期刊文献+
共找到19,962篇文章
< 1 2 250 >
每页显示 20 50 100
CAOSA-extracted lignin improves enzymatic hydrolysis of cellulose
1
作者 Sen Ma Zheng Li +5 位作者 Jonathan Sperry Xing Tang Yong Sun Lu Lin Jian Liu Xianhai Zeng 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第7期1101-1111,共11页
The conversion of biomass into sugar platform compounds is very important for the biorefinery industry.Pretreatment is essential to the biomass of the sugar platform,however,the lignin obtained by pretreatment,as a ke... The conversion of biomass into sugar platform compounds is very important for the biorefinery industry.Pretreatment is essential to the biomass of the sugar platform,however,the lignin obtained by pretreatment,as a key part of lignocellulose,generally has a passive effect on the enzymatic hydrolysis of cellulose into sugars.In this study,p-TsOH(p-toluenesulfonic acid),DES(Deep eutectic solvent)and CAOSA(cooking with active oxygen and solid alkali)pretreatment ways were used to fraction lignin from bamboo biomass.After CAOSA treatment,the hydrolysis efficiency of the pulp was 95.57%.Moreover,the effect of different treatment methods on lignin properties was studied and the promotion effect of lignin was investigated by adding it to the cellulose enzymatic hydrolysis system.In this work,the results showed that CAOSA-extracted lignin with lower D(1.31-1.25)had a better adsorption effect on the enzyme protein.p-TsOH-extracted lignin with a larger S/G ratio enhanced the inhibition of enzymatic hydrolysis.In addition,the presence of-COOHs in lignin could reduce its inhibitory effect on cellulose saccharification. 展开更多
关键词 Biomass pretreatment CAOSA cellulose hydrolysis lignin ENZYME
下载PDF
The case-dependent lignin role in lignocellulose nanofibers preparation and functional application-A review
2
作者 Xiya Zhang Lili Zhang +1 位作者 Yimin Fan Zhiguo Wang 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第6期1553-1566,共14页
Lignocellulose nanofibers(LCNFs) as a new material is attracting extensive attention. The pretreatment and mechanical fibrillation are the two main stages involved in the preparation of LCNFs, and lignin plays the imp... Lignocellulose nanofibers(LCNFs) as a new material is attracting extensive attention. The pretreatment and mechanical fibrillation are the two main stages involved in the preparation of LCNFs, and lignin plays the important role of these two stages. This review discussed the interaction between lignin and chemicals in the pretreatment stage, and discovered the general law of the effect of lignin in the mechanical fibrillation stage.Lignin exhibits both promotion and inhibition effects on mechanical fibrillation, and the mutual competition between the two effects ultimately affects the energy consumption, morphology and yield of LCNFs. Furthermore, the recent research progress related to the contributions of lignin on the functional application of LCNFs was summarized, aiming to provide profound guidance for the preparation and application of LCNFs. 展开更多
关键词 Lignocellulose nanofibers lignin FIBRILLATION cellulose PRETREATMENT
下载PDF
Late sowing enhances lodging resistance of wheat plants by improving the biosynthesis and accumulation of lignin and cellulose 被引量:4
3
作者 DONG Xiu-chun QIAN Tai-feng +4 位作者 CHU Jin-peng ZHANG Xiu LIU Yun-jing DAI Xing-long HE Ming-rong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第5期1351-1365,共15页
Delayed sowing mitigates lodging in wheat. However, the mechanism underlying the enhanced lodging resistance in wheat has yet to be fully elucidated. Field experiments were conducted to investigate the effects of sowi... Delayed sowing mitigates lodging in wheat. However, the mechanism underlying the enhanced lodging resistance in wheat has yet to be fully elucidated. Field experiments were conducted to investigate the effects of sowing date on lignin and cellulose metabolism, stem morphological characteristics, lodging resistance, and grain yield. Seeds of Tainong 18,a winter wheat variety, were sown on October 8(normal sowing) and October 22(late sowing) during both of the 2015–2016 and 2016–2017 growing seasons. The results showed that late sowing enhanced the lodging resistance of wheat by improving the biosynthesis and accumulation of lignin and cellulose. Under late sowing, the expression levels of key genes(Ta PAL, Ta CCR, Ta COMT, TaCAD, and TaCesA1, 3, 4, 7, and 8) and enzyme activities(TaPAL and TaCAD) related to lignin and cellulose biosynthesis peaked 4–12 days earlier, and except for the TaPAL, TaCCR, and TaCesA1 genes and TaPAL, in most cases they were significantly higher than under normal sowing. As a result, lignin and