as key materials for HT-PEM fuel cells(HT-PEMFCs).Recognizing the challenges associated with the phosphoric acid(PA) doped polybenzimidazole(PBI) membranes,including the use of carcinogenic monomers and complex synthesis procedures,this study aims to develop more cost-effective,readily synthesized,and high-performance alternatives.A series of superacid-catalyzed polyhydroxyalkylation reactions have been carefully designed between p-terphenyl and aldehydes bearing imidazole moieties,resulting in a new class of HT-PEMs.It is found that the chemical structure of aldehyde-substituted N-heterocycles significantly impacts the polymerization reaction.Specifically,the use of 1-methyl-2-imidazole-formaldehyde and 1 H-imidazole-4-formaldehyde monomers leads to the formation of high-viscosity,rigid,and ether-free polymers,denoted as PTIm-a and PTIm-b.Membranes fabricated from these polymers,due to their pendent imidazole groups,exhibit an exceptional capacity for PA absorption.Notably,PTIm-a,carrying methylimidazole moieties,demonstrates a superior chemical stability by maintaining morphology and structural stability during 350 h of Fenton testing.After being immersed in 75 wt% PA at 40℃,the PTIm-a membrane reaches a PA content of 152%,maintains a good tensile strength of 13.6 MPa,and exhibits a moderate conductivity of 50.2 mS cm^(-1) at 180℃.Under H_(2)/O_(2) operational conditions,a single cell based on the PTIm-a membrane attains a peak power density of 732 mW cm^(-2) at 180℃ without backpressure.Furthermore,the membrane demonstrates stable cycle stability over 173 h within 18 days at a current density of 200 mA cm^(-2),indicating its potential for practical application in HT-PEMFCs.This work highlights innovative strategies for the synthesis of advanced HT-PEMs,offering significant improvements in membrane properties and fuel cell performance,thus expanding the horizons of HT-PEMFC technology.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFC1605000)National Natural Science Foundation of China(Grant No.31871806)the Beijing Livestock Industry Innovation Team(BAIC05-2023)。
文摘Milk fat globule membrane(MFGM),which contains abundant glycoproteins and phospholipids,exerts beneficial effects on intestinal health and immunomodulation.The aim of this study was to evaluate the protective effects and possible underlying mechanisms of MFGM on cow’s milk allergy(CMA)in aβ-lactoglobulin(BLG)-induced allergic mice model.MFGM was supplemented to allergic mice induced by BLG at a dose of 400 mg/kg body weight.Results demonstrated that MFGM alleviated food allergy symptoms,decreased serum levels of lipopolysaccharide,pro-inflammatory cytokines,immunoglobulin(Ig)E,Ig G1,and Th2 cytokines including interleukin(IL)-4,while increased serum levels of Th1 cytokines including interferon-γand regulatory T cells(Tregs)cytokines including IL-10 and transforming growth factor-β.MFGM modulated gut microbiota and enhanced intestinal barrier of BLG-allergic mice,as evidenced by decreased relative abundance of Desulfobacterota,Rikenellaceae,Lachnospiraceae,and Desulfovibrionaceae,while increased relative abundance of Bacteroidetes,Lactobacillaceae and Muribaculaceae,and enhanced expressions of tight junction proteins including Occludin,Claudin-1 and zonula occludens-1.Furthermore,MFGM increased fecal short-chain fatty acids(SCFAs)levels,which elevated G protein-coupled receptor(GPR)43 and GPR109A expressions.The increased expressions of GPR43 and GPR109A induced CD103+dendritic cells accumulation and promoted Tregs differentiation in mesenteric lymph node to a certain extent.In summary,MFGM alleviated CMA in a BLG-induced allergic mice model through enhancing intestinal barrier and promoting Tregs differentiation,which may be correlated with SCFAs-mediated activation of GPRs.These findings suggest that MFGM may be useful as a promising functional ingredient against CMA.
