Meiosis is a highly complex process significantly influenced by transcriptional regulation.However,studies on the mechanisms that govern transcriptomic changes during meiosis,especially in prophase I,are limited.Here,...Meiosis is a highly complex process significantly influenced by transcriptional regulation.However,studies on the mechanisms that govern transcriptomic changes during meiosis,especially in prophase I,are limited.Here,we performed single-cell ATAC-seq of human testis tissues and observed reprogramming during the transition from zygotene to pachytene spermatocytes.This event,conserved in mice,involved the deactivation of genes associated with meiosis after reprogramming and the activation of those related to spermatogenesis before their functional onset.Furthermore,we identified 282 transcriptional regulators(TRs)that underwent activation or deactivation subsequent to this process.Evidence suggested that physical contact signals from Sertoli cells may regulate these TRs in spermatocytes,while secreted ENHO signals may alter metabolic patterns in these cells.Our results further indicated that defective transcriptional reprogramming may be associated with non-obstructive azoospermia(NOA).This study revealed the importance of both physical contact and secreted signals between Sertoli cells and germ cells in meiotic progression.展开更多
BACKGROUND Liver cancer is one of the deadliest malignant tumors worldwide.Immunotherapy has provided hope to patients with advanced liver cancer,but only a small fraction of patients benefit from this treatment due t...BACKGROUND Liver cancer is one of the deadliest malignant tumors worldwide.Immunotherapy has provided hope to patients with advanced liver cancer,but only a small fraction of patients benefit from this treatment due to individual differences.Identifying immune-related gene signatures in liver cancer patients not only aids physicians in cancer diagnosis but also offers personalized treatment strategies,thereby improving patient survival rates.Although several methods have been developed to predict the prognosis and immunotherapeutic efficacy in patients with liver cancer,the impact of cell-cell interactions in the tumor microenvir-onment has not been adequately considered.AIM To identify immune-related gene signals for predicting liver cancer prognosis and immunotherapy efficacy.METHODS Cell grouping and cell-cell communication analysis were performed on single-cell RNA-sequencing data to identify highly active cell groups in immune-related pathways.Highly active immune cells were identified by intersecting the highly active cell groups with B cells and T cells.The significantly differentially expressed genes between highly active immune cells and other cells were subsequently selected as features,and a least absolute shrinkage and selection operator(LASSO)regression model was constructed to screen for diagnostic-related features.Fourteen genes that were selected more than 5 times in 10 LASSO regression experiments were included in a multivariable Cox regression model.Finally,3 genes(stathmin 1,cofilin 1,and C-C chemokine ligand 5)significantly associated with survival were identified and used to construct an immune-related gene signature.RESULTS The immune-related gene signature composed of stathmin 1,cofilin 1,and C-C chemokine ligand 5 was identified through cell-cell communication.The effectiveness of the identified gene signature was validated based on experi-mental results of predictive immunotherapy response,tumor mutation burden analysis,immune cell infiltration analysis,survival analysis,and expression analysis.CONCLUSION The findings suggest that the identified gene signature may contribute to a deeper understanding of the activity patterns of immune cells in the liver tumor microenvironment,providing insights for personalized treatment strategies.展开更多
Dorsal root ganglion neurons transmit peripheral somatic information to the central nervous system,and dorsal root ganglion neuron excitability affects pain perception.Dorsal root ganglion stimulation is a new approac...Dorsal root ganglion neurons transmit peripheral somatic information to the central nervous system,and dorsal root ganglion neuron excitability affects pain perception.Dorsal root ganglion stimulation is a new approach for managing pain sensation.Knowledge of the cell-cell communication among dorsal root ganglion cells may help in the development of new pain and itch management strategies.Here,we used the single-cell RNA-sequencing(scRNA-seq)database to investigate intercellular communication networks among dorsal root ganglion cells.We collected scRNA-seq data from six samples from three studies,yielding data on a total of 17,766 cells.Based on genetic profiles,we identified satellite glial cells,Schwann cells,neurons,vascular endothelial cells,immune cells,fibroblasts,and vascular smooth muscle cells.Further analysis revealed that eight types of dorsal root ganglion neurons mediated proprioceptive,itch,touch,mechanical,heat,and cold sensations.Moreover,we predicted several distinct forms of intercellular communication among dorsal root ganglion cells,including cell-cell contact,secreted signals,extracellular matrix,and neurotransmitter-mediated signals.The data mining predicted that Mrgpra3-positive neurons robustly express the genes encoding the adenosine Adora2b(A2B)receptor and glial cell line-derived neurotrophic factor family receptor alpha 1(GFRα-1).Our immunohistochemistry results confirmed the coexpression of the A2B receptor and GFRα-1.Intrathecal injection of the A2B receptor antagonist PSB-603 effectively prevented histamine-induced scratching behaviour in a dose-dependent manner.Our results demonstrate the involvement of the A2B receptor in the modulation of itch sensation.Furthermore,our findings provide insight into dorsal root ganglion cell-cell communication patterns and mechanisms.Our results should contribute to the development of new strategies for the regulation of dorsal root ganglion excitability.展开更多
Planarians represent the most primitive bilateral triploblastic animals.Most planarian species exhibit mechanisms for whole-body regeneration,exemplified by the regeneration of their cephalic ganglion after complete e...Planarians represent the most primitive bilateral triploblastic animals.Most planarian species exhibit mechanisms for whole-body regeneration,exemplified by the regeneration of their cephalic ganglion after complete excision.Given their robust whole-body regeneration capacity,planarians have been model organisms in regenerative research for more than 240 years.Advancements in research tools and techniques have progressively elucidated the mechanisms underlying planarian regeneration.Accurate cell-cell communication is recognized as a fundamental requirement for regeneration.In recent decades,mechanisms associated with such communication have been revealed at the cellular level.Notably,stem cells(neoblasts)have been identified as the source of all new cells during planarian homeostasis and regeneration.The interplay between neoblasts and somatic cells affects the identities and proportions of various tissues during homeostasis and regeneration.Here,this review outlines key discoveries regarding communication between stem cell compartments and other cell types in planarians,as well as the impact of communication on planarian regeneration.Additionally,this review discusses the challenges and potential directions of future planarian research,emphasizing the sustained impact of this field on our understanding of animal regeneration.展开更多
