The purpose of this study was to assess the mechanical property performance behavior of calcium sulfoaluminate(CSA)cement mortar when cured at ambient laboratory temperature of~23℃(73°F)and constant 50%relative ...The purpose of this study was to assess the mechanical property performance behavior of calcium sulfoaluminate(CSA)cement mortar when cured at ambient laboratory temperature of~23℃(73°F)and constant 50%relative humidity for an extended period of time.Four CSA cement mortars were tested.Three CSA cement mortars contained equivalent mass amounts of calcium sulfate;whereas,the fourth mortar contained double the amount of calcium sulfate.The three CSA cement mortars containing constant mass amounts of calcium sulfate differed as the specific type of calcium sulfate varied across the three formulations-one mortar containing solely anhydrite,one mortar contained half anhydrite and half gypsum while the other mortar solely contained gypsum.The fourth mortar contained double the amount of calcium sulfate when compared with the others while having a 1/1 blend of anhydrite and gypsum.Specific mortars were either tested for direct tensile strength according to ASTM C307 or for compressive strength according to ASTM C109.All tested mortars displayed statistically significant strength loss trends versus time when cured at constant 50%relative humidity.Cement paste samples were analyzed with TGA/SDT and XRD in an effort to identify microstructure changes corresponding to observed strength loss.Cement paste analysis suggests strength loss within the tested CSA cement mortars occurred as a result of ettringite decomposition.展开更多
Red mud was activated to be a mineral admixture for Portland cement by means of heating at different elevated temperatures from 400 ℃ to 700 ℃ . Results show that heating was ef-fective, among which thermal activati...Red mud was activated to be a mineral admixture for Portland cement by means of heating at different elevated temperatures from 400 ℃ to 700 ℃ . Results show that heating was ef-fective, among which thermal activation of red mud at 600 ℃ was most effective. Chemical analysis suggested that cement added with 600 ℃ thermally activated red mud yielded more calcium ion dur-ing the early stage of hydration and less at later stage in liquid phase of cement water suspension sys-tem, more combined water and less calcium hydroxide in its hardened cement paste. MIP measure-ment and SEM observation proved that the hardened cement paste had a similar total porosity and a less portion of large size pores hence a denser microstructure compared with that added with original red mud.展开更多
The compressive strength of the cement-silica fume blends with 5mass%, 10mass%, 20mass% and 30mass% of silica fume and water to binder ratio of 0.28, 0.32 and 0.36 from three days to ninety days were investigated. The...The compressive strength of the cement-silica fume blends with 5mass%, 10mass%, 20mass% and 30mass% of silica fume and water to binder ratio of 0.28, 0.32 and 0.36 from three days to ninety days were investigated. The reaction degree of silica fume was calculated from the Q4 silica tetrahedron, which was used as a probe obtained from 29 Si solid state nuclear magnetic resonance analysis. The fl at of compressive strength after 28 days disappeared for blended cement with inereasing reaction degree of silica fume. The compressive strength of the blended cement pastes approached that of P.I. cement pastes after 56 days and exceeded that after 90 days. The addition of silica fume and the w/b ratio of blends are both critical to the reaction degree of silica fume. The appropriate addition of silica fume, high silica fume reaction degree and low w/b ratio are benefi cial to the compressive strength of the cement-silica fume blends.展开更多
The effects of activated coal gangue on compressive strength, porosity and pore size distribution of hardened cement pastes were investigated. Activated coal gangue with two different kaolin contents, one higher and o...The effects of activated coal gangue on compressive strength, porosity and pore size distribution of hardened cement pastes were investigated. Activated coal gangue with two different kaolin contents, one higher and one lower, were used to partially replace Portland cement at 0%, 10%, and 30% by weight. The water to binder ratio(w/b) of 0.5 was used for all the blended cement paste mixes. Experimental results indicate that the blended cement of activated coal gangue mortar with higher kaolin mineral content has a higher compressive strength than that with lower kaolin mineral content. The porosity and pore size of blended cement mortar were significantly affected by the replacement of activated coal gangue.展开更多
The effect of hydrate microcrystals such as calcium silicate hydrates ( CSH) and ettringite on the early strength of slag cements was studied. The authors explored the possibility of improving the early strength of th...The effect of hydrate microcrystals such as calcium silicate hydrates ( CSH) and ettringite on the early strength of slag cements was studied. The authors explored the possibility of improving the early strength of the slag cement by applying crystal seed technology. It is shown that slag crystal seeds make the early strength of the cement increased due to the action of hydrate crystal seeds , which speed up the hydration of clinker minerals in the nucleation of ettringite. Therefore, the early strength of the slag cement is obviously improved.展开更多
The effect of the ground granulated blast-furnace slag ( GGBFS ) addition, the modulus n ( mole rutio of SiO2 to Na2O ) and the concentrution of sodium silicate solution on the compressive strength of the materi...The effect of the ground granulated blast-furnace slag ( GGBFS ) addition, the modulus n ( mole rutio of SiO2 to Na2O ) and the concentrution of sodium silicate solution on the compressive strength of the material, i e alkuli-activated carbonatite cemeutitious material ( AACCM for short ) was investiguted. In addition, it is found that barium chloride has a sutisfiwtory retarding effect on the setting of AACCM in which more than 20% ( by mass ) ground carbonatite was replaced by GGBFS. As a result, a cementitious material, in which ground carbonatite rock served as dominative starting material, with 3-day and 28-day compressive strength greuter them 30 MPa and 60 MPa and with continuous strength gain beyond 90 days was obtained.展开更多