文摘PPMG-based composite electrolytes were fabricated via the solution method using the polyvinyl alcohol and polyvinylpyrrolidone blend reinforced with various contents of sulfonated inorganic filler.Sulfuric acid was employed as the sulfonating agent to functionalize the external surface of the inorganic filler,i.e.,graphene oxide.The proton conductivities of the newly prepared proton exchange membranes(PEMs)were increased by increasing the temperature and content of sulfonated graphene oxide(SGO),i.e.,ranging from 0.025 S/cm to 0.060 S/cm.The induction of the optimum level of SGO is determined to be an excellent route to enhance ionic conductivity.The single-cell performance test was conducted by sandwiching the newly prepared PEMs between an anode(0.2 mg/cm^(2) Pt/Ru)and a cathode(0.2 mg/cm^(2) Pt)to prepare membrane electrode assemblies,followed by hot pressing under a pressure of approximately 100 kg/cm^(2) at 60℃for 5–10 min.The highest power densities achieved with PPMG PEMs were 14.9 and 35.60 mW/cm^(2) at 25℃and 70℃,respectively,at ambient pressure with 100%relative humidity.Results showed that the newly prepared PEMs exhibit good electrochemical performance.The results indicated that the prepared composite membrane with 6 wt%filler can be used as an alternative membrane for applications of high-performance proton exchange membrane fuel cell.
基金funded by Shaanxi Province Key Industrial Chain Project(2023-ZDLGY-24)Industrialization Project of Shaanxi Provincial Education Department(21JC018)+1 种基金Shaanxi Province Key Research and Development Program(2021ZDLGY13-02)the Open Foundation of State Key Laboratory for Advanced Metals and Materials(2022-Z01).
文摘In order to improve the performance degradation prediction accuracy of proton exchange membrane fuel cell(PEMFC),a fusion prediction method(CKDG)based on adaptive noise complete ensemble empirical mode decomposition(CEEMDAN),kernel principal component analysis(KPCA)and dual attention mechanism gated recurrent unit neural network(DA-GRU)was proposed.CEEMDAN and KPCA were used to extract the input feature data sequence,reduce the influence of random factors,and capture essential feature components to reduce the model complexity.The DA-GRU network helps to learn the feature mapping relationship of data in long time series and predict the changing trend of performance degradation data more accurately.The actual aging experimental data verify the performance of the CKDG method.The results show that under the steady-state condition of 20%training data prediction,the CKDA method can reduce the root mean square error(RMSE)by 52.7%and 34.6%,respectively,compared with the traditional LSTM and GRU neural networks.Compared with the simple DA-GRU network,RMSE is reduced by 15%,and the degree of over-fitting is reduced,which has higher accuracy.It also shows excellent prediction performance under the dynamic condition data set and has good universality.
基金financially supported by the Science&Technology Project of Beijing Education Committee(KM202210005013)National Natural Science Foundation of China(52306180)。
文摘This study used a three-dimensional numerical model of a proton exchange membrane fuel cell with five types of channels:a smooth channel(Case 1);eight rectangular baffles were arranged in the upstream(Case 2),midstream(Case 3),downstream(Case 4),and the entire cathode flow channel(Case 5)to study the effects of baffle position on mass transport,power density,net power,etc.Moreover,the effects of back pressure and humidity on the voltage were investigated.Results showed that compared to smooth channels,the oxygen and water transport facilitation at the diffusion layer-channel interface were added 11.53%-20.60%and 7.81%-9.80%at 1.68 A·cm^(-2)by adding baffles.The closer the baffles were to upstream,the higher the total oxygen flux,but the lower the flux uniformity the worse the water removal.The oxygen flux of upstream baffles was 8.14%higher than that of downstream baffles,but oxygen flux uniformity decreased by 18.96%at 1.68 A·cm^(-2).The order of water removal and voltage improvement was Case 4>Case 5>Case 3>Case 2>Case 1.Net power of Case 4 was 9.87%higher than that of the smooth channel.To the Case 4,when the cell worked under low back pressure or high humidity,the voltage increments were higher.The potential increment for the back pressure of 0 atm was 0.9%higher than that of 2 atm(1 atm=101.325 kPa).The potential increment for the humidity of 100%was 7.89%higher than that of 50%.
基金supported by the National Key Research and Development Program of China(2021YFA1101900 and 2023YFB3810100)the National Natural Science Foundation of China(82270381 and 81930052)the Major Science and Technology Special Plan Project of Yunnan Province(202302AA310045).