A small proportion of mononuclear diploid cardiomyocytes(MNDCMs),with regeneration potential,could persist in adult mammalian heart.However,the heterogeneity of MNDCMs and changes during development remains to be illu...A small proportion of mononuclear diploid cardiomyocytes(MNDCMs),with regeneration potential,could persist in adult mammalian heart.However,the heterogeneity of MNDCMs and changes during development remains to be illuminated.To this end,12645 cardiac cells were generated from embryonic day 17.5 and postnatal days 2 and 8 mice by single-cell RNA sequencing.Three cardiac developmental paths were identified:two switching to cardiomyocytes(CM)maturation with close CM–fibroblast(FB)communications and one maintaining MNDCM status with least CM–FB communications.Proliferative MNDCMs having interactions with macrophages and non-proliferative MNDCMs(non-pMNDCMs)with minimal cell–cell communications were identified in the third path.The non-pMNDCMs possessed distinct properties:the lowest mitochondrial metabolisms,the highest glycolysis,and high expression of Myl4 and Tnni1.Single-nucleus RNA sequencing and immunohistochemical staining further proved that the Myl4^(+)Tnni1+MNDCMs persisted in embryonic and adult hearts.These MNDCMs were mapped to the heart by integrating the spatial and single-cell transcriptomic data.In conclusion,a novel non-pMNDCM subpopulation with minimal cell–cell communications was unveiled,highlighting the importance of microenvironment contribution to CM fate during maturation.These findings could improve the understanding of MNDCM heterogeneity and cardiac development,thus providing new clues for approaches to effective cardiac regeneration.展开更多
Discovering novel drugs for cancer immunotherapy requires a robust in vitro drug screening platform that allows for straightforward probing of cell-ceil communications. Here, we combined surface-enhanced Raman scatter...Discovering novel drugs for cancer immunotherapy requires a robust in vitro drug screening platform that allows for straightforward probing of cell-ceil communications. Here, we combined surface-enhanced Raman scattering (SERS) nanoprobes with microfluidic networks to monitor in situ the cancer-immune system intercellular communications. The microfluidic platform links up immune cells with cancer cells, where the cancer-cell secretions act as signaling mediators. First, gold@silver core--shell nanorods were employed to fabricate SERS immunoprobes for analysis of the signaling molecules. Multiple cancer secretions in a tumor microenvironment were quantitatively analyzed by a SERS-assisted three-dimensional (3D) barcode immunoassay with high sensitivity (1 ng/mL). Second, in an on-chip cell proliferation assay, multiple immunosuppressive proteins secreted by cancer cells were found to inhibit activation of immune cells, indicating that the platform simulates the physiological process of cancer-immune system communications. Furthermore, potential drug candidates were tested on this platform. A quantitative SERS immunoassay was performed to evaluate drug efficacy at regulating the secretion behavior of cancer cells and the activity of immune cells. This assay showed the suitability of this platform for in vitro drug screening. It is expected that the fully integrated and highly automated SERS-microfluidic platform will become a powerful analytical tool for probing intercellular communications and should accelerate the discovery and clinical validation of novel druKs.展开更多
The evolution of seeds is a major reason why flowering plants are a dominant life form on Earth.The developing seed is composed of two fertilization products,the embryo and endosperm,which are surrounded by a maternal...The evolution of seeds is a major reason why flowering plants are a dominant life form on Earth.The developing seed is composed of two fertilization products,the embryo and endosperm,which are surrounded by a maternally derived seed coat.Accumulating evidence indicates that efficient communication among all three seed components is required to ensure coordinated seed development.Cell communication within plant seeds has drawn much attention in recent years.In this study,we review current knowledge of cross-talk among the endosperm,embryo,and seed coat during seed development,and highlight recent advances in this field.展开更多
This paper is concerned with distributed Nash equi librium seeking strategies under quantized communication. In the proposed seeking strategy, a projection operator is synthesized with a gradient search method to achi...This paper is concerned with distributed Nash equi librium seeking strategies under quantized communication. In the proposed seeking strategy, a projection operator is synthesized with a gradient search method to achieve the optimization o players' objective functions while restricting their actions within required non-empty, convex and compact domains. In addition, a leader-following consensus protocol, in which quantized informa tion flows are utilized, is employed for information sharing among players. More specifically, logarithmic quantizers and uniform quantizers are investigated under both undirected and connected communication graphs and strongly connected digraphs, respec tively. Through Lyapunov stability analysis, it is shown that play ers' actions can be steered to a neighborhood of the Nash equilib rium with logarithmic and uniform quantizers, and the quanti fied convergence error depends on the parameter of the quan tizer for both undirected and directed cases. A numerical exam ple is given to verify the theoretical results.展开更多
Platooning represents one of the key features that connected automated vehicles may possess as it allows multiple automated vehicles to be maneuvered cooperatively with small headways on roads. However, a critical cha...Platooning represents one of the key features that connected automated vehicles may possess as it allows multiple automated vehicles to be maneuvered cooperatively with small headways on roads. However, a critical challenge in accomplishing automated vehicle platoons is to deal with the effects of intermittent and sporadic vehicle-to-vehicle data transmissions caused by limited wireless communication resources. This paper addresses the co-design problem of dynamic event-triggered communication scheduling and cooperative adaptive cruise control for a convoy of automated vehicles with diverse spacing policies. The central aim is to achieve automated vehicle platooning under various gap references with desired platoon stability and spacing performance requirements, while simultaneously improving communication efficiency. Toward this aim, a dynamic event-triggered scheduling mechanism is developed such that the intervehicle data transmissions are scheduled dynamically and efficiently over time. Then, a tractable co-design criterion on the existence of both the admissible event-driven cooperative adaptive cruise control law and the desired scheduling mechanism is derived. Finally, comparative simulation results are presented to substantiate the effectiveness and merits of the obtained results.展开更多
Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)transmission.Vehicular networks give a safe and more effect...Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)transmission.Vehicular networks give a safe and more effective driving experience by presenting time-sensitive and location-aware data.The communication occurs directly between V2V and Base Station(BS)units such as the Road Side Unit(RSU),named as a Vehicle to Infrastructure(V2I).However,the frequent topology alterations in VANETs generate several problems with data transmission as the vehicle velocity differs with time.Therefore,the scheme of an effectual routing protocol for reliable and stable communications is significant.Current research demonstrates that clustering is an intelligent method for effectual routing in a mobile environment.Therefore,this article presents a Falcon Optimization Algorithm-based Energy Efficient Communication Protocol for Cluster-based Routing(FOA-EECPCR)technique in VANETS.The FOA-EECPCR technique intends to group the vehicles and determine the shortest route in the VANET.To accomplish this,the FOA-EECPCR technique initially clusters the vehicles using FOA with fitness functions comprising energy,distance,and trust level.For the routing process,the Sparrow Search Algorithm(SSA)is derived with a fitness function that encompasses two variables,namely,energy and distance.A series of experiments have been conducted to exhibit the enhanced performance of the FOA-EECPCR method.The experimental outcomes demonstrate the enhanced performance of the FOA-EECPCR approach over other current methods.展开更多
Lower Earth Orbit(LEO) satellite becomes an important part of complementing terrestrial communication due to its lower orbital altitude and smaller propagation delay than Geostationary satellite. However, the LEO sate...Lower Earth Orbit(LEO) satellite becomes an important part of complementing terrestrial communication due to its lower orbital altitude and smaller propagation delay than Geostationary satellite. However, the LEO satellite communication system cannot meet the requirements of users when the satellite-terrestrial link is blocked by obstacles. To solve this problem, we introduce Intelligent reflect surface(IRS) for improving the achievable rate of terrestrial users in LEO satellite communication. We investigated joint IRS scheduling, user scheduling, power and bandwidth allocation(JIRPB) optimization algorithm for improving LEO satellite system throughput.The optimization problem of joint user scheduling and resource allocation is formulated as a non-convex optimization problem. To cope with this problem, the nonconvex optimization problem is divided into resource allocation optimization sub-problem and scheduling optimization sub-problem firstly. Second, we optimize the resource allocation sub-problem via alternating direction multiplier method(ADMM) and scheduling sub-problem via Lagrangian dual method repeatedly.Third, we prove that the proposed resource allocation algorithm based ADMM approaches sublinear convergence theoretically. Finally, we demonstrate that the proposed JIRPB optimization algorithm improves the LEO satellite communication system throughput.展开更多
Improvement of integrated battlefield situational awareness in complex environments involving dynamic factors such as restricted communications and electromagnetic interference(EMI)has become a contentious research pr...Improvement of integrated battlefield situational awareness in complex environments involving dynamic factors such as restricted communications and electromagnetic interference(EMI)has become a contentious research problem.In certain mission environments,due to the impact of many interference sources on real-time communication or mission requirements such as the need to implement communication regulations,the mission stages are represented as a dynamic combination of several communication-available and communication-unavailable stages.Furthermore,the data interaction between unmanned aerial vehicles(UAVs)can only be performed in specific communication-available stages.Traditional cooperative search algorithms cannot handle such situations well.To solve this problem,this study constructed a distributed model predictive control(DMPC)architecture for a collaborative control of UAVs and used the Voronoi diagram generation method to re-plan the search areas of all UAVs in real time to avoid repetition of search areas and UAV collisions while improving the search efficiency and safety factor.An attention mechanism ant-colony optimization(AACO)algorithm is proposed for UAV search-control decision planning.The search strategy is adaptively updated by introducing an attention mechanism for regular instruction information,a priori information,and emergent information of the mission to satisfy different search expectations to the maximum extent.Simulation results show that the proposed algorithm achieves better search performance than traditional algorithms in restricted communication constraint scenarios.展开更多
Cell-cell communication is the basis of physiological processes and cell signals.The disease occurs when the cells do not adequately communicate and the messages are blocked.With ligand-receptor interaction databases ...Cell-cell communication is the basis of physiological processes and cell signals.The disease occurs when the cells do not adequately communicate and the messages are blocked.With ligand-receptor interaction databases and single-cell RNA sequencing(scRNA-seq)databases,we can detect intercellular signaling and reconstruct the cell-cell communications among different cell types.This review summarized the computational approaches for analyzing the cell-cell communication based on scRNA-seq data and discussed its applications in carcinogenesis and COVID-19.We believe that this review will accelerate the scRNA-seq data deciphering and facilitate the cell-cell communication studies for complex physiological processes,such as carcinogenesis and SARS-CoV-2 infection.展开更多
Semantic Communication(SC)has emerged as a novel communication paradigm that provides a receiver with meaningful information extracted from the source to maximize information transmission throughput in wireless networ...Semantic Communication(SC)has emerged as a novel communication paradigm that provides a receiver with meaningful information extracted from the source to maximize information transmission throughput in wireless networks,beyond the theoretical capacity limit.Despite the extensive research on SC,there is a lack of comprehensive survey on technologies,solutions,applications,and challenges for SC.In this article,the development of SC is first reviewed and its characteristics,architecture,and advantages are summarized.Next,key technologies such as semantic extraction,semantic encoding,and semantic segmentation are discussed and their corresponding solutions in terms of efficiency,robustness,adaptability,and reliability are summarized.Applications of SC to UAV communication,remote image sensing and fusion,intelligent transportation,and healthcare are also presented and their strategies are summarized.Finally,some challenges and future research directions are presented to provide guidance for further research of SC.展开更多
The concept of semantic communication provides a novel approach for applications in scenarios with limited communication resources.In this paper,we propose an end-to-end(E2E)semantic molecular communication system,aim...The concept of semantic communication provides a novel approach for applications in scenarios with limited communication resources.In this paper,we propose an end-to-end(E2E)semantic molecular communication system,aiming to enhance the efficiency of molecular communication systems by reducing the transmitted information.Specifically,following the joint source channel coding paradigm,the network is designed to encode the task-relevant information into the concentration of the information molecules,which is robust to the degradation of the molecular communication channel.Furthermore,we propose a channel network to enable the E2E learning over the non-differentiable molecular channel.Experimental results demonstrate the superior performance of the semantic molecular communication system over the conventional methods in classification tasks.展开更多