The influences of silica fume and aluminum sulfate on hydration process of sulfoaluminate cement were carried out by ring flow, setting time, hydration heat, XRD and DTG analyses. In addition, mortar mixtures with dif...The influences of silica fume and aluminum sulfate on hydration process of sulfoaluminate cement were carried out by ring flow, setting time, hydration heat, XRD and DTG analyses. In addition, mortar mixtures with different functional additives have been studied through compressive strength, flexural strength, volume stability at early age and porosity characterization tests. The results show that the addition of silica fume and aluminum sulfate reduces the fluidity and shortens the setting time of sulfoaluminate cement paste, promoting hydration process and increasing hydration products at early age. In the case of appropriate proportion of mortar, the inclusion of hydroxy propyl methyl cellulose, dispersible polypropylene fiber arid organic silicon kind of defoamer can control segregation and bleeding, improve mechanical strength and volume stability at early age, and modify the pore distribution of sulfoaluminate cement mortar, respectively. The sulfoaluminate cement mortar can carry out gravitational grouting in the absence of outside force, the compressive strength of 2 hours and 24 hours have reached 26 and 58 MPa respectively, and have good micro- expansion and tiny.pore distribution characterization.展开更多
Aim To evaluate the interactive effects of different self- adhesive resin cements and tribochemical treatment on bond strength to zirconia. Methodology The following self-adhesive resin cements for bonding two zirconi...Aim To evaluate the interactive effects of different self- adhesive resin cements and tribochemical treatment on bond strength to zirconia. Methodology The following self-adhesive resin cements for bonding two zirconia blocks were evaluated: Maxcem (MA), Smartcem (SM), Rely X Unicem Aplicap (UN), Breeze (BR), Biscem (BI), Set (SE), and Clearfil SA luting (CL). The specimens were grouped according to conditioning as follows: Group 1, polishing with 600 grit polishing paper; Group 2, silica coating with 110 μm Al2O3 particles which modified with silica; and, Group 3, tribochemical treatment - silica coating + silanization. Specimens were stored in distilled water at 37℃ for 24 hours before testing shear bond strength. Results Silica coating and tribochemical treatment significantly increased the bond strength of the MA, UN, BR, B1, SE and CL to zirconia compared to #600 polishing. For both #600 polished and silica coating treatments, MDP- containing self-adhesive resin cement CL had the highest bond strengths to zirconia. Conclusion Applying silica coating and tribochemical treatment improved the bond strength of self-adhesive resin cement to zirconia, especially for CL.展开更多
The purpose of this study was to evaluate the long time antibacterial properties and shear bond strength of experimental nano silver-containing cements (NSC). Nano silver base inorganic antibacterial powder was adde...The purpose of this study was to evaluate the long time antibacterial properties and shear bond strength of experimental nano silver-containing cements (NSC). Nano silver base inorganic antibacterial powder was added to the reinforced glass ionomer cement at five different weight ratios to obtain a series of nano silver-containing cements, then the antibacterial properties of three orthodontic cement products and five NSC samples were evaluated by the direct contact test (DCT) and the agar diffusion test (ADT). The DCT, which was based on turbidness determination of bacterial growth in 96-well microtiter plates, was performed in both fresh and aged for 1 day, 1 week, 2 weeks, 3 weeks, 4 weeks, 6 weeks, and 8 weeks tested materials. The shear bond strengthes of three orthodontic cement products and five NSC samples were examined using a universal testing machine. The ADT results indicated that there were no significant differences between NSCs and ORTHO LC fresh specimens. In the DCT experiment, all fresh silver nanoparticles-containing tested samples presented powerful antibacterial properties, but they gradually lost the effective antimicrobial agents with the extension of aging time. Finally, none of the tested materials maintained its antibacterial property after aging for 8 weeks. A gradually decreasing trend of bond strength presented with the increasing incorporation of nano silver base inorganic antibacterial powder into the glass ionomer cement, even though all the tested material specimens reached the ideal bond strength range. We may conclude that NSCs can contribute to decrease the demineralization rate around brackets without compromising bond strength.展开更多
The effects of four sand contents on the compressive, flexural and splitting-tensile strength of cement mortars were evaluated. Moreover, we experimentally investigated the pore structure of cement mortar brought abou...The effects of four sand contents on the compressive, flexural and splitting-tensile strength of cement mortars were evaluated. Moreover, we experimentally investigated the pore structure of cement mortar brought about by changing the sand content and water/cement ratio. The changes in the pore structure were quantified by measuring the porosity and pore size distribution obtained by using mercury intrusion porosimetry(MIP) technique. The test results show that the strengths of cement mortar increase with increasing sand content. It is also suggested that the traditional water/cement ratio law can be applied to cement mortar with different sand contents, provided that a slight modification is introduced. Sand content is an important parameter influencing the pore structure of cement mortar. Moreover, there is a good relationship between the pore structure and strength of cement mortar.展开更多