cellulose accumulated quickly during the stem elongation stage. The mean and maximum accumulation rates of lignin and cellulose increased, the maximum accumulation contents of lignin and cellulose were higher, and the cellulose accumulation duration was prolonged. Consequently, the lignin/cellulose ratio and lignin content were increased from 0 day and the cellulose content was increased from 11 days after jointing onward. Our main finding is that the improved biosynthesis and accumulation of lignin and cellulose were responsible for increasing the stem-filling degree, breaking strength, and lodging resistance. The major functional genes enhancing lodging resistance in wheat that are induced by delayed sowing need to be determined. 展开更多
关键词 cellulose LATE SOWING lignin LODGING resistance wheat
下载PDF
Conversion of lignin oil and hemicellulose derivative into high-density jet fuel 被引量:4
4
作者 Sichao Yang Chengxiang Shi +4 位作者 Zhensheng Shen Lun Pan Zhenfeng Huang Xiangwen Zhang Ji-Jun Zou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期452-460,I0012,共10页
Synthesizing high-density fuel from lignocellulose can not only achieve green and low-carbon development,but also expand the feedstock source of hydrocarbon fuel.Here,we reported a route of producing high-density fuel... Synthesizing high-density fuel from lignocellulose can not only achieve green and low-carbon development,but also expand the feedstock source of hydrocarbon fuel.Here,we reported a route of producing high-density fuel from lignin oil and hemicellulose derivative cyclopentanol through alkylation and hydrodeoxygenation,HY with SiO_(2)/Al_(2)O_(3) molar ratio of 5.3 was screened as the alkylation catalyst in the reaction of model phenolic compounds and mixtures,and the reaction conditions were optimized to achieve conversion of phenolic compounds higher than 87%and selectivity of bicyclic and tricyclic products higher than 99%.Then two phenolic pools simulating the composition of two typic lignin oils were studied to validate the alkylation and analyze the competition mechanism of phenolic compounds in mixture system.Finally,real lignin oil from depolymerized of beech powder was tested,and notably80%of phenolic monomers in the oil were converted into fuel precursor.After hydrodeoxygenation,the alkylated product was converted to fuel blend with a density of 0.91 g/mL at 20℃and a freezing point lower than-60℃,very promising as high density fuel.This work provides a facile and energyefficient way of synthesizing high-performance jet fuel directly from lignocellulosic derivatives,which decreases processing energy consumption and improve the utilization rate of feedstock. 展开更多
关键词 High-density fuel BIOFUEL lignin oil ALKYLATION HYDRODEOXYGENATION
下载PDF
Dynamic Changes in Distribution of Lignin and Hemicelluloses in Cell Walls During Differentiation of Secondary Xylem in Eucommia ulmoides 被引量:5
5
作者 贺新强 崔克明 李正理 《Acta Botanica Sinica》 CSCD 2001年第9期899-904,共6页
The dynamic changes in the distribution of lignin and hemicelluloses (xylans and xyloglucans) in cell walls during the differentiation of secondary xylem in Eucommia ulmoides Oliv. were studied by means of ultraviolet... The dynamic changes in the distribution of lignin and hemicelluloses (xylans and xyloglucans) in cell walls during the differentiation of secondary xylem in Eucommia ulmoides Oliv. were studied by means of ultraviolet light microscopy and transmission electron microscopy combined with immunogold labelling. In the cambial zone and cell expansion zone, xyloglucans were localized both in the tangential and radial walls, but no xylans or lignin were found in these regions. With the formation of secondary wall S-1 layer, lignin occurred in the cell corners and middle lamella, while xylans appeared in S-1 layer, and xyloglucans were localized in the primary walls and middle lamella. In pace with the formation of secondary wall S-2 and S-3 layer, lignification extended to S-1, S-2 and S-3 layer in sequence, showing a patchy style of lignin deposition. Concurrently, xylans distributed in the whole secondary walls and xyloglucans, on the other hand, still localized in the primary walls and middle lamella. The results indicated that along with the formation and lignification of the secondary wall, great changes had taken place in the cell walls. Different parts of cell walls, such as cell corners, middle lamella, primary walls and various layers of secondary walls, had different kinds of hemicelluloses, which formed various cell wall architecture combined with lignin and other cell wall components. 展开更多
关键词 cell wall lignin hemicelluloses secondary xylem differentiation Eucommia ulmoides