Simultaneous lightwave information and power transfer (SLIPT), co-existing with optical wireless communication,holds an enormous potential to provide continuous charging to remote Internet of Things (IoT) devices whil...Simultaneous lightwave information and power transfer (SLIPT), co-existing with optical wireless communication,holds an enormous potential to provide continuous charging to remote Internet of Things (IoT) devices while ensuringconnectivity. Combining SLIPT with an omnidirectional receiver, we can leverage a higher power budget whilemaintaining a stable connection, a major challenge for optical wireless communication systems. Here, we design amultiplexed SLIPT-based system comprising an array of photodetectors (PDs) arranged in a 3 × 3 configuration. Thesystem enables decoding information from multiple light beams while simultaneously harvesting energy. The PDs canswiftly switch between photoconductive and photovoltaic modes to maximize information transfer rates and provideon-demand energy harvesting. Additionally, we investigated the ability to decode information and harvest energywith a particular quadrant set of PDs from the array, allowing beam tracking and spatial diversity. The design wasexplored in a smaller version for higher data rates and a bigger one for higher power harvesting. We report a selfpoweringdevice that can achieve a gross data rate of 25.7 Mbps from a single-input single-output (SISO) and an 85.2Mbps net data rate in a multiple-input multiple-output (MIMO) configuration. Under a standard AMT1.5 illumination,the device can harvest up to 87.33 mW, around twice the power needed to maintain the entire system. Our workpaves the way for deploying autonomous IoT devices in harsh environments and their potential use in spaceapplications.展开更多
Machine-to-machine (M2M) communication plays a fundamental role in autonomous IoT (Internet of Things)-based infrastructure, a vital part of the fourth industrial revolution. Machine-type communication devices(MTCDs) ...Machine-to-machine (M2M) communication plays a fundamental role in autonomous IoT (Internet of Things)-based infrastructure, a vital part of the fourth industrial revolution. Machine-type communication devices(MTCDs) regularly share extensive data without human intervention while making all types of decisions. Thesedecisions may involve controlling sensitive ventilation systems maintaining uniform temperature, live heartbeatmonitoring, and several different alert systems. Many of these devices simultaneously share data to form anautomated system. The data shared between machine-type communication devices (MTCDs) is prone to risk dueto limited computational power, internal memory, and energy capacity. Therefore, securing the data and devicesbecomes challenging due to factors such as dynamic operational environments, remoteness, harsh conditions,and areas where human physical access is difficult. One of the crucial parts of securing MTCDs and data isauthentication, where each devicemust be verified before data transmission. SeveralM2Mauthentication schemeshave been proposed in the literature, however, the literature lacks a comprehensive overview of current M2Mauthentication techniques and the challenges associated with them. To utilize a suitable authentication schemefor specific scenarios, it is important to understand the challenges associated with it. Therefore, this article fillsthis gap by reviewing the state-of-the-art research on authentication schemes in MTCDs specifically concerningapplication categories, security provisions, and performance efficiency.展开更多
Satellite communications, pivotal for global connectivity, are increasingly converging with cutting-edge mobile networks, notably 5G, B5G, and 6G. This amalgamation heralds the promise of universal, high-velocity comm...Satellite communications, pivotal for global connectivity, are increasingly converging with cutting-edge mobile networks, notably 5G, B5G, and 6G. This amalgamation heralds the promise of universal, high-velocity communication, yet it is not without its challenges. Paramount concerns encompass spectrum allocation, the harmonization of network architectures, and inherent latency issues in satellite transmissions. Potential mitigations, such as dynamic spectrum sharing and the deployment of edge computing, are explored as viable solutions. Looking ahead, the advent of quantum communications within satellite frameworks and the integration of AI spotlight promising research trajectories. These advancements aim to foster a seamless and synergistic coexistence between satellite communications and next-gen mobile networks.展开更多
This study explores the application of single photon detection(SPD)technology in underwater wireless optical communication(UWOC)and analyzes the influence of different modulation modes and error correction coding type...This study explores the application of single photon detection(SPD)technology in underwater wireless optical communication(UWOC)and analyzes the influence of different modulation modes and error correction coding types on communication performance.The study investigates the impact of on-off keying(OOK)and 2-pulse-position modulation(2-PPM)on the bit error rate(BER)in single-channel intensity and polarization multiplexing.Furthermore,it compares the error correction performance of low-density parity check(LDPC)and Reed-Solomon(RS)codes across different error correction coding types.The effects of unscattered photon ratio and depolarization ratio on BER are also verified.Finally,a UWOC system based on SPD is constructed,achieving 14.58 Mbps with polarization OOK multiplexing modulation and 4.37 Mbps with polarization 2-PPM multiplexing modulation using LDPC code error correction.展开更多
Generative artificial intelligence(AI), as an emerging paradigm in content generation, has demonstrated its great potentials in creating high-fidelity data including images, texts, and videos. Nowadays wireless networ...Generative artificial intelligence(AI), as an emerging paradigm in content generation, has demonstrated its great potentials in creating high-fidelity data including images, texts, and videos. Nowadays wireless networks and applications have been rapidly evolving from achieving “connected things” to embracing “connected intelligence”.展开更多
基金supported by the National Natural Science Foundation of China(82271645)National Key Research and Development Program of China(2021YFC2700200 to F.S.)。
文摘Meiosis is a highly complex process significantly influenced by transcriptional regulation.However,studies on the mechanisms that govern transcriptomic changes during meiosis,especially in prophase I,are limited.Here,we performed single-cell ATAC-seq of human testis tissues and observed reprogramming during the transition from zygotene to pachytene spermatocytes.This event,conserved in mice,involved the deactivation of genes associated with meiosis after reprogramming and the activation of those related to spermatogenesis before their functional onset.Furthermore,we identified 282 transcriptional regulators(TRs)that underwent activation or deactivation subsequent to this process.Evidence suggested that physical contact signals from Sertoli cells may regulate these TRs in spermatocytes,while secreted ENHO signals may alter metabolic patterns in these cells.Our results further indicated that defective transcriptional reprogramming may be associated with non-obstructive azoospermia(NOA).This study revealed the importance of both physical contact and secreted signals between Sertoli cells and germ cells in meiotic progression.