We sought to evaluate immediate and delayed micro-tensile bond strength of Panavia F2.0 and Multilink Sprint resin cement to superficial, deep and cervical dentin. Thirty-six freshly extracted non-carious human molars...We sought to evaluate immediate and delayed micro-tensile bond strength of Panavia F2.0 and Multilink Sprint resin cement to superficial, deep and cervical dentin. Thirty-six freshly extracted non-carious human molars were sectioned in the mesiodistal direction to expose three different dentin regions including superficial dentin (1 mm below the dentine-enamel junction), deep dentin (1 mm above the highest pulp horn) and cervical dentin (0.5 mm above the cemento-enamel junction and 0.5 mm below the dentine-enamel junction). Resin cements were applied on dentin surfaces and composite blocks were luted under constant seating pressure. Each group was divided into three subgroups according to time intervals. Specimens were sectioned to obtain sticks of 1 mm2 in diameter and subjected to microtensile bond strength testing at a cross head speed of 1 mrn/min. Both resin cements showed higher micro-tensile bond strength to superficial dentin than that to deep or cervical dentin (P 〈 0.001). Micro-ten- sile bond strengths of Panavia F2.0 were higher than those of Multilink Sprint at different dentin regions (P 〈 0.001). Immediate "micro-tensile bond strengths were higher than those of delayed micro-tensile bond strengths for both resin cements (P 〈 0.001). It was concluded that resin cements with different chemical formulations and applications yield significantly different micro-tensile bond strengths to different dentin regions.展开更多
The effects of surface conditioning methods on the microtensile bond strength of Y-TZP ceramic were studied based on airborne particle abrasion and resin cements.Eight square-shaped(φ12 mm×5 mm high) Y-TZP cer...The effects of surface conditioning methods on the microtensile bond strength of Y-TZP ceramic were studied based on airborne particle abrasion and resin cements.Eight square-shaped(φ12 mm×5 mm high) Y-TZP ceramic were studied blocks(LAVATM,3M ESPE,USA) and flat occlusal dentin blocks were fabricated,pre-treated(airborne abrasion with 125μm Al2O3 particles,tribochemical silica coating with 110 μm Al2O3 particles modified by silica oxide),and bonded to each other using resin cements(Panavia F 2.0,RelyX Unicem).Thereafter the trilayer specimens were cut into microbar specimens with a bonding area of approximately 1.0±0.1 mm2 and then microtensile bond strength tests were performed.The Y-TZP ceramic following airborne particle abrasion with 125μm Al2O3 and silicoating,the surface roughness of Y-TZP and its surface silica content were confirmed to increase.Overall,the Y-TZP ceramic surface treatment with a tribochemical silica coating showed the highest microtensile bond strength of the phosphate monomer-based resin cement to Y-TZP ceramic(mean MPa=18.11±0.27(Panavia F 2.0),17.45±0.39(Rely X Unicem).In cases in which a silica coating was applied,there was no significant difference in the bonding strength depending on resin cements(P0.05).展开更多
F mineral admixture (FMA) is made of the fin- ely divided powder of natural zeolite with a bit of other agent. When FMA is used to displace about 10% (by weight) of the ordinary portland cement (OPC) (strength grade 5...F mineral admixture (FMA) is made of the fin- ely divided powder of natural zeolite with a bit of other agent. When FMA is used to displace about 10% (by weight) of the ordinary portland cement (OPC) (strength grade 575#) in concrete and mixed with a suitable amount of super plasticizer (w/c =0.31-0.35), then a high-strength concrete with compressive strength about 80 MPa and slump about 180 MM can be obtained. The strength of this concrete is about 10-15% higher than that of the corresponding concrete mixing with pure OPC, and its bleeding decreases greatly. It makes no segre- gation and separation, and thus it satisfies the requirement of pumping concrete in construction.展开更多
The viscoplasticity and compressive strength of cement with high erosion performance were studied. The influences of curing temperature and content of ground granulated blast furnace slag(GGBFS) on these performances ...The viscoplasticity and compressive strength of cement with high erosion performance were studied. The influences of curing temperature and content of ground granulated blast furnace slag(GGBFS) on these performances of the medium heat cement(including high iron and low calcium phase) were also investigated. The results indicate that the medium heat cement with high iron phase can maintain better fluidity and low temperature sensitivity than that of ordinary Portland cement at high temperature. GGBFS can play an important role in improving the fluidity and stability of the slurry, and avoid the cement setting and hardening prematurely at high temperatures. The microstructure analysis shows that a large amount of CH with layer shape appear in the slurry. The amount of this gel layer in the slurry increased as the curing temperature elevated. The layer can make the cement stone structure more denser, so that the compressive strength of samples are enhanced in the later stage. When the medium heat cement contains 40% GGBFS, the system has the best flow performance and stability under high temperature environment, and can be applied to mass concrete with excessive internal temperature.展开更多
Artificial cementation is a method commonly used to enhance and improve soil properties. This paper investigates the effect of using different amounts of cement on soil strength parameters and soil bearing capacity, u...Artificial cementation is a method commonly used to enhance and improve soil properties. This paper investigates the effect of using different amounts of cement on soil strength parameters and soil bearing capacity, using the finite element method. Experimental tests are conducted on soil samples with different amounts of Portland cement. A 2-D numerical model is created and validated using the numerical modelling software, COMSOL Multiphysics 5.6 software. The study finds that the cohesion, and the angle of the internal friction of the soil samples increase significantly as a result of adding 1%, 2%, and 4% of Portland cement. The results demonstrate that the stresses and strain under the strip footing proposed decrease by 3.24% and 7.42%. Moreover, the maximum displacement also decreases by 1.47% and 2.97%, as a result of adding cements of 2% and 4%. The bearing capacity values obtained are therefore excellent, especially when using the 2% and 4% cement. The increase identified is due to the increased values of the bearing capacity factors. It is concluded that from an economic viewpoint, using 2% cement is the best option.展开更多