文摘In situ regeneration is a promising strategy for constructing tissue engineering heart valves(TEHVs).Currently,the decellularized heart valve(DHV)is extensively employed as a TEHV scaffold.Nevertheless,DHV exhibits limited blood compatibility and notable difficulties in endothelialization,resulting in thrombosis and graft failure.The red blood cell membrane(RBCM)exhibits excellent biocompatibility and prolonged circulation stability and is extensively applied in the camouflage of nanoparticles for drug delivery;however,there is no report on its application for large-scale modification of decellularized extracellular matrix(ECM).For the first time,we utilized a layer-by-layer assembling strategy to immobilize RBCM on the surface of DHV and construct an innovative TEHV scaffold.Our findings demonstrated that the scaffold significantly improved the hemocompatibility of DHV by effectively preventing plasma protein adsorption,activated platelet adhesion,and erythrocyte aggregation,and induced macrophage polarization toward the M2 phenotype in vitro.Moreover,RBCM modification significantly enhanced the mechanical properties and enzymatic stability of DHV.The rat models of subcutaneous embedding and abdominal aorta implantation showed that the scaffold regulated the polarization of macrophages into the anti-inflammatory and pro-modeling M2 phenotype and promoted endothelialization and ECM remodeling in the early stage without thrombosis and calcification.The novel TEHV exhibits excellent performance and can overcome the limitations of commonly used clinical prostheses.
基金supported by the National Natural Science Foundation of China(U22A20520)the Innovation Team Project of Modern Agricultural Industrial Technology System of Guangdong Province,China(2023KJ119)the Natural Science Foundation Program of Guangdong Province,China(2023A1515012206)。
文摘Streptococcus suis serotype 2(S.suis 2)is a zoonotic pathogen that clinically causes severe swine and human infections(such as meningitis,endocarditis,and septicemia).In order to cause widespread diseases in different organs,S.suis 2 must colonize the host,break the blood barrier,and cause exaggerated inflammation.In the last few years,most studies have focused on a single virulence factor and its influences on the host.Membrane vesicles(MVs)can be actively secreted into the extracellular environment contributing to bacteria-host interactions.Gram-negative bacteria-derived outer membrane vesicles(OMVs)were recently shown to activate host Caspase-11-mediated non-canonical inflammasome pathway via deliverance of OMV-bound lipopolysaccharide(LPS),causing host cell pyroptosis.However,little is known about the effect of the MVs from S.suis 2(Gram-positive bacteria without LPS)on cell pyroptosis.Thus,we investigated the molecular mechanism by which S.suis 2 MVs participate in endothelial cell pyroptosis.In this study,we used proteomics,electron scanning microscopy,fluorescence microscope,Western blotting,and bioassays,to investigate the MVs secreted by S.suis 2.First,we demonstrated that S.suis 2 secreted MVs with an average diameter of 72.04 nm,and 200 proteins in MVs were identified.Then,we showed that MVs were transported to cells via mainly dynamin-dependent endocytosis.The S.suis 2 MVs activated NLRP3/Caspase-1/GSDMD canonical inflammasome signaling pathway,resulting in cell pyroptosis,but it did not activate the Caspase-4/-5 pathway.More importantly,endothelial cells produce large amounts of reactive oxygen species(ROS)and lost their mitochondrial membrane potential under induction by S.suis 2 MVs.The results in this study suggest for the first time that MVs from S.suis 2 were internalized by endothelial cells via mainly dynamin-dependent endocytosis and might promote NLRP3/Caspase-1/GSDMD pathway by mitochondrial damage,which produced mtDNA and ROS under induction,leading to the pyroptosis of endothelial cells.
基金the support from the Shenzhen Science and Technology Program of China(No.JCYJ20220530161614031)National Natural Science Foundation of China(No.52471094)Shaanxi Coal Chemical Industry Technology Research Institute Co.,Ltd.
文摘In the realm of proton exchange membrane fuel cells(PEMFCs),the bipolar plates(BPs)are indispensable and serve pivotal roles in distributing reactant gases,collecting current,facilitating product water removal,and cooling the stack.Metal BPs,characterized by outstanding manufacturability,cost-effectiveness,higher power density,and mechanical strength,are emerging as viable alternatives to traditional graphite BPs.The foremost challenge for metal BPs lies in enhancing their corrosion resistance and conductivity under acidic conditions,necessitating the application of various coatings on their surfaces to ensure superior performance.This review summarizes and compares recent advancements in the research of eight distinct types of coatings for BPs in PEMFCs,including noble metal,carbide,ni-tride,and amorphous carbon(a-C)/metal compound composite coatings.The various challenges encountered in the manufacturing and fu-ture application of these coatings are also delineated.