基金Supported by Scientific and Technological Project of Henan Province,No.212102210140.
文摘BACKGROUND Liver cancer is one of the deadliest malignant tumors worldwide.Immunotherapy has provided hope to patients with advanced liver cancer,but only a small fraction of patients benefit from this treatment due to individual differences.Identifying immune-related gene signatures in liver cancer patients not only aids physicians in cancer diagnosis but also offers personalized treatment strategies,thereby improving patient survival rates.Although several methods have been developed to predict the prognosis and immunotherapeutic efficacy in patients with liver cancer,the impact of cell-cell interactions in the tumor microenvir-onment has not been adequately considered.AIM To identify immune-related gene signals for predicting liver cancer prognosis and immunotherapy efficacy.METHODS Cell grouping and cell-cell communication analysis were performed on single-cell RNA-sequencing data to identify highly active cell groups in immune-related pathways.Highly active immune cells were identified by intersecting the highly active cell groups with B cells and T cells.The significantly differentially expressed genes between highly active immune cells and other cells were subsequently selected as features,and a least absolute shrinkage and selection operator(LASSO)regression model was constructed to screen for diagnostic-related features.Fourteen genes that were selected more than 5 times in 10 LASSO regression experiments were included in a multivariable Cox regression model.Finally,3 genes(stathmin 1,cofilin 1,and C-C chemokine ligand 5)significantly associated with survival were identified and used to construct an immune-related gene signature.RESULTS The immune-related gene signature composed of stathmin 1,cofilin 1,and C-C chemokine ligand 5 was identified through cell-cell communication.The effectiveness of the identified gene signature was validated based on experi-mental results of predictive immunotherapy response,tumor mutation burden analysis,immune cell infiltration analysis,survival analysis,and expression analysis.CONCLUSION The findings suggest that the identified gene signature may contribute to a deeper understanding of the activity patterns of immune cells in the liver tumor microenvironment,providing insights for personalized treatment strategies.
基金supported by the National Natural Science Foundation of China,Nos.32271042 and 31871062(to XL)。
文摘Dorsal root ganglion neurons transmit peripheral somatic information to the central nervous system,and dorsal root ganglion neuron excitability affects pain perception.Dorsal root ganglion stimulation is a new approach for managing pain sensation.Knowledge of the cell-cell communication among dorsal root ganglion cells may help in the development of new pain and itch management strategies.Here,we used the single-cell RNA-sequencing(scRNA-seq)database to investigate intercellular communication networks among dorsal root ganglion cells.We collected scRNA-seq data from six samples from three studies,yielding data on a total of 17,766 cells.Based on genetic profiles,we identified satellite glial cells,Schwann cells,neurons,vascular endothelial cells,immune cells,fibroblasts,and vascular smooth muscle cells.Further analysis revealed that eight types of dorsal root ganglion neurons mediated proprioceptive,itch,touch,mechanical,heat,and cold sensations.Moreover,we predicted several distinct forms of intercellular communication among dorsal root ganglion cells,including cell-cell contact,secreted signals,extracellular matrix,and neurotransmitter-mediated signals.The data mining predicted that Mrgpra3-positive neurons robustly express the genes encoding the adenosine Adora2b(A2B)receptor and glial cell line-derived neurotrophic factor family receptor alpha 1(GFRα-1).Our immunohistochemistry results confirmed the coexpression of the A2B receptor and GFRα-1.Intrathecal injection of the A2B receptor antagonist PSB-603 effectively prevented histamine-induced scratching behaviour in a dose-dependent manner.Our results demonstrate the involvement of the A2B receptor in the modulation of itch sensation.Furthermore,our findings provide insight into dorsal root ganglion cell-cell communication patterns and mechanisms.Our results should contribute to the development of new strategies for the regulation of dorsal root ganglion excitability.
基金supported by the Westlake Education Foundation and National Natural Science Foundation of China (32122032 and 31970750 to K.L.)。
文摘Planarians represent the most primitive bilateral triploblastic animals.Most planarian species exhibit mechanisms for whole-body regeneration,exemplified by the regeneration of their cephalic ganglion after complete excision.Given their robust whole-body regeneration capacity,planarians have been model organisms in regenerative research for more than 240 years.Advancements in research tools and techniques have progressively elucidated the mechanisms underlying planarian regeneration.Accurate cell-cell communication is recognized as a fundamental requirement for regeneration.In recent decades,mechanisms associated with such communication have been revealed at the cellular level.Notably,stem cells(neoblasts)have been identified as the source of all new cells during planarian homeostasis and regeneration.The interplay between neoblasts and somatic cells affects the identities and proportions of various tissues during homeostasis and regeneration.Here,this review outlines key discoveries regarding communication between stem cell compartments and other cell types in planarians,as well as the impact of communication on planarian regeneration.Additionally,this review discusses the challenges and potential directions of future planarian research,emphasizing the sustained impact of this field on our understanding of animal regeneration.