Concrete is the most widely used construction material in the world. The situation in the country is not an exception as most of the infrastructures in Kenya such as buildings, bridges, concrete drainage among others,...Concrete is the most widely used construction material in the world. The situation in the country is not an exception as most of the infrastructures in Kenya such as buildings, bridges, concrete drainage among others, are constructed using concrete. Sadly, the failure of buildings and other concrete structures is very common in Kenya. Blended Portland cement type 32.5 N/mm<sup>2</sup> is the most widely used concrete binder material and is found in all parts of the country. Despite blended cement CEM 32.5 being the most commonly used cement type in construction industry in Kenya and most developing countries as a result of its low price and availability locally, its strength gain has been proven to be lower compared to when other types of cement are used due to quantity of pozzolanic material added to the blend. This paper outlines findings of an experimental investigation on the use of cypress tree extract as an accelerator to enhance rate of gain of strength on Kenyan blended cements. Six different blended cement brands locally available were used during the study. Cement chemical analysis was done using X-ray diffraction method while for the cypress extract, Atomic Absorption Spectrometer machine was used. Physical and mechanical properties were checked based on the British standards. The generation of the concrete mix design was done using the British DOE method and concrete was tested for the compressive strength at 7, 14, 21, 28, 56 and 90 days. It was observed that 15% dosage of the extract expressed as a mass percentage of the cement content gives the most improved compressive strength of concrete, 10.4% at 7 days and 9.5% at 28 days hence the optimum. It was further noted that when Cypress tree extract is used as an accelerator in the mix, the blended cement concrete achieves the design strength at 27 days saving 10 days of the project duration compared to when no accelerator is used while the ultimate strength is achieved at 67 days. The study therefore recommends the use of the cypress tree bark extract at a dosage of 15%, by mass, of the cement content as an accelerator when the structure is to be loaded at 28 days and waiting up to 39 days before loading the structure if no accelerator is used for blended cement concrete.展开更多
The effects of different post-space pretreatments on the retentive force of fiber posts cemented with a self-adhesive resin cement were investigated. Twenty-eight single-canal premolars were obturated by Resilon using...The effects of different post-space pretreatments on the retentive force of fiber posts cemented with a self-adhesive resin cement were investigated. Twenty-eight single-canal premolars were obturated by Resilon using warm vertical compaction and treated with distilled water, 2.5% NaOCl, 17% EDTA and 2.5% NaOCI; or 17% EDTA, 2.5% NaOCI, and ultrasonic agitation (U/E/N treatment). Subsequently, radicular dentin surfaces were observed under scanning electron microscopy (SEM). RelyX Fiber Posts were cemented in the treated canals by using RelyX U100, and thin-slice push-out test and SEM observation of coronal and apical regions of the specimens were performed. Data were analyzed using two-way ANOVA and Tukey's HSD post- hoc tests, and the percentage of failure type was calculated. Ultrasonic/EDTA/NaOC1 irrigation showed the maximum effectiveness in removing the smear layer and debris on the dentin surface. The apical bond strength of the experimental groups was significantly higher than that of the control group (P〈 0.05). Adhesive failure between cement and dentin was the most common mode of failure. No obvious RDIZ or resin tag was detected. Chemical irrigants facilitated the bonding of these fiber posts, and ultrasonic activation improved retention. Future studies should evaluate the effectiveness of irrigation on fiber post push-out strength in fatigue cycling condition.展开更多
In this study, we measured the resistances (test frequency 837.8 Hz) of the paste of Portland cement (PC) and phosphoaluminate cement (PALC) subjected to different types of corrosion and different numbers of freeze-th...In this study, we measured the resistances (test frequency 837.8 Hz) of the paste of Portland cement (PC) and phosphoaluminate cement (PALC) subjected to different types of corrosion and different numbers of freeze-thaw cycles. This study aimed to improve understanding of the changing characteristics of paste resistance from both micro and macro perspectives by associating changes in the paste microstructure with changes in the paste mechanical strength using X-ray diffraction (XRD), nuclear magnetic resonance (NMR), and other methods. Our results showed that changes in the paste resistance under the corrosive action of ambient media could signal the deterioration of paste structure and loss of paste strength. Continuous hydration reactions within the paste were found to render it more dense and increase its resistance. Invasion of corrosive ions was found to continue to increase paste resistance if the structure of the cement paste was not destroyed. Otherwise, paste resistance would decrease. Corrosive media were found to cause the dispersion of hydrated gels with certain degree of polymerization. Because spatial resistance was found to cause difficulty in the transportation of ion clusters, the decreases in resistance caused by long-term corrosion might be reduced due to a compensation effect. This effect was found to be related to the severity of structural damage to the paste. The magnitudes of corrosive effects of chemical media on the radicals in the cement paste structure were found to occur in the following order: SiO4 > AlO4 > PO4. The resistance and strength of the PC was always lower than those of PALC. In addition, losses of resistance and strength by PALC were mainly due to deterioration of the radical structure of AlO6.展开更多