文摘To observe the process of invasion, retina of rat was used as a model to substitute the inner limiting membrane of retina for the basement membrane. Retina invaded by esophageal carcinoma cells and B16 melanoma cells upon the inner limiting membrane was studied by scanning and transmission electron microscopy. The results showed that the inner limiting membrane was destroyed by both kinds of tumor cells. The process of destruction was followed by a series of transformations in the inner limiting membrane, i.e. folding, swelling, thickening, and granular change. The inner limiting membrane was dissolved focally as a result of transformation, and then tumor cells invaded the retina through these dissolved regions. It seems that, as a barrier, the inner limiting membrane plays a similar role as the basement membrane.
文摘With in vitro spin labeling electron spin resonance (ESR) spectroscopy, we have studied the effects of Bu Yang Huan Wu (BYHW) decoction and its effective constituents such as astragaloside IV ferulic acid, chuanxiongzine, rutin, chlorogenic acid, 9,10 dimethoxy pterocarpane 7 O β D glucoside, calycosin, formononetin, calycosin 7 O glucoside, paeoniflorin, paeonal and quercein on the cell membrane fluidity of a rat brain which was modeled after the dual cervical arteries were intercepted and released for realizing an ischemia reperfusion injury which was selected as a brain stroke model. Our results indicated that the cell membrane fluidity in the model group decreased approximately 8% compared with the control group, and after brain cells were incubatied with species, the membrane fluidity could be recovered closely to the control level depending on the BYHW decoction and its different constituents. As the membrane fluidity is a very sensitive biological index which reflectsd the cell status, our method will be useful to study the molecular mechanism of tradition Chinese medicine (TCM) and its combination recipe.
基金supported by the National Natural Science Foundation of China,Nos.81974207(to JH),82001383(to DW)the Special Clinical Research Project of Health Profession of Shanghai Municipal Health Commission,No.20204Y0076(to DW)。
文摘Upregulation of vascular endothelial growth factor A/basic fibroblast growth factor(VEGFA/b FGF)expression in the penumbra of cerebral ischemia can increase vascular volume,reduce lesion volume,and enhance neural cell proliferation and differentiation,thereby exerting neuroprotective effects.However,the beneficial effects of endogenous VEGFA/b FGF are limited as their expression is only transiently increased.In this study,we generated multilayered nanofiber membranes loaded with VEGFA/b FGF using layer-by-layer self-assembly and electrospinning techniques.We found that a membrane containing 10 layers had an ideal ultrastructure and could efficiently and stably release growth factors for more than 1 month.This 10-layered nanofiber membrane promoted brain microvascular endothelial cell tube formation and proliferation,inhibited neuronal apoptosis,upregulated the expression of tight junction proteins,and improved the viability of various cellular components of neurovascular units under conditions of oxygen/glucose deprivation.Furthermore,this nanofiber membrane decreased the expression of Janus kinase-2/signal transducer and activator of transcription-3(JAK2/STAT3),Bax/Bcl-2,and cleaved caspase-3.Therefore,this nanofiber membrane exhibits a neuroprotective effect on oxygen/glucose-deprived neurovascular units by inhibiting the JAK2/STAT3 pathway.
文摘Cell membranes play a crucial role in many biological functions of cells. A small change in the composition of cell membranes can strongly influence the functions of membrane-associated proteins, such as ion and water channels, and thus mediate the chemical and physical balance in cells. Such composition change could originate from the introduction of short-chain alcohols, or other anesthetics into membranes. In this work, we have applied sum frequency generation vibrational spectroscopy (SFG-VS), supplemented by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), to investigate interaction between methanol and 1,2-dimyristoyl-d54-sn-glycero-3-phosphocholine (d54-DMPC) lipid bilayers. Lipid's hydrocarbon interior is deuterated while its head group is hydrogenated. At the same time, CH3 symmetric stretch from methanol and lipid head amine group has different frequency, thus we can distinguish the behaviors of methanol, lipid head amine group, and lipid hydrocarbon interior. Based on the spectral feature of the bending mode of the water molecules replaced by methanol, we determined that the methanol molecules are intercalated into the region between amine and phosphate groups at the lipid hydrophilic head. The dipole of CH3 groups of methanol and lipid head, and the water O-H M1 adopt the same orientation directions. The introduction of methanol into the lipid hydrophilic head group can strongly perturb the entire length of the alkyl chains, resulting that the signals of CD2 and CD3 groups from both leaflets can not cancel each other.
