BACKGROUND Serpin peptidase inhibitor clade H member 1(SERPINH1)was initially recognized as an oncogene implicated in various human malignancies.Nevertheless,the clinical relevance and functional implications of SERPI...BACKGROUND Serpin peptidase inhibitor clade H member 1(SERPINH1)was initially recognized as an oncogene implicated in various human malignancies.Nevertheless,the clinical relevance and functional implications of SERPINH1 in colorectal cancer(CRC)remain largely elusive.AIM To investigate the effects of SERPINH1 on CRC cells and its specific mechanism.METHODS Quantitative real-time polymerase chain reaction,western blotting analysis,The Cancer Genome Atlas data mining and immunohistochemistry were employed to examine SERPINH1 expression in CRC cell lines and tissues.A series of in-vitro assays were performed to demonstrate the function of SERPINH1 and its possible mechanisms in CRC.RESULTS SERPINH1 demonstrated elevated expression levels in both CRC cells and tissues,manifested at both mRNA and protein tiers.Elevated SERPINH1 levels correlated closely with advanced T stage,lymph node involvement,and distant metastasis,exhibiting a significant association with poorer overall survival among CRC patients.Subsequent investigations unveiled that SERPINH1 overexpression notably bolstered CRC cell proliferation,invasion,and migration in vitro,while conversely,SERPINH1 knockdown elicited the opposite effects.Gene set enrichment analysis underscored a correlation between SERPINH1 upregulation and genes associated with cell cycle regulation.Our findings underscored the capacity of heightened SERPINH1 levels to expedite G1/S phase cell cycle progression via phosphatidylinositol 3-kinase/AKT/mechanistic target of rapamycin pathway activation,thereby facilitating CRC cell invasion and migration.CONCLUSION These findings imply a crucial involvement of SERPINH1 in the advancement and escalation of CRC,potentially positioning it as a novel candidate for prognostic assessment and therapeutic intervention in CRC management.展开更多
AIM To establish a functional and molecular model of the intracellular pH(pH_i) regulatory mechanism in human induced pluripotent stem cells(hiPSCs).METHODS hiP SCs(HPS0077) were kindly provided by Dr. Dai from the Tr...AIM To establish a functional and molecular model of the intracellular pH(pH_i) regulatory mechanism in human induced pluripotent stem cells(hiPSCs).METHODS hiP SCs(HPS0077) were kindly provided by Dr. Dai from the Tri-Service General Hospital(IRB No. B-106-09). Changes in the pH_i were detected either by microspectrofluorimetry or by a multimode reader with a pH-sensitive fluorescent probe, BCECF, and the fluorescent ratio was calibrated by the high K^+/nigericin method. NH_4Cl and Na-acetate prepulse techniques were used to induce rapid intracellular acidosis and alkalization, respectively. The buffering power(β) was calculated from the ΔpH_i induced by perfusing different concentrations of(NH_4)_2SO_4. Western blot techniques and immunocytochemistry staining were used to detect the protein expression of pH_i regulators and pluripotency markers.RESULTS In this study, our results indicated that(1) the steadystate pH_i value was found to be 7.5 ± 0.01(n = 20) and 7.68 ± 0.01(n =20) in HEPES and 5% CO_2/HCO_3^- buffered systems, respectively, which were much greater than that in normal adult cells(7.2);(2) in a CO_2/HCO_3^--buffered system, the values of total intracellular buffering power(β) can be described by the following equation: β_(tot) = 107.79(pH_i)~2-1522.2(pH_i) + 5396.9(correlation coefficient R^2 = 0.85), in the estimated pH_i range of 7.1- 8.0;(3) the Na^+/H^+ exchanger(NHE) and the Na^+/HCO_3^- cotransporter(NBC) were found to be functionally activated for acid extrusion for pHi values less than 7.5 and 7.68, respectively;(4) V-ATPase and some other unknown Na^+-independent acid extruder(s) could only be functionally detected for pHi values less than 7.1;(5) the Cl^-/OH^- exchanger(CHE) and the Cl^- /HCO_3 anion exchanger(AE) were found to be responsible for the weakening of intracellular proton loading;(6) besides the CHE and the AE, a Cl^--independent acid loading mechanism was functionally identified; and(7) in hiPSCs, a strong positive correlation was observed between the loss of pluripotency and the weakening of the intracellular acid extrusion mechanism, which included a decrease in the steady-state pH i value and diminished the functional activity and protein expression of the NHE and the NBC.CONCLUSION For the first time, we established a functional and molecular model of a pHi regulatory mechanism and demonstrated its strong positive correlation with hiPSC pluripotency.展开更多
基金Supported by Ruian Natural Science Foundation,No.MS2021008.