基金supported by the National Key Research and Development Program of China (No.2021YFA1101901)the Fundamental Research Funds for the Central Universities,HUST (No.2021GCRC073).
文摘A small proportion of mononuclear diploid cardiomyocytes(MNDCMs),with regeneration potential,could persist in adult mammalian heart.However,the heterogeneity of MNDCMs and changes during development remains to be illuminated.To this end,12645 cardiac cells were generated from embryonic day 17.5 and postnatal days 2 and 8 mice by single-cell RNA sequencing.Three cardiac developmental paths were identified:two switching to cardiomyocytes(CM)maturation with close CM–fibroblast(FB)communications and one maintaining MNDCM status with least CM–FB communications.Proliferative MNDCMs having interactions with macrophages and non-proliferative MNDCMs(non-pMNDCMs)with minimal cell–cell communications were identified in the third path.The non-pMNDCMs possessed distinct properties:the lowest mitochondrial metabolisms,the highest glycolysis,and high expression of Myl4 and Tnni1.Single-nucleus RNA sequencing and immunohistochemical staining further proved that the Myl4^(+)Tnni1+MNDCMs persisted in embryonic and adult hearts.These MNDCMs were mapped to the heart by integrating the spatial and single-cell transcriptomic data.In conclusion,a novel non-pMNDCM subpopulation with minimal cell–cell communications was unveiled,highlighting the importance of microenvironment contribution to CM fate during maturation.These findings could improve the understanding of MNDCM heterogeneity and cardiac development,thus providing new clues for approaches to effective cardiac regeneration.
文摘Discovering novel drugs for cancer immunotherapy requires a robust in vitro drug screening platform that allows for straightforward probing of cell-ceil communications. Here, we combined surface-enhanced Raman scattering (SERS) nanoprobes with microfluidic networks to monitor in situ the cancer-immune system intercellular communications. The microfluidic platform links up immune cells with cancer cells, where the cancer-cell secretions act as signaling mediators. First, gold@silver core--shell nanorods were employed to fabricate SERS immunoprobes for analysis of the signaling molecules. Multiple cancer secretions in a tumor microenvironment were quantitatively analyzed by a SERS-assisted three-dimensional (3D) barcode immunoassay with high sensitivity (1 ng/mL). Second, in an on-chip cell proliferation assay, multiple immunosuppressive proteins secreted by cancer cells were found to inhibit activation of immune cells, indicating that the platform simulates the physiological process of cancer-immune system communications. Furthermore, potential drug candidates were tested on this platform. A quantitative SERS immunoassay was performed to evaluate drug efficacy at regulating the secretion behavior of cancer cells and the activity of immune cells. This assay showed the suitability of this platform for in vitro drug screening. It is expected that the fully integrated and highly automated SERS-microfluidic platform will become a powerful analytical tool for probing intercellular communications and should accelerate the discovery and clinical validation of novel druKs.
基金funded by the grants from National Natural Science Foundation of China(31630094,31800264)。
文摘The evolution of seeds is a major reason why flowering plants are a dominant life form on Earth.The developing seed is composed of two fertilization products,the embryo and endosperm,which are surrounded by a maternally derived seed coat.Accumulating evidence indicates that efficient communication among all three seed components is required to ensure coordinated seed development.Cell communication within plant seeds has drawn much attention in recent years.In this study,we review current knowledge of cross-talk among the endosperm,embryo,and seed coat during seed development,and highlight recent advances in this field.
基金supported by the National Natural Science Foundation of China (NSFC)(62222308, 62173181, 62073171, 62221004)the Natural Science Foundation of Jiangsu Province (BK20200744, BK20220139)+3 种基金Jiangsu Specially-Appointed Professor (RK043STP19001)the Young Elite Scientists Sponsorship Program by CAST (2021QNRC001)1311 Talent Plan of Nanjing University of Posts and Telecommunicationsthe Fundamental Research Funds for the Central Universities (30920032203)。
文摘This paper is concerned with distributed Nash equi librium seeking strategies under quantized communication. In the proposed seeking strategy, a projection operator is synthesized with a gradient search method to achieve the optimization o players' objective functions while restricting their actions within required non-empty, convex and compact domains. In addition, a leader-following consensus protocol, in which quantized informa tion flows are utilized, is employed for information sharing among players. More specifically, logarithmic quantizers and uniform quantizers are investigated under both undirected and connected communication graphs and strongly connected digraphs, respec tively. Through Lyapunov stability analysis, it is shown that play ers' actions can be steered to a neighborhood of the Nash equilib rium with logarithmic and uniform quantizers, and the quanti fied convergence error depends on the parameter of the quan tizer for both undirected and directed cases. A numerical exam ple is given to verify the theoretical results.
基金supported in part by the Australian Research Council Discovery Early Career Researcher Award(DE200101128)。
文摘Platooning represents one of the key features that connected automated vehicles may possess as it allows multiple automated vehicles to be maneuvered cooperatively with small headways on roads. However, a critical challenge in accomplishing automated vehicle platoons is to deal with the effects of intermittent and sporadic vehicle-to-vehicle data transmissions caused by limited wireless communication resources. This paper addresses the co-design problem of dynamic event-triggered communication scheduling and cooperative adaptive cruise control for a convoy of automated vehicles with diverse spacing policies. The central aim is to achieve automated vehicle platooning under various gap references with desired platoon stability and spacing performance requirements, while simultaneously improving communication efficiency. Toward this aim, a dynamic event-triggered scheduling mechanism is developed such that the intervehicle data transmissions are scheduled dynamically and efficiently over time. Then, a tractable co-design criterion on the existence of both the admissible event-driven cooperative adaptive cruise control law and the desired scheduling mechanism is derived. Finally, comparative simulation results are presented to substantiate the effectiveness and merits of the obtained results.