基金Supported by National High Technology Research and Development Program ("863" Program) of China(No. 2006AA02A132)
文摘AIM: To establish an untransfected human corneal epithelial (HCEP) cell line and characterize its biocompatibility with denuded amniotic membrane (dAM). METHODS: The torn HCEP pieces were primarily cultured in DMEM/F12 media (pH 7.2) supplemented with 20% fetal bovine serum and other necessary factors, yielding an HCEP cell line which was its growth performance, chromosome morphology, tumorigenicity and expression of marker proteins analyzed. In addition, the biocompatibility of HCEP cells with dAM was evaluated through histological and immunocytochemistry analyses and with light, electron and slit-lamp microscopies. RESULTS: HCEP cells proliferated to confluence in 3 weeks, which have been subcultured to passage 160. A continuous untransfected HCEP cell line, designated as utHCEPC01, was established with a population doubling time of 45.42 hours as was determined at passage 100. The cells retained HCEP cell properties as were approved by chromosomal morphology and the expression of keratin 3. They, with no tumorigenicity, formed a multilayer epithelium-like structure on dAMs through proliferation and differentiation during air-liquid interface culture, maintained expression of marker proteins including keratin 3 and integrin p 1 and attached tightly to dAMs. The reconstructed HCEP was highly transparent and morphologically and structurally similar to the original. CONCLUSION: An untransfected and non-tumorigenic HCEP cell line was established in this study. The cells maintained expression of marker proteins. The cell line was biocompatible with dAM. It holds the potential of being used for in vitro reconstruction of tissue-engineered HCEP, promising for the treatment of diseases caused by corneal epithelial disorders.
基金financially supported through grants from the Guangdong Provincial Natural Science Foundation of China(No.2018A030310623)the Research Fund of University of Macao(MYRG2018-00207-ICMS and SRG2017-00095ICMS)the National Natural Science Foundation of China(No.81673627).
文摘Cell membrane coating technology is an approach to the biomimetic replication of cell membrane properties,and is an active area of ongoing research readily applicable to nanoscale biomedicine.Nanoparticles(NPs)coated with cell membranes offer an opportunity to unite natural cell membrane properties with those of the artificial inner core material.The coated NPs not only increase their biocompatibility but also achieve effective and extended circulation in vivo,allowing for the execution of targeted functions.Although cell membrane-coated NPs offer clear advantages,much work remains before they can be applied in clinical practice.In this review,we first provide a comprehensive overview of the theory of cell membrane coating technology,followed by a summary of the existing preparation and characterization techniques.Next,we focus on the functions and applications of various cell membrane types.In addition,we collate model drugs used in cell membrane coating technology,and review the patent applications related to this technology from the past 10 years.Finally,we survey future challenges and trends pertaining to this technology in an effort to provide a comprehensive overview of the future development of cell membrane coating technology.
基金financially supported by the National Natural Science Foundation of China(NSFC,Grant no.21503228)the Transformational Technologies for Clean Energy and Demonstration,Strategic Priority Research Program of the Chinese Academy of Sciences(Grant no.XDA21090203)。
文摘Fabrication of novel electrode architectures with nanostructured ultrathin catalyst layers is an effective strategy to improve catalyst utilization and enhance mass transport for polymer electrolyte membrane fuel cells (PEMFCs).Herein,we report the design and construction of a nanostructured ultrathin catalyst layer with ordered Pt nanotube arrays,which were obtained by a hard-template strategy based on ZnO,via hydrothermal synthesis and magnetron sputtering for PEMFC application.Because of the crystallographically preferential growth of Pt (111) facets,which was attributed to the structural effects of ZnO nanoarrays on the Pt nanotubes,the catalyst layers exhibit obviously higher electrochemical activity with remarkable enhancement of specific activity and mass transport compared with the state-of-the-art randomly distributed Pt/C catalyst layer.The PEMFC fabricated with the as-prepared catalyst layer composed of optimized Pt nanotubes with an average diameter of 90(±10) nm shows excellent performance with a peak power density of 6.0W/mgPt at 1 A/cm^2,which is 11.6%greater than that of the conventional Pt/C electrode.
