The changes of photosynthetic properties and cell microstructure in peanut leaves during leaf senescence were studied with two high-yielding peanut cultivars (cv. Luhuall and Fu8707). The main results showed that duri...The changes of photosynthetic properties and cell microstructure in peanut leaves during leaf senescence were studied with two high-yielding peanut cultivars (cv. Luhuall and Fu8707). The main results showed that during the whole process of leaf growth and senescence, changes in the photosynthesis rate (Pn) and contents of chlorophyll in leaves, could be described with a parabolic function, y = A + Bx + Cx2 (where y refers to the values of the above parameters and x to the days after leaf unfolding). During peanut leaf senescence , the shape of chloroplast changed gradually from long ellipses to circles.The starch globule in chloroplast altered gradually from more and larger sizes to fewer and smaller, but the oil globule from fewer and smaller to more and larger. The grana lamellae varied progressively: from thinness and length to thickness and shortness; from ranking along the long axle direction of chloroplast to disorderly arrangment and finally blurring. At last, the membrane envelope of chloroplast broke, so the inclusion seeped out to the cell and the chloroplast broke up.展开更多
This study aimed to reconstruct a three-dimensional map of axonal mitochondria using Fiji and Neurolucida software, and to observe directly the morphology and distribution of mitochondria in axons of motor neurons in ...This study aimed to reconstruct a three-dimensional map of axonal mitochondria using Fiji and Neurolucida software, and to observe directly the morphology and distribution of mitochondria in axons of motor neurons in dorsal longitudinal flight muscles of drosophila aged 5 days and 20 days, using electron microscopy. Results indicated that there was no difference in the total area and volume of mitochondria between 5-day-old drosophila and 20-day-old drosophila in all sections, but the ratio of mitochondrial total areas to axon total areas, as well as mitochondrial density of 20-day-old drosophila, was lower than that of 5-day-old drosophila. The number of mitochondria, whose volume was less than 1 000 000 IJm3, and between 1 000 000 pm3 and 10 000 000 pm3, was higher in 20-day-old drosophila than that in 5-day-old drosophila. The number of mitochondria with a volume between 1 000 000 pm3 and 100 000 000 IJm3 was apparently higher than those with a volume less than 1 000 000 t.lm3 or larger than 100 000 000 IJm3. In addition, the number of mitochondria with a volume more than 100 000 000 tJm3 was small; however, the volume was nearly 70% of the total volume in both 5-day-old and 20-day-old drosophila. In contrast, the number of mitochondria with a volume between 1 000 000 t.Jm3 and 10 000 000 IJm3 was large, but the volume was less than 30% of the total volume. These experimental findings suggest that changes in mitochondrial morphology and number in motor neurons from the dorsal longitudinal muscle of drosophila are present during different ages.展开更多
基金supported by the Reward Fund of Outstanding Youth and Middle Age Scientist of Shandong Province(9908)the Doctor Fund of Shandong Agricultural University.
文摘The changes of photosynthetic properties and cell microstructure in peanut leaves during leaf senescence were studied with two high-yielding peanut cultivars (cv. Luhuall and Fu8707). The main results showed that during the whole process of leaf growth and senescence, changes in the photosynthesis rate (Pn) and contents of chlorophyll in leaves, could be described with a parabolic function, y = A + Bx + Cx2 (where y refers to the values of the above parameters and x to the days after leaf unfolding). During peanut leaf senescence , the shape of chloroplast changed gradually from long ellipses to circles.The starch globule in chloroplast altered gradually from more and larger sizes to fewer and smaller, but the oil globule from fewer and smaller to more and larger. The grana lamellae varied progressively: from thinness and length to thickness and shortness; from ranking along the long axle direction of chloroplast to disorderly arrangment and finally blurring. At last, the membrane envelope of chloroplast broke, so the inclusion seeped out to the cell and the chloroplast broke up.
文摘This study aimed to reconstruct a three-dimensional map of axonal mitochondria using Fiji and Neurolucida software, and to observe directly the morphology and distribution of mitochondria in axons of motor neurons in dorsal longitudinal flight muscles of drosophila aged 5 days and 20 days, using electron microscopy. Results indicated that there was no difference in the total area and volume of mitochondria between 5-day-old drosophila and 20-day-old drosophila in all sections, but the ratio of mitochondrial total areas to axon total areas, as well as mitochondrial density of 20-day-old drosophila, was lower than that of 5-day-old drosophila. The number of mitochondria, whose volume was less than 1 000 000 IJm3, and between 1 000 000 pm3 and 10 000 000 pm3, was higher in 20-day-old drosophila than that in 5-day-old drosophila. The number of mitochondria with a volume between 1 000 000 pm3 and 100 000 000 IJm3 was apparently higher than those with a volume less than 1 000 000 t.lm3 or larger than 100 000 000 IJm3. In addition, the number of mitochondria with a volume more than 100 000 000 tJm3 was small; however, the volume was nearly 70% of the total volume in both 5-day-old and 20-day-old drosophila. In contrast, the number of mitochondria with a volume between 1 000 000 t.Jm3 and 10 000 000 IJm3 was large, but the volume was less than 30% of the total volume. These experimental findings suggest that changes in mitochondrial morphology and number in motor neurons from the dorsal longitudinal muscle of drosophila are present during different ages.