The present work reports the effect of waste glass (WG) on the properties of Portland cement through Electron Para- magnetic Resonance (EPR) study. Cement pastes containing 0, 10, and 30% replacement of waste glass wi...The present work reports the effect of waste glass (WG) on the properties of Portland cement through Electron Para- magnetic Resonance (EPR) study. Cement pastes containing 0, 10, and 30% replacement of waste glass with cement and in a water to cement ratio of 0.4 have been prepared. The g factors of Fe(III) and Mn(II) impurities at different hydration ages have been calculated. The decreased gFe values and simultaneous increase in gMn values with increase in replacement % of WG are explained due to retardation of cement hydration.展开更多
Quality of cement is evaluated via group of tests. The most important, and close to understanding, is the compressive strength test. Recently, Egyptian standards adopted the European standards EN-196 and EN-197 for sp...Quality of cement is evaluated via group of tests. The most important, and close to understanding, is the compressive strength test. Recently, Egyptian standards adopted the European standards EN-196 and EN-197 for specifying and evaluating quality of cements. This was motivated by the large European investments in the local production of cement. The current study represents a comparative investigation, experimental and numerical, of the effect of different parameters on evaluation of compressive strength. Main parameters are shape of specimens and type of sand used for producing tested mortars. Three sets of specimens were made for ten types of cements. First set were 70.6 mm cubes molded according to old standards using single sized sand. Second group were prisms molded from standard sand (CEN sand) according to the recent standards. Third group were prisms molded from local sand sieved and regenerated to simulate same grading of CEN sand. All specimens were cured according to relevant standards and tested at different ages (2,3,7,10 and 28 days). Results show that CEM-I Type of cement does not fulfill, in all of its grades, the strength requirements of Ordinary Portland cement OPC specified in old standards. Also, the use of simulated CEN sand from local source gives strengths lower than those obtained using standard certified CEN sand. A limited number of tests were made on concrete specimens from two most common CEM-I types to investigate effect on concrete strength and results were also reported. Numerical investigation of the effect of specimen shape and type of sand on evaluation of compressive strength of mortar specimens, presented in the current study, applies one of the artificial intelligence techniques to simulate and predict the strength behavior at different ages. The Artificial Neural Network (ANN) technique is introduced in the current study to simulate the strength behavior using the available experimental data and predict the strength value at any age in the range of the experiments or in the future. The results of the numerical study showed that the ANN method with less effort was very efficiently capable of simulating the effect of specimen shape and type of sand on the strength behavior of tested mortar with different cement types.展开更多
文摘The purpose of this study was to assess the mechanical property performance behavior of calcium sulfoaluminate(CSA)cement mortar when cured at ambient laboratory temperature of~23℃(73°F)and constant 50%relative humidity for an extended period of time.Four CSA cement mortars were tested.Three CSA cement mortars contained equivalent mass amounts of calcium sulfate;whereas,the fourth mortar contained double the amount of calcium sulfate.The three CSA cement mortars containing constant mass amounts of calcium sulfate differed as the specific type of calcium sulfate varied across the three formulations-one mortar containing solely anhydrite,one mortar contained half anhydrite and half gypsum while the other mortar solely contained gypsum.The fourth mortar contained double the amount of calcium sulfate when compared with the others while having a 1/1 blend of anhydrite and gypsum.Specific mortars were either tested for direct tensile strength according to ASTM C307 or for compressive strength according to ASTM C109.All tested mortars displayed statistically significant strength loss trends versus time when cured at constant 50%relative humidity.Cement paste samples were analyzed with TGA/SDT and XRD in an effort to identify microstructure changes corresponding to observed strength loss.Cement paste analysis suggests strength loss within the tested CSA cement mortars occurred as a result of ettringite decomposition.
基金Funded by the National 973 Program of China (No. 2001CB610703)
文摘Red mud was activated to be a mineral admixture for Portland cement by means of heating at different elevated temperatures from 400 ℃ to 700 ℃ . Results show that heating was ef-fective, among which thermal activation of red mud at 600 ℃ was most effective. Chemical analysis suggested that cement added with 600 ℃ thermally activated red mud yielded more calcium ion dur-ing the early stage of hydration and less at later stage in liquid phase of cement water suspension sys-tem, more combined water and less calcium hydroxide in its hardened cement paste. MIP measure-ment and SEM observation proved that the hardened cement paste had a similar total porosity and a less portion of large size pores hence a denser microstructure compared with that added with original red mud.
基金Funded by the National Basic Research Program of China(No.2009CB623100)
文摘The compressive strength of the cement-silica fume blends with 5mass%, 10mass%, 20mass% and 30mass% of silica fume and water to binder ratio of 0.28, 0.32 and 0.36 from three days to ninety days were investigated. The reaction degree of silica fume was calculated from the Q4 silica tetrahedron, which was used as a probe obtained from 29 Si solid state nuclear magnetic resonance analysis. The fl at of compressive strength after 28 days disappeared for blended cement with inereasing reaction degree of silica fume. The compressive strength of the blended cement pastes approached that of P.I. cement pastes after 56 days and exceeded that after 90 days. The addition of silica fume and the w/b ratio of blends are both critical to the reaction degree of silica fume. The appropriate addition of silica fume, high silica fume reaction degree and low w/b ratio are benefi cial to the compressive strength of the cement-silica fume blends.