下载PDF
Correlations between Quality Index and Content of Cellulose and Lignin in Upper Leaves of Fluecured Tobacco in Wulin Mountain Area
6
作者 刘晓冰 孟霖 +4 位作者 梁盟 王程栋 宋文静 郑家宝 徐宜民 《Agricultural Science & Technology》 CAS 2015年第10期2135-2140,2143,共7页
In order to study the correlations among quality indexes of tobacco leaf and contents of cellulose and lignin in upper leaves of flue-cured tobacco, 48 B2F flue-cured tobacco samples in seven counties of Wulin mountai... In order to study the correlations among quality indexes of tobacco leaf and contents of cellulose and lignin in upper leaves of flue-cured tobacco, 48 B2F flue-cured tobacco samples in seven counties of Wulin mountain area in 2011 and 2012 were used as test materials to measure the contents of cellulose and lignin in tobacco leaves and analyze the differences among varieties and between years. Meanwhile, correlations among contents of cellulose and lignin and appearance quality, physical characteristics, general chemical components and indexes of senso- ry quality were studied. The results showed that the contents of cellulose and lignin had no significant difference among years and varieties. Cellulose content was sig- nificantly correlated with some indexes of appearance qualities, physical indexes, general chemical compositions and sensory qualities. Lignin content was significantly correlated with grayness and oil content but not other quality indexes of tobacco leaf. It could be seen that the differences of cellulose and lignin contents between different years and among varieties were not significant. Cellulose content was closely correlated with quality indexes of tobacco leaf while lignin content had a small effect on tobacco leaf quality. 展开更多
关键词 Flue-cured tobacco Upper leaf cellulose lignin Correlation analysis
下载PDF
Effects of protein and lignin on cellulose and xylan anaylses of lignocellulosic biomass 被引量:4
7
作者 James MacLellan Rui Chen +3 位作者 Zhengbo Yue Robert Kraemer Yan Liu Wei Liao 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第6期1268-1275,共8页
Interactions of lignocellulosic components during fiber analysis were investigated using the highly adopted compositional analysis procedure from the National Renewable Energy Laboratory(NREL),USA.Synthetic feedstoc... Interactions of lignocellulosic components during fiber analysis were investigated using the highly adopted compositional analysis procedure from the National Renewable Energy Laboratory(NREL),USA.Synthetic feedstock samples were used to study the effects of lignin/protein,cellulose/protein,and xylan/protein interaction on carbohydrate analysis.Disregarding structural influence in the synthetic samples,lignin and protein components were the most significant(P〈0.05)factors on cellulose analysis.Measured xylan was consistent and unaffected by content variation throughout the synthetic analysis.Validation of the observed relationships from synthetic feedstocks was fulfilled using real lignocellulosic feedstocks:corn stover,poplar,and alfalfa,in which similar results have been obtained,excluding cellulose analysis of poplar under higher protein content and xylan analysis of alfalfa under higher protein content.The results elucidated that according to their protein and lignin contents of different lignocellulosic materials,accuracy of the NREL method on cellulose and xylan analyses could be improved by applying a stronger extraction step to replace water/ethanol extraction. 展开更多
关键词 lignocellulosic biomass cellulose XYLAN lignin PROTEIN
下载PDF
Predicting Levels of Crude Protein, Digestibility, Lignin and Cellulose in Temperate Pastures Using Hyperspectral Image Data 被引量:4
8
作者 Susanne Thulin Michael J. Hill +2 位作者 Alex Held Simon Jones Peter Woodgate 《American Journal of Plant Sciences》 2014年第7期997-1019,共23页
Hyperspectral sensors provide the potential for direct estimation of pasture feed quality attributes. However, remote sensing retrieval of digestibility and fibre (lignin and cellulose) content of vegetation has prove... Hyperspectral sensors provide the potential for direct estimation of pasture feed quality attributes. However, remote sensing retrieval of digestibility and fibre (lignin and cellulose) content of vegetation has proven to be challenging since tissue optical properties may not be propagated to the canopy level in mixed cover types. In this study, partial least squares regression on spectra from HyMap and Hyperion imagery were used to construct predictive models for estimation of crude protein, digestibility, lignin and cellulose concentration in temperate pastures. HyMap and Hyperion imagery and