基金the "Centre National pour la Recherche Scientifique et Technique" (CNRST) "Agence Nationale des Plantes Medicinales et Aromatiques" (ANPMA) for their funding supports
文摘The aim of this study was to investigate antibacterial activity of Origanum compactum essential oils collected at three phenological stages on Escherichia coli and Bacillus subtilis. The antibacterial activity was evaluated using the agar-well diffusion assay. The MIC and MBC values were determined using the micro-dilution assay. The investigation of the antibacterial action was carried out by the evaluation of the effect of O. compactum essential oils on the antibacterial kinetic growth, the integrity of cell membrane and permeability of the cell membrane. The anti-quorum sensing activity was tested by the inhibition of the biofilm formation. The findings of this study showed that O. compactum essential oil has potent antibacterial activities against E. coli and B. subtilis. The lowest inhibition value against B. subtilis was obtained with O. compactum essential oil at the post-flowering stage (MIC=MBC=0.0312%(v/v)). The antibacterial mechanisms of O. compactum essential oils are related to the disturbing of the cell membrane integrity and the increasing of the membrane permeability, which leads to the leakage of genetic materials (DNA and RNA). Moreover, O. compactum essential oils inhibited the formation of the biofilms, a phenotype that has been known to be quorum sensing regulated.
基金financially supported by the National Basic Research Program of China (973 Program) (no. 2012CB215500)the National Key Technology Research and Development Program of China (no. 2015BAG06B00)+1 种基金Major Program of the National Natural Science Foundation of China (no. 61433013)National Natural Science Foundation of China (no. 21206012)
文摘Arc ion plating (AIP) is applied to form Ti/(Ti,Cr)N/CrN multilayer coating on the surface of 316L stainless steel (SS316L) as bipolar plates for proton exchange membrane fuel cells (PEMFCs). The characterizations of the coating are analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Interfacial contact resistance (ICR) between the coated sample and carbon paper is 4.9 m Omega cm(2) under 150 N/cm(2), which is much lower than that of the SS316L substrate. Potentiodynamic and potentiostatic tests are performed in the simulated PEMFC working conditions to investigate the corrosion behaviors of the coated sample. Superior anticorrosion performance is observed for the coated sample, whose corrosion current density is 0.12 mu A/cm(2). Surface morphology results after corrosion tests indicate that the substrate is well protected by the multilayer coating. Performances of the single cell with the multilayer coated SS316L bipolar plate are improved significantly compared with that of the cell with the uncoated SS316L bipolar plate, presenting a great potential for PEMFC application. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
基金the Science and Technology Foundation of Shenyang in China,No.F10-217-1-00
文摘In this study, we loaded human umbilical cord mesenchymal stem cells onto human amniotic membrane with epithelial cells to prepare nerve conduits, i.e., a relatively closed nerve regeneration chamber. After neurolysis, the injured radial nerve was enwrapped with the prepared nerve conduit, which was fixed to the epineurium by sutures, with the cell on the inner surface of the conduit. Simultaneously, a 1.0 mL aliquot of human umbilical cord mesenchymal stem cell suspension was injected into the distal and proximal ends of the injured radial nerve with 1.0 cm intervals. A total of 1.75 x 107 cells were seeded on the amniotic membrane. In the control group, patients received only neurolysis. At 12 weeks after cell transplantation, more than 80% of patients exhibited obvious improvements in muscular strength, and touch and pain sensations. In contrast, these improvements were observed only in 55-65% of control patients. At 8 and 12 weeks, muscular electrophysiological function in the region dominated by the injured radial nerve was significantly better in the transplantation group than the control group. After cell transplantation, no immunological rejections were observed. These findings suggest that human umbilical cord mesenchymal stem cell-loaded amniotic membrane can be used for the repair of radial nerve injury.