基金the National Basic Research Program of China(No.2001CB610703)the Basic Research of Preparation and Application of High Performance Cement
文摘The effects of activated coal gangue on compressive strength, porosity and pore size distribution of hardened cement pastes were investigated. Activated coal gangue with two different kaolin contents, one higher and one lower, were used to partially replace Portland cement at 0%, 10%, and 30% by weight. The water to binder ratio(w/b) of 0.5 was used for all the blended cement paste mixes. Experimental results indicate that the blended cement of activated coal gangue mortar with higher kaolin mineral content has a higher compressive strength than that with lower kaolin mineral content. The porosity and pore size of blended cement mortar were significantly affected by the replacement of activated coal gangue.
文摘The effect of hydrate microcrystals such as calcium silicate hydrates ( CSH) and ettringite on the early strength of slag cements was studied. The authors explored the possibility of improving the early strength of the slag cement by applying crystal seed technology. It is shown that slag crystal seeds make the early strength of the cement increased due to the action of hydrate crystal seeds , which speed up the hydration of clinker minerals in the nucleation of ettringite. Therefore, the early strength of the slag cement is obviously improved.
基金Supported by the National "863"Research Project of China(No.2002AA335050) ,the National Natural Science Foundation ofChina( No.50409011) and the High-level University ConstructionProject of South China University of Technology (No.B09-224)
文摘The effect of the ground granulated blast-furnace slag ( GGBFS ) addition, the modulus n ( mole rutio of SiO2 to Na2O ) and the concentrution of sodium silicate solution on the compressive strength of the material, i e alkuli-activated carbonatite cemeutitious material ( AACCM for short ) was investiguted. In addition, it is found that barium chloride has a sutisfiwtory retarding effect on the setting of AACCM in which more than 20% ( by mass ) ground carbonatite was replaced by GGBFS. As a result, a cementitious material, in which ground carbonatite rock served as dominative starting material, with 3-day and 28-day compressive strength greuter them 30 MPa and 60 MPa and with continuous strength gain beyond 90 days was obtained.
基金Funded by the National Natural Science Foundation of China(No.51178363)the Major State Basic Research Development Program of China("973" Program)(No.2009CB23201-1)
文摘The influences of silica fume and aluminum sulfate on hydration process of sulfoaluminate cement were carried out by ring flow, setting time, hydration heat, XRD and DTG analyses. In addition, mortar mixtures with different functional additives have been studied through compressive strength, flexural strength, volume stability at early age and porosity characterization tests. The results show that the addition of silica fume and aluminum sulfate reduces the fluidity and shortens the setting time of sulfoaluminate cement paste, promoting hydration process and increasing hydration products at early age. In the case of appropriate proportion of mortar, the inclusion of hydroxy propyl methyl cellulose, dispersible polypropylene fiber arid organic silicon kind of defoamer can control segregation and bleeding, improve mechanical strength and volume stability at early age, and modify the pore distribution of sulfoaluminate cement mortar, respectively. The sulfoaluminate cement mortar can carry out gravitational grouting in the absence of outside force, the compressive strength of 2 hours and 24 hours have reached 26 and 58 MPa respectively, and have good micro- expansion and tiny.pore distribution characterization.
文摘Aim To evaluate the interactive effects of different self- adhesive resin cements and tribochemical treatment on bond strength to zirconia. Methodology The following self-adhesive resin cements for bonding two zirconia blocks were evaluated: Maxcem (MA), Smartcem (SM), Rely X Unicem Aplicap (UN), Breeze (BR), Biscem (BI), Set (SE), and Clearfil SA luting (CL). The specimens were grouped according to conditioning as follows: Group 1, polishing with 600 grit polishing paper; Group 2, silica coating with 110 μm Al2O3 particles which modified with silica; and, Group 3, tribochemical treatment - silica coating + silanization. Specimens were stored in distilled water at 37℃ for 24 hours before testing shear bond strength. Results Silica coating and tribochemical treatment significantly increased the bond strength of the MA, UN, BR, B1, SE and CL to zirconia compared to #600 polishing. For both #600 polished and silica coating treatments, MDP- containing self-adhesive resin cement CL had the highest bond strengths to zirconia. Conclusion Applying silica coating and tribochemical treatment improved the bond strength of self-adhesive resin cement to zirconia, especially for CL.