field spectra were collected over four pasture sites in southern Victoria, Australia. Co-incident field samples were analyzed with wet chemistry methods for crude protein, lignin and cellulose concentration, and digestibility was calculated from fiber determinations. Spectral data were subset based on sites and time of year of collection. Reflectance spectra were extracted from the hyperspectral imagery and collated for analysis. Six different transformations including derivatives and continuum removal were applied to the spectra to enhance absorption features sensitive to the quality attributes. The transformed reflectance spectra were then subjected to partial least squares regression, with full cross-validation “leave-one-out” technique, against the quality attributes to assess effects of the spectral transformations and post-atmospheric smoothing techniques to construct predictive models. Model performance between spectrometers, subsets and attributes were assessed using a coefficient of variation (CV), —the interquantile (IQ) range of the attribute values divided by the root mean square error of prediction (RMSEP) from the models. The predictive models with the highest CVs were obtained for digestibility for all spectra types, with HyMap the highest. However, models with slightly lower CVs were obtained for crude protein, lignin and cellulose. The spectral regions for diagnostic wavelengths fell within the chlorophyll well, red edge, and 2000-2300 nm ligno-cellulose-protein regions, with some wavelengths selected between the 1600 and 1800 nm region sensitive to nitrogen, protein, lignin and cellulose. The digestibility models with the highest CV’s had confidence intervals corresponding to ±5% digestibility, which constitutes approximately 30% of the measured range. The cellulose and lignin models with the highest CV’s also had similar confidence intervals but the slopes of the prediction lines were substantially less than 1:1 indicating reduced sensitivity. The predictive relationships established here could be applied to categorizing pasture quality into range classes and to determine whether pastures are above or below for example threshold values for livestock productivity benchmarks. 展开更多
关键词 PASTURE Quality CRUDE Protein DIGESTIBILITY lignin cellulose HYPERSPECTRAL Remote Sensing Partial-Least SQUARES Regression
下载PDF
Reinforcement of Lignin-Based Phenol-Formaldehyde Adhesive with Nano-Crystalline Cellulose (NCC): Curing Behavior and Bonding Property of Plywood 被引量:1
9
作者 Zhenbo Liu Yaolin Zhang +1 位作者 Xiangming Wang Denis Rodrigue 《Materials Sciences and Applications》 2015年第6期567-575,共9页
The curing behavior of lignin-based phenol-formaldehyde (LPF) resin with different contents of nano-crystalline cellulose (NCC) was studied by differential scanning calorimetry (DSC) at different heating rates (5, 10 ... The curing behavior of lignin-based phenol-formaldehyde (LPF) resin with different contents of nano-crystalline cellulose (NCC) was studied by differential scanning calorimetry (DSC) at different heating rates (5, 10 and 20&degC/min) and the bonding property was evaluated by the wet shear strength and wood failure of two-ply plywood panels after soaking in water (48 hours at room temperature and followed by 1-hour boiling). The test results indicated that the NCC content had little influence on the peak temperature, activation energy and the total heat of reaction of LPF resin at 5 and 10&degC/min. But at 20&degC/min, LPF0.00% (LPF resin without NCC) showed the highest total heat of reaction, while LPF0.25% (LPF resin containing 0.25% NCC content) and LPF0.50% (LPF resin containing 0.50% NCC content) gave the lowest value. The wet shear strength was affected by the NCC content to a certain extent. With regard to the results of one-way analysis of variance, the bonding quality could be improved by NCC and the optimum NCC content ranged from 0.25% to 0.50%. The wood failure was also affected by the NCC content, but the trend with respect to NCC content was not clear. 展开更多
关键词 lignin-Based Phenol-Formaldehyde Resin (LPF) NANO-CRYSTALLINE cellulose (NCC) Curing Behavior Bonding Properties PLYWOOD
下载PDF
Study on Preparation of Lignin-Containing Nanocellulose from Bamboo Parenchyma
10
作者 Wenli Gu Shiyi Zeng +4 位作者 Assima Dauletbek Bin Xu Xinzhou Wang Man Yuan Yanni Gu 《Journal of Renewable Materials》 SCIE EI 2022年第2期385-399,共15页