文摘Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)transmission.Vehicular networks give a safe and more effective driving experience by presenting time-sensitive and location-aware data.The communication occurs directly between V2V and Base Station(BS)units such as the Road Side Unit(RSU),named as a Vehicle to Infrastructure(V2I).However,the frequent topology alterations in VANETs generate several problems with data transmission as the vehicle velocity differs with time.Therefore,the scheme of an effectual routing protocol for reliable and stable communications is significant.Current research demonstrates that clustering is an intelligent method for effectual routing in a mobile environment.Therefore,this article presents a Falcon Optimization Algorithm-based Energy Efficient Communication Protocol for Cluster-based Routing(FOA-EECPCR)technique in VANETS.The FOA-EECPCR technique intends to group the vehicles and determine the shortest route in the VANET.To accomplish this,the FOA-EECPCR technique initially clusters the vehicles using FOA with fitness functions comprising energy,distance,and trust level.For the routing process,the Sparrow Search Algorithm(SSA)is derived with a fitness function that encompasses two variables,namely,energy and distance.A series of experiments have been conducted to exhibit the enhanced performance of the FOA-EECPCR method.The experimental outcomes demonstrate the enhanced performance of the FOA-EECPCR approach over other current methods.
基金supported by the National Key R&D Program of China under Grant 2020YFB1807900the National Natural Science Foundation of China (NSFC) under Grant 61931005Beijing University of Posts and Telecommunications-China Mobile Research Institute Joint Innovation Center。
文摘Lower Earth Orbit(LEO) satellite becomes an important part of complementing terrestrial communication due to its lower orbital altitude and smaller propagation delay than Geostationary satellite. However, the LEO satellite communication system cannot meet the requirements of users when the satellite-terrestrial link is blocked by obstacles. To solve this problem, we introduce Intelligent reflect surface(IRS) for improving the achievable rate of terrestrial users in LEO satellite communication. We investigated joint IRS scheduling, user scheduling, power and bandwidth allocation(JIRPB) optimization algorithm for improving LEO satellite system throughput.The optimization problem of joint user scheduling and resource allocation is formulated as a non-convex optimization problem. To cope with this problem, the nonconvex optimization problem is divided into resource allocation optimization sub-problem and scheduling optimization sub-problem firstly. Second, we optimize the resource allocation sub-problem via alternating direction multiplier method(ADMM) and scheduling sub-problem via Lagrangian dual method repeatedly.Third, we prove that the proposed resource allocation algorithm based ADMM approaches sublinear convergence theoretically. Finally, we demonstrate that the proposed JIRPB optimization algorithm improves the LEO satellite communication system throughput.
基金the support of the National Natural Science Foundation of China(Grant No.62076204)the Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University(Grant No.CX2020019)in part by the China Postdoctoral Science Foundation(Grants No.2021M700337)。
文摘Improvement of integrated battlefield situational awareness in complex environments involving dynamic factors such as restricted communications and electromagnetic interference(EMI)has become a contentious research problem.In certain mission environments,due to the impact of many interference sources on real-time communication or mission requirements such as the need to implement communication regulations,the mission stages are represented as a dynamic combination of several communication-available and communication-unavailable stages.Furthermore,the data interaction between unmanned aerial vehicles(UAVs)can only be performed in specific communication-available stages.Traditional cooperative search algorithms cannot handle such situations well.To solve this problem,this study constructed a distributed model predictive control(DMPC)architecture for a collaborative control of UAVs and used the Voronoi diagram generation method to re-plan the search areas of all UAVs in real time to avoid repetition of search areas and UAV collisions while improving the search efficiency and safety factor.An attention mechanism ant-colony optimization(AACO)algorithm is proposed for UAV search-control decision planning.The search strategy is adaptively updated by introducing an attention mechanism for regular instruction information,a priori information,and emergent information of the mission to satisfy different search expectations to the maximum extent.Simulation results show that the proposed algorithm achieves better search performance than traditional algorithms in restricted communication constraint scenarios.
基金The study is sponsored by Strategic Priority Research Program of Chinese Academy of Sciences(XDB38050200,XDB38060100,XDA26040304),CAS-TWAS President's Fellowship Program(to Md Wahiduzzaman)for international Ph.D.students.
文摘Cell-cell communication is the basis of physiological processes and cell signals.The disease occurs when the cells do not adequately communicate and the messages are blocked.With ligand-receptor interaction databases and single-cell RNA sequencing(scRNA-seq)databases,we can detect intercellular signaling and reconstruct the cell-cell communications among different cell types.This review summarized the computational approaches for analyzing the cell-cell communication based on scRNA-seq data and discussed its applications in carcinogenesis and COVID-19.We believe that this review will accelerate the scRNA-seq data deciphering and facilitate the cell-cell communication studies for complex physiological processes,such as carcinogenesis and SARS-CoV-2 infection.
基金supported by the Natural Science Foundation of China under Grants 61971084,62025105,62001073,62272075the National Natural Science Foundation of Chongqing under Grants cstc2021ycjh-bgzxm0039,cstc2021jcyj-msxmX0031+1 种基金the Science and Technology Research Program for Chongqing Municipal Education Commission KJZD-M202200601the Support Program for Overseas Students to Return to China for Entrepreneurship and Innovation under Grants cx2021003,cx2021053.
文摘Semantic Communication(SC)has emerged as a novel communication paradigm that provides a receiver with meaningful information extracted from the source to maximize information transmission throughput in wireless networks,beyond the theoretical capacity limit.Despite the extensive research on SC,there is a lack of comprehensive survey on technologies,solutions,applications,and challenges for SC.In this article,the development of SC is first reviewed and its characteristics,architecture,and advantages are summarized.Next,key technologies such as semantic extraction,semantic encoding,and semantic segmentation are discussed and their corresponding solutions in terms of efficiency,robustness,adaptability,and reliability are summarized.Applications of SC to UAV communication,remote image sensing and fusion,intelligent transportation,and healthcare are also presented and their strategies are summarized.Finally,some challenges and future research directions are presented to provide guidance for further research of SC.