基金Funded by the Natural Science Foundation of Hubei Province(No.2012FFB04416)
文摘The purpose of this study was to evaluate the long time antibacterial properties and shear bond strength of experimental nano silver-containing cements (NSC). Nano silver base inorganic antibacterial powder was added to the reinforced glass ionomer cement at five different weight ratios to obtain a series of nano silver-containing cements, then the antibacterial properties of three orthodontic cement products and five NSC samples were evaluated by the direct contact test (DCT) and the agar diffusion test (ADT). The DCT, which was based on turbidness determination of bacterial growth in 96-well microtiter plates, was performed in both fresh and aged for 1 day, 1 week, 2 weeks, 3 weeks, 4 weeks, 6 weeks, and 8 weeks tested materials. The shear bond strengthes of three orthodontic cement products and five NSC samples were examined using a universal testing machine. The ADT results indicated that there were no significant differences between NSCs and ORTHO LC fresh specimens. In the DCT experiment, all fresh silver nanoparticles-containing tested samples presented powerful antibacterial properties, but they gradually lost the effective antimicrobial agents with the extension of aging time. Finally, none of the tested materials maintained its antibacterial property after aging for 8 weeks. A gradually decreasing trend of bond strength presented with the increasing incorporation of nano silver base inorganic antibacterial powder into the glass ionomer cement, even though all the tested material specimens reached the ideal bond strength range. We may conclude that NSCs can contribute to decrease the demineralization rate around brackets without compromising bond strength.
基金Founded by the National Natural Science Foundation of China(Nos.51279054 and 51279052)
文摘The effects of four sand contents on the compressive, flexural and splitting-tensile strength of cement mortars were evaluated. Moreover, we experimentally investigated the pore structure of cement mortar brought about by changing the sand content and water/cement ratio. The changes in the pore structure were quantified by measuring the porosity and pore size distribution obtained by using mercury intrusion porosimetry(MIP) technique. The test results show that the strengths of cement mortar increase with increasing sand content. It is also suggested that the traditional water/cement ratio law can be applied to cement mortar with different sand contents, provided that a slight modification is introduced. Sand content is an important parameter influencing the pore structure of cement mortar. Moreover, there is a good relationship between the pore structure and strength of cement mortar.
文摘We sought to evaluate immediate and delayed micro-tensile bond strength of Panavia F2.0 and Multilink Sprint resin cement to superficial, deep and cervical dentin. Thirty-six freshly extracted non-carious human molars were sectioned in the mesiodistal direction to expose three different dentin regions including superficial dentin (1 mm below the dentine-enamel junction), deep dentin (1 mm above the highest pulp horn) and cervical dentin (0.5 mm above the cemento-enamel junction and 0.5 mm below the dentine-enamel junction). Resin cements were applied on dentin surfaces and composite blocks were luted under constant seating pressure. Each group was divided into three subgroups according to time intervals. Specimens were sectioned to obtain sticks of 1 mm2 in diameter and subjected to microtensile bond strength testing at a cross head speed of 1 mrn/min. Both resin cements showed higher micro-tensile bond strength to superficial dentin than that to deep or cervical dentin (P 〈 0.001). Micro-ten- sile bond strengths of Panavia F2.0 were higher than those of Multilink Sprint at different dentin regions (P 〈 0.001). Immediate "micro-tensile bond strengths were higher than those of delayed micro-tensile bond strengths for both resin cements (P 〈 0.001). It was concluded that resin cements with different chemical formulations and applications yield significantly different micro-tensile bond strengths to different dentin regions.
文摘The effects of surface conditioning methods on the microtensile bond strength of Y-TZP ceramic were studied based on airborne particle abrasion and resin cements.Eight square-shaped(φ12 mm×5 mm high) Y-TZP ceramic were studied blocks(LAVATM,3M ESPE,USA) and flat occlusal dentin blocks were fabricated,pre-treated(airborne abrasion with 125μm Al2O3 particles,tribochemical silica coating with 110 μm Al2O3 particles modified by silica oxide),and bonded to each other using resin cements(Panavia F 2.0,RelyX Unicem).Thereafter the trilayer specimens were cut into microbar specimens with a bonding area of approximately 1.0±0.1 mm2 and then microtensile bond strength tests were performed.The Y-TZP ceramic following airborne particle abrasion with 125μm Al2O3 and silicoating,the surface roughness of Y-TZP and its surface silica content were confirmed to increase.Overall,the Y-TZP ceramic surface treatment with a tribochemical silica coating showed the highest microtensile bond strength of the phosphate monomer-based resin cement to Y-TZP ceramic(mean MPa=18.11±0.27(Panavia F 2.0),17.45±0.39(Rely X Unicem).In cases in which a silica coating was applied,there was no significant difference in the bonding strength depending on resin cements(P0.05).
文摘F mineral admixture (FMA) is made of the fin- ely divided powder of natural zeolite with a bit of other agent. When FMA is used to displace about 10% (by weight) of the ordinary portland cement (OPC) (strength grade 575#) in concrete and mixed with a suitable amount of super plasticizer (w/c =0.31-0.35), then a high-strength concrete with compressive strength about 80 MPa and slump about 180 MM can be obtained. The strength of this concrete is about 10-15% higher than that of the corresponding concrete mixing with pure OPC, and its bleeding decreases greatly. It makes no segre- gation and separation, and thus it satisfies the requirement of pumping concrete in construction.