Bamboo vascular bundle fiber and parenchyma(BP)are separated by high-temperature treatment with saturated steam.Bamboo vascular bundle fiber is widely used in the market,but how to develop and utilize parenchyma tissu... Bamboo vascular bundle fiber and parenchyma(BP)are separated by high-temperature treatment with saturated steam.Bamboo vascular bundle fiber is widely used in the market,but how to develop and utilize parenchyma tissue is a difficult problem.The sulfated cellulose nanofibers(ANFs)were obtained by sulfating BP with a deep eutectic solvent(DES),which provided a theoretical basis for the value-added utilization of BP.Using DES as the reaction medium and reagent,the BP was grafted with a sulfonic acid group to form a gel substance in water,ANFs and nanocellulose gel were obtained by ultrasonic cell crusher.The highest yield of ANFS was 75%.The width of the ANFs was about 3 nm,and a small number of nanofiber aggregates existed at the same time.A high aspect ratio of ANFs,due to their high viscosity,has potential applications as enhancers at low concen-trations.Lewis acid(ZnCl 2)added based on binary(DES)greatly improved the thermal stability of the ANFs and maintained the crystal form of cellulose I. 展开更多
关键词 lignin NANOcellulose deep eutectic solvent BAMBOO saturated steam heat treatment PARENCHYMA
下载PDF
Isolative Synthesis and Characterization of Cellulose and Cellulose Nanocrystals from Typha angustifolia
11
作者 Lynda S. Mesoppirr Evans K. Suter +2 位作者 Wesley N. Omwoyo Nathan M. Oyaro Simphiwe M. Nelana 《Open Journal of Applied Sciences》 2024年第9期2443-2459,共17页
The application potential of cellulosic materials in natural composites and other fields needs to be explored to develop innovative, sustainable, lightweight, functional biomass materials that are also environmentally... The application potential of cellulosic materials in natural composites and other fields needs to be explored to develop innovative, sustainable, lightweight, functional biomass materials that are also environmentally friendly. This study investigated Typha angustifolia (Typha sp.) as a potential new raw material for extracting cellulose nanocrystals (CNCs) for application in wastewater treatment composites. Alkaline treatments and bleaching were used to remove cellulose from the stem fibres. The CNCs were then isolated from the recovered cellulose using acid hydrolysis. The study showed a few distinct functional groups (O-H, -C-H, =C-H and C-O, and C-O-C) in the Fourier Transform Infrared (FTIR) spectra. A scanning electron microscope (SEM) revealed the smooth surface of CPC and CNCs, which resulted from removing lignin and hemicellulose from powdered Typha angustifolia. Based on the crystalline index, the powdered Typha angustifolia, CPC, and CNCs were 42.86%, 66.94% and 77.41%. The loss of the amorphous section of the Typha sp. fibre resulted in a decrease in particle size. It may be inferred from the features of a Typha sp. CNC that CNCs may be employed as reinforcement in composites for wastewater treatment. 展开更多
关键词 Typha angustifolia cellulose Acid Hydrolysis Chemically Purified cellulose cellulose Nanocrystals
下载PDF
A kinetic study on pyrolysis and combustion characteristics of oil cakes: Effect of cellulose and lignin content 被引量:10
12
作者 Ramakrishna Gottipati Susmita Mishra 《燃料化学学报》 EI CAS CSCD 北大核心 2011年第4期265-270,共6页
Pyrolysis and combustion characteristics of three different oil cakes such as Pongamia(Pongamia Pinnata),Madhuca(Madhuca Indica),and Jatropha(Jatropha curcas) were investigated in this study.The cellulose and lignin c... Pyrolysis and combustion characteristics of three different oil cakes such as Pongamia(Pongamia Pinnata),Madhuca(Madhuca Indica),and Jatropha(Jatropha curcas) were investigated in this study.The cellulose and lignin contents of oil cakes play very important role in pyrolysis and combustion processes.A kinetic investigation of three oil cakes was carried out and major part of the samples decomposed between 210℃ and 500℃.Pyrolysis and combustion were carried out with the mixtures of cellulose and lignin chemicals in different ratios and compared with the oil cakes.The biomass with higher cellulose content showed faster rate of pyrolysis than the biomass with higher lignin content.However at higher temperatures(>600℃) all the oil cakes exhibited similar conversion at low heating rate in N2 atmosphere.Apparent activation energies increased for Madhuca and Pongamia oil cakes indicating the presence of more cellulose whereas,low activation energy of Jatropha confirms more lignin content. 展开更多
关键词 热分解 燃烧 纤维素 木质素
下载PDF
A NEW METHOD FOR MAKING CELLULOSE AND LIGNIN FROM BAMBOO BY HIGH BOILING SOLVENT 被引量:2
13
作者 XiansuCHENG WeijianCHEN YunpingCHEN HuashuFANG MianjunLI YuexianCHEN 《天津科技大学学报》 CAS 2004年第A02期67-71,共5页