文摘BACKGROUND Serpin peptidase inhibitor clade H member 1(SERPINH1)was initially recognized as an oncogene implicated in various human malignancies.Nevertheless,the clinical relevance and functional implications of SERPINH1 in colorectal cancer(CRC)remain largely elusive.AIM To investigate the effects of SERPINH1 on CRC cells and its specific mechanism.METHODS Quantitative real-time polymerase chain reaction,western blotting analysis,The Cancer Genome Atlas data mining and immunohistochemistry were employed to examine SERPINH1 expression in CRC cell lines and tissues.A series of in-vitro assays were performed to demonstrate the function of SERPINH1 and its possible mechanisms in CRC.RESULTS SERPINH1 demonstrated elevated expression levels in both CRC cells and tissues,manifested at both mRNA and protein tiers.Elevated SERPINH1 levels correlated closely with advanced T stage,lymph node involvement,and distant metastasis,exhibiting a significant association with poorer overall survival among CRC patients.Subsequent investigations unveiled that SERPINH1 overexpression notably bolstered CRC cell proliferation,invasion,and migration in vitro,while conversely,SERPINH1 knockdown elicited the opposite effects.Gene set enrichment analysis underscored a correlation between SERPINH1 upregulation and genes associated with cell cycle regulation.Our findings underscored the capacity of heightened SERPINH1 levels to expedite G1/S phase cell cycle progression via phosphatidylinositol 3-kinase/AKT/mechanistic target of rapamycin pathway activation,thereby facilitating CRC cell invasion and migration.CONCLUSION These findings imply a crucial involvement of SERPINH1 in the advancement and escalation of CRC,potentially positioning it as a novel candidate for prognostic assessment and therapeutic intervention in CRC management.
基金Supported by Ministry of Science and Technology Grants of Taiwan,No.MOST 106-2320-B-016-003-MY2(to Loh SH)and No.MOST 106-2314-B-016-037-MY3(to Tsai YT)National Defense Medical Center Grants of Taiwan,No.MAB-106-033(to Loh SH),No.MAB-105-043 and No.MAB-106-034(to Dai NZ)Teh-Tzer Study Group for Human Medical Research Foundation of Taiwan,No.A1061037 and No.A1061054(to Loh SH)
文摘AIM To establish a functional and molecular model of the intracellular pH(pH_i) regulatory mechanism in human induced pluripotent stem cells(hiPSCs).METHODS hiP SCs(HPS0077) were kindly provided by Dr. Dai from the Tri-Service General Hospital(IRB No. B-106-09). Changes in the pH_i were detected either by microspectrofluorimetry or by a multimode reader with a pH-sensitive fluorescent probe, BCECF, and the fluorescent ratio was calibrated by the high K^+/nigericin method. NH_4Cl and Na-acetate prepulse techniques were used to induce rapid intracellular acidosis and alkalization, respectively. The buffering power(β) was calculated from the ΔpH_i induced by perfusing different concentrations of(NH_4)_2SO_4. Western blot techniques and immunocytochemistry staining were used to detect the protein expression of pH_i regulators and pluripotency markers.RESULTS In this study, our results indicated that(1) the steadystate pH_i value was found to be 7.5 ± 0.01(n = 20) and 7.68 ± 0.01(n =20) in HEPES and 5% CO_2/HCO_3^- buffered systems, respectively, which were much greater than that in normal adult cells(7.2);(2) in a CO_2/HCO_3^--buffered system, the values of total intracellular buffering power(β) can be described by the following equation: β_(tot) = 107.79(pH_i)~2-1522.2(pH_i) + 5396.9(correlation coefficient R^2 = 0.85), in the estimated pH_i range of 7.1- 8.0;(3) the Na^+/H^+ exchanger(NHE) and the Na^+/HCO_3^- cotransporter(NBC) were found to be functionally activated for acid extrusion for pHi values less than 7.5 and 7.68, respectively;(4) V-ATPase and some other unknown Na^+-independent acid extruder(s) could only be functionally detected for pHi values less than 7.1;(5) the Cl^-/OH^- exchanger(CHE) and the Cl^- /HCO_3 anion exchanger(AE) were found to be responsible for the weakening of intracellular proton loading;(6) besides the CHE and the AE, a Cl^--independent acid loading mechanism was functionally identified; and(7) in hiPSCs, a strong positive correlation was observed between the loss of pluripotency and the weakening of the intracellular acid extrusion mechanism, which included a decrease in the steady-state pH i value and diminished the functional activity and protein expression of the NHE and the NBC.CONCLUSION For the first time, we established a functional and molecular model of a pHi regulatory mechanism and demonstrated its strong positive correlation with hiPSC pluripotency.