基金Funded by National Key Research and Development Program of China(No.2016YFB0303501)
文摘The viscoplasticity and compressive strength of cement with high erosion performance were studied. The influences of curing temperature and content of ground granulated blast furnace slag(GGBFS) on these performances of the medium heat cement(including high iron and low calcium phase) were also investigated. The results indicate that the medium heat cement with high iron phase can maintain better fluidity and low temperature sensitivity than that of ordinary Portland cement at high temperature. GGBFS can play an important role in improving the fluidity and stability of the slurry, and avoid the cement setting and hardening prematurely at high temperatures. The microstructure analysis shows that a large amount of CH with layer shape appear in the slurry. The amount of this gel layer in the slurry increased as the curing temperature elevated. The layer can make the cement stone structure more denser, so that the compressive strength of samples are enhanced in the later stage. When the medium heat cement contains 40% GGBFS, the system has the best flow performance and stability under high temperature environment, and can be applied to mass concrete with excessive internal temperature.
文摘Artificial cementation is a method commonly used to enhance and improve soil properties. This paper investigates the effect of using different amounts of cement on soil strength parameters and soil bearing capacity, using the finite element method. Experimental tests are conducted on soil samples with different amounts of Portland cement. A 2-D numerical model is created and validated using the numerical modelling software, COMSOL Multiphysics 5.6 software. The study finds that the cohesion, and the angle of the internal friction of the soil samples increase significantly as a result of adding 1%, 2%, and 4% of Portland cement. The results demonstrate that the stresses and strain under the strip footing proposed decrease by 3.24% and 7.42%. Moreover, the maximum displacement also decreases by 1.47% and 2.97%, as a result of adding cements of 2% and 4%. The bearing capacity values obtained are therefore excellent, especially when using the 2% and 4% cement. The increase identified is due to the increased values of the bearing capacity factors. It is concluded that from an economic viewpoint, using 2% cement is the best option.
文摘Concrete is the most widely used construction material in the world. The situation in the country is not an exception as most of the infrastructures in Kenya such as buildings, bridges, concrete drainage among others, are constructed using concrete. Sadly, the failure of buildings and other concrete structures is very common in Kenya. Blended Portland cement type 32.5 N/mm<sup>2</sup> is the most widely used concrete binder material and is found in all parts of the country. Despite blended cement CEM 32.5 being the most commonly used cement type in construction industry in Kenya and most developing countries as a result of its low price and availability locally, its strength gain has been proven to be lower compared to when other types of cement are used due to quantity of pozzolanic material added to the blend. This paper outlines findings of an experimental investigation on the use of cypress tree extract as an accelerator to enhance rate of gain of strength on Kenyan blended cements. Six different blended cement brands locally available were used during the study. Cement chemical analysis was done using X-ray diffraction method while for the cypress extract, Atomic Absorption Spectrometer machine was used. Physical and mechanical properties were checked based on the British standards. The generation of the concrete mix design was done using the British DOE method and concrete was tested for the compressive strength at 7, 14, 21, 28, 56 and 90 days. It was observed that 15% dosage of the extract expressed as a mass percentage of the cement content gives the most improved compressive strength of concrete, 10.4% at 7 days and 9.5% at 28 days hence the optimum. It was further noted that when Cypress tree extract is used as an accelerator in the mix, the blended cement concrete achieves the design strength at 27 days saving 10 days of the project duration compared to when no accelerator is used while the ultimate strength is achieved at 67 days. The study therefore recommends the use of the cypress tree bark extract at a dosage of 15%, by mass, of the cement content as an accelerator when the structure is to be loaded at 28 days and waiting up to 39 days before loading the structure if no accelerator is used for blended cement concrete.
基金Funded by the National Natural Science Foundation of China(No.H1408)
文摘The effects of different post-space pretreatments on the retentive force of fiber posts cemented with a self-adhesive resin cement were investigated. Twenty-eight single-canal premolars were obturated by Resilon using warm vertical compaction and treated with distilled water, 2.5% NaOCl, 17% EDTA and 2.5% NaOCI; or 17% EDTA, 2.5% NaOCI, and ultrasonic agitation (U/E/N treatment). Subsequently, radicular dentin surfaces were observed under scanning electron microscopy (SEM). RelyX Fiber Posts were cemented in the treated canals by using RelyX U100, and thin-slice push-out test and SEM observation of coronal and apical regions of the specimens were performed. Data were analyzed using two-way ANOVA and Tukey's HSD post- hoc tests, and the percentage of failure type was calculated. Ultrasonic/EDTA/NaOC1 irrigation showed the maximum effectiveness in removing the smear layer and debris on the dentin surface. The apical bond strength of the experimental groups was significantly higher than that of the control group (P〈 0.05). Adhesive failure between cement and dentin was the most common mode of failure. No obvious RDIZ or resin tag was detected. Chemical irrigants facilitated the bonding of these fiber posts, and ultrasonic activation improved retention. Future studies should evaluate the effectiveness of irrigation on fiber post push-out strength in fatigue cycling condition.
文摘In this study, we measured the resistances (test frequency 837.8 Hz) of the paste of Portland cement (PC) and phosphoaluminate cement (PALC) subjected to different types of corrosion and different numbers of freeze-thaw cycles. This study aimed to improve understanding of the changing characteristics of paste resistance from both micro and macro perspectives by associating changes in the paste microstructure with changes in the paste mechanical strength using X-ray diffraction (XRD), nuclear magnetic resonance (NMR), and other methods. Our results showed that changes in the paste resistance under the corrosive action of ambient media could signal the deterioration of paste structure and loss of paste strength. Continuous hydration reactions within the paste were found to render it more dense and increase its resistance. Invasion of corrosive ions was found to continue to increase paste resistance if the structure of