In order to establish a new method for making cellulose and lignin from bamboo, a high boiling solvent (HBS) pulping process with aqueous solvcnt of 1,4-butanediol was investigated. Bamboo chips were pulped with 70~9... In order to establish a new method for making cellulose and lignin from bamboo, a high boiling solvent (HBS) pulping process with aqueous solvcnt of 1,4-butanediol was investigated. Bamboo chips were pulped with 70~90% aqueous solution of 1. 4-butanediol containing a small amount of catalyst at 180~200℃ for 30~90 min. HBS bamboo cellulose is suitable for making paper. Water-insoluble HBS lignin was separated from the liquor reaction mixture by water precipitation. Recovery high boiling solvents (RHBS) is able to recycle as a pulping solvent indicating that the HBS method is a pulping process of bamboo with saving energy, saving resources and non-pollution. HBS lignin has better chemical activity and lower ash content than lignin sulfonate. 展开更多
关键词 竹子 高沸腾溶解 木质素 1 4-丁二醇 纤维素 造纸工业
下载PDF
Recent Research Progress of Paper-Based Supercapacitors Based on Cellulose 被引量:1
14
作者 Chuanyin Xiong Tianxu Wang +2 位作者 Jing Han zhao Zhang Yonghao Ni 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期345-373,共29页
In recent years,paper-based functional materials have received extensive attention in the field of energy storage due to their advantages of rich and adjustable porous network structure and good flexibility.As an impo... In recent years,paper-based functional materials have received extensive attention in the field of energy storage due to their advantages of rich and adjustable porous network structure and good flexibility.As an important energy storage device,paper-based supercapacitors have important application prospects in many fields and have also received extensive attention from researchers in recent years.At present,researchers have modified and regulated paper-based materials by different means such as structural design and material composition to enhance their electrochemical storage capacity.The development of paper-based supercapacitors provides an important direction for the development of green and sustainable energy.Therefore,it is of great significance to summarize the relevant work of paper-based supercapacitors for their rapid development and application.In this review,the recent research progress of paper-based supercapacitors based on cellulose was summarized in terms of various cellulose-based composites,preparation skills,and electrochemical performance.Finally,some opinions on the problems in the development of this field and the future development trend were proposed.It is hoped that this review can provide valuable references and ideas for the rapid development of paper-based energy storage devices. 展开更多
关键词 cellulose electrochemical performance FLEXIBILITY paper-based supercapacitor porous
下载PDF
Sequential pyrolysis for understanding specific influence of cellulose- and lignin-derived volatiles on properties of counterpart char
15
作者 Yuewen Shao Chao Li +7 位作者 Mengjiao Fan Guoming Gao Stelgen Inkoua Lijun Zhang Shu Zhang Jun Xiang Song Hu Xun Hu 《Green Chemical Engineering》 EI CSCD 2024年第2期222-235,共14页
Interactions of cellulose-and lignin-derived intermediates have been well documented during pyrolysis of lignocellulosic biomass.The reaction network for the interactions is rather complex,as cellulose-derived volatil... Interactions of cellulose-and lignin-derived intermediates have been well documented during pyrolysis of lignocellulosic biomass.The reaction network for the interactions is rather complex,as cellulose-derived volatiles could interact/react with not only lignin-derived volatiles but also lignin-derived char and vice versa.To probe specifically the impacts of cellulose-derived volatiles on the lignin-derived char or the opposite,herein the sequential pyrolysis was performed by arranging cellulose in the upper bed with lignin in the lower bed or lignin above with cellulose below at 350 and 650℃,respectively.The results indicated that the sequential pyrolysis of cellulose→lignin or lignin→cellulose at 350℃induced increased char yield from formation of carbonaceous deposits via volatiles-char interactions.Compared with the lignin-derived volatiles,the cellulose-derived volatiles,especially aldehyde fractions,were more reactive towards the lignin-derived char at 350℃,forming oxygen-rich lignin-derived char with a higher yield,an abundance of aliphatic structures and consequently lower thermal stability.In sequential pyrolysis of lignin→cellulose,more aromatics-rich species were deposited on cellulose-derived char,but the lignin-derived volatiles were less reactive for enhancing the char yield.At 650℃,instead of polymerisation of the volatiles on the char,either the cellulose-or lignin-derived char catalyzed the cracking of the counterpart volatiles to remove the aliphatic functionalities,which made the char more aromatic and thermally more stable. 展开更多