基金supported by the Beijing Natural Science Foundation(L211012)the Natural Science Foundation of China(62122012,62221001)the Fundamental Research Funds for the Central Universities(2022JBQY004)。
文摘The concept of semantic communication provides a novel approach for applications in scenarios with limited communication resources.In this paper,we propose an end-to-end(E2E)semantic molecular communication system,aiming to enhance the efficiency of molecular communication systems by reducing the transmitted information.Specifically,following the joint source channel coding paradigm,the network is designed to encode the task-relevant information into the concentration of the information molecules,which is robust to the degradation of the molecular communication channel.Furthermore,we propose a channel network to enable the E2E learning over the non-differentiable molecular channel.Experimental results demonstrate the superior performance of the semantic molecular communication system over the conventional methods in classification tasks.
基金the King Abdullah University of Science and Technology baseline funding and NEOM-KAUST Ocean Science and Solutions Applied Research Institute Grant Number 5476.
文摘Simultaneous lightwave information and power transfer (SLIPT), co-existing with optical wireless communication,holds an enormous potential to provide continuous charging to remote Internet of Things (IoT) devices while ensuringconnectivity. Combining SLIPT with an omnidirectional receiver, we can leverage a higher power budget whilemaintaining a stable connection, a major challenge for optical wireless communication systems. Here, we design amultiplexed SLIPT-based system comprising an array of photodetectors (PDs) arranged in a 3 × 3 configuration. Thesystem enables decoding information from multiple light beams while simultaneously harvesting energy. The PDs canswiftly switch between photoconductive and photovoltaic modes to maximize information transfer rates and provideon-demand energy harvesting. Additionally, we investigated the ability to decode information and harvest energywith a particular quadrant set of PDs from the array, allowing beam tracking and spatial diversity. The design wasexplored in a smaller version for higher data rates and a bigger one for higher power harvesting. We report a selfpoweringdevice that can achieve a gross data rate of 25.7 Mbps from a single-input single-output (SISO) and an 85.2Mbps net data rate in a multiple-input multiple-output (MIMO) configuration. Under a standard AMT1.5 illumination,the device can harvest up to 87.33 mW, around twice the power needed to maintain the entire system. Our workpaves the way for deploying autonomous IoT devices in harsh environments and their potential use in spaceapplications.
基金the Deanship of Scientific Research,Vice Presidency for Graduate Studies and Scientific Research,King Faisal University,Saudi Arabia(Grant No.GRANT5,208).
文摘Machine-to-machine (M2M) communication plays a fundamental role in autonomous IoT (Internet of Things)-based infrastructure, a vital part of the fourth industrial revolution. Machine-type communication devices(MTCDs) regularly share extensive data without human intervention while making all types of decisions. Thesedecisions may involve controlling sensitive ventilation systems maintaining uniform temperature, live heartbeatmonitoring, and several different alert systems. Many of these devices simultaneously share data to form anautomated system. The data shared between machine-type communication devices (MTCDs) is prone to risk dueto limited computational power, internal memory, and energy capacity. Therefore, securing the data and devicesbecomes challenging due to factors such as dynamic operational environments, remoteness, harsh conditions,and areas where human physical access is difficult. One of the crucial parts of securing MTCDs and data isauthentication, where each devicemust be verified before data transmission. SeveralM2Mauthentication schemeshave been proposed in the literature, however, the literature lacks a comprehensive overview of current M2Mauthentication techniques and the challenges associated with them. To utilize a suitable authentication schemefor specific scenarios, it is important to understand the challenges associated with it. Therefore, this article fillsthis gap by reviewing the state-of-the-art research on authentication schemes in MTCDs specifically concerningapplication categories, security provisions, and performance efficiency.
文摘Satellite communications, pivotal for global connectivity, are increasingly converging with cutting-edge mobile networks, notably 5G, B5G, and 6G. This amalgamation heralds the promise of universal, high-velocity communication, yet it is not without its challenges. Paramount concerns encompass spectrum allocation, the harmonization of network architectures, and inherent latency issues in satellite transmissions. Potential mitigations, such as dynamic spectrum sharing and the deployment of edge computing, are explored as viable solutions. Looking ahead, the advent of quantum communications within satellite frameworks and the integration of AI spotlight promising research trajectories. These advancements aim to foster a seamless and synergistic coexistence between satellite communications and next-gen mobile networks.
基金supported in part by the National Natural Science Foundation of China(Nos.62071441 and 61701464)in part by the Fundamental Research Funds for the Central Universities(No.202151006).
文摘This study explores the application of single photon detection(SPD)technology in underwater wireless optical communication(UWOC)and analyzes the influence of different modulation modes and error correction coding types on communication performance.The study investigates the impact of on-off keying(OOK)and 2-pulse-position modulation(2-PPM)on the bit error rate(BER)in single-channel intensity and polarization multiplexing.Furthermore,it compares the error correction performance of low-density parity check(LDPC)and Reed-Solomon(RS)codes across different error correction coding types.The effects of unscattered photon ratio and depolarization ratio on BER are also verified.Finally,a UWOC system based on SPD is constructed,achieving 14.58 Mbps with polarization OOK multiplexing modulation and 4.37 Mbps with polarization 2-PPM multiplexing modulation using LDPC code error correction.
文摘Generative artificial intelligence(AI), as an emerging paradigm in content generation, has demonstrated its great potentials in creating high-fidelity data including images, texts, and videos. Nowadays wireless networks and applications have been rapidly evolving from achieving “connected things” to embracing “connected intelligence”.