关键词 cellulose lignin Sequential pyrolysis CHAR Interaction
原文传递
Properties of Bark Particleboard Bonded with Demethylated Lignin Adhesives Derived from Leucaena leucocephala Bark
16
作者 Rafidah Md Salim Jahimin Asik Mohd Sani Sarjadi 《Journal of Renewable Materials》 EI CAS 2024年第4期737-769,共33页
Lignin extraction from bark can maximize the utilization of biomass waste,offer cost-effectiveness,and promote environmental friendliness when employed as an adhesive material in bark particleboard production.Particle... Lignin extraction from bark can maximize the utilization of biomass waste,offer cost-effectiveness,and promote environmental friendliness when employed as an adhesive material in bark particleboard production.Particles of fine(0.2 to 1.0 mm),medium(1.0 to 2.5 mm),and coarse(2.5 to 12.0 mm)sizes,derived from the bark of Leucaena leucocephala,were hot-pressed using a heating plate at 175℃for 7 min to create single-layer particleboards measuring 320 mm×320 mm×10 mm,targeting a density of 700 kg/m^(3).Subsequently,the samples were trimmed and conditioned at 20℃and 65%relative humidity.In this study,we compared bark particleboard bonded with urea formaldehyde(UF)adhesive to fine-sized particleboard bonded with demethylated lignin adhesive.The results indicated that bark particleboards utilizing demethylated lignin and UF adhesives exhibited similar qualities.Coarse particleboard showed differences in modulus of elasticity(MOE)and modulus of rupture(MOR),while medium-sized particles exhibited significant variations in moisture content(MC)and water absorption(WA).Furthermore,the thickness swelling of coarse and medium-sized particles under wet and oven-dried conditions exhibited notable distinctions.Overall,the demethylated lignin adhesive extracted from L.leucocephala bark demonstrated similar quality to UF adhesive,with particle size correlating inversely to the strength of the bark particleboard. 展开更多
关键词 Bark particleboard properties demethylated lignin lignin adhesives Leucaena leucocephala bark particles
下载PDF
A sustainable process to 100%bio-based nylons integrated chemical and biological conversion of lignocellulose
17
作者 Ruijia Hu Ming Li +9 位作者 Tao Shen Xin Wang Zhuohua Sun Xinning Bao Kequan Chen Kai Guo Lei Ji Hanjie Ying Pingkai Ouyang Chenjie Zhu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第2期390-402,共13页
Considerable progress has been made in recent years to the development of sustainable polymers from bio-based feedstocks.In this study,100%bio-based nylons were prepared via an integrated chemical and biological proce... Considerable progress has been made in recent years to the development of sustainable polymers from bio-based feedstocks.In this study,100%bio-based nylons were prepared via an integrated chemical and biological process from lignocellulose.These novel nylons were obtained by the melt polymerization of 3-propyladipic acid derived from lignin and 1,5-pentenediamine/1,4-butanediamine derived from carbohydrate sugar.Central to the concept is a three-step noble metal free catalytic chemical funnelling sequence(Raney Ni mediated reductive catalytic fractionation-reductive funnelling-oxidative funnelling),which allowed for obtaining a single component 3-propyladipic acid from lignin with high efficiency.The structural and thermodynamic properties of the obtained nylons have been systematically investigated,and thus obtained transparent bio-based nylons exhibited higher Mw(>32,000)and excellent thermal stability(Td5%>265℃).Considering their moderate Tg and good melt strength,these transparent bio-based nylons could serve as promising functional additives or temperature-responsive materials. 展开更多
关键词 LIGNOcellulose lignin Reductive catalytic fractionation Bio-based nylon
下载PDF
Reaction pathways and selectivity in the chemo-catalytic conversion of cellulose and its derivatives to ethylene glycol:A review
18
作者 Yao Li Yuchun Zhang +2 位作者 Zhiyu Li Huiyan Zhang Peng Fu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期310-331,共22页
Biomass-to-ethylene glycol is an effective means to achieve high-value utilisation of cellulose but is hindered by low conversion efficiency and poor catalyst activity and stability.Glucose and cellobiose are derivati... Biomass-to-ethylene glycol is an effective means to achieve high-value utilisation of cellulose but is hindered by low conversion efficiency and poor catalyst activity and stability.Glucose and cellobiose are derivatives of cellulose conversion to ethylene glycol,and it is found that studying the reaction process of both can help to understand the reaction mechanism of cellulose.It is desirable to develop a reusable,highly active catalyst to convert cellulose into ethylene glycol.This ideal catalyst might have one or more active sites described the conversion steps above.Here,we discuss the catalyst development of celluloseto-ethylene glycol,including tungsten,tin,lanthanide,and other transition metal catalysts,and special attention is given to the reaction mechanism and kinetics for preparing ethylene glycol from cellulose,and the economic advantages of biomass-to-ethylene glycol are briefly introduced.The insights given in this review will facilitate further development of efficient catalysts,for addressing the global energy crisis and climate change related to the use of fossil fuels. 展开更多
关键词 Ethylene glycol cellulose Catalyst Retro-aldol condensation HYDROLYSIS Kinetics
下载PDF
Phosphorylated cellulose nanofibers establishing reliable ion-sieving barriers for durable lithium-sulfur batteries
19
作者 Zihao Li Pengsen Qian +3 位作者 Hongyang Li He Xiao Jun Chen Gaoran Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期619-628,共10页
The shuttle effect is among the most characteristic and formidable challenges in the pursuit of high-performance lithium-sulfur(Li-S)batteries.Herein,phosphorylated cellulose nanofibers(pCNF)are intentionally engineer... The shuttle effect is among the most characteristic and formidable challenges in the pursuit of high-performance lithium-sulfur(Li-S)batteries.Herein,phosphorylated cellulose nanofibers(pCNF)are intentionally engineered to establish an ion-sieving barrier against polysulfide shuttling and thereby improve battery performance.The phosphorylation,involving the grafting of phosphate groups onto the cellulose backbone,imparts an exceptional electronegativity that repels the polysulfide anions from penetrating through the separator.Moreover,the electrolyte wettability and Li^(+)transfer can be significantly promoted by the polar nature of pCNF and the facile Li^(+)disassociation.As such,rational ion management is realized,contributing to enhanced reversibility in both sulfur and lithium electrochemistry.As a result,Li-S cells equipped with the self-standing pCNF separator demonstrate outstanding long-term cyclability with a minimum fading rate of 0.013%per cycle over 1000 cycles at 1 C,and a decent areal capacity of 5.37 mA h cm^(-2) even under elevated sulfur loading of 5.0 mg cm^(-2) and limited electrolyte of 6.0 mL g^(-1).This work provides a facile and effective pathway toward the well-tamed shuttle effect and highly durable Li-S batteries. 展开更多
关键词 Lithium-sulfur batteries cellulose Phosphorylation Ion-sieving Shuttle effect
下载PDF
Nano-alumina@cellulose-coated separators with the reinforcedconcrete-like structure for high-safety lithium-ion batteries
20
作者 Zhihao Yang Li Chen +5 位作者 Jian Xue Miaomiao Su Fangdan Zhang Liangxin Ding Suqing Wang Haihui Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第4期83-93,共11页
Separators play a critical role in the safety and performance of lithium-ion batteries.However,commercial polyolefin separators are limited by their poor affinity with electrolytes and low melting points.In this work,... Separators play a critical role in the safety and performance of lithium-ion batteries.However,commercial polyolefin separators are limited by their poor affinity with electrolytes and low melting points.In this work,we constructed a reinforced-concrete-like structure by homogeneously dispersing nano-Al_(2)O_(3) and cellulose on the separators to improve their stability and performance.In this reinforcedconcrete-like structure,the cellulose is a reinforcing mesh,and the nano-Al_(2)O_(3) acts as concrete to support the separator.After constructing the reinforced-concrete-like structure,the separators exhibit good stability even at 200℃(thermal shrinkage of 0.3%),enhanced tensile strain(tensile stress of 133.4 MPa and tensile strains of 62%),and better electrolyte wettability(a contact angle of 6.5°).Combining these advantages,the cells with nano-Al_(2)O_(3)@cellulose-coated separators exhibit stable cycling performance and good rate performance.Therefore,the construction of the reinforced-concretelike structure is a promising technology to promote the application of lithium-ion batteries in extreme environments. 展开更多
关键词 Alumina Nanomaterials Lithium-ion batteries Membranes cellulose Reinforced-concrete-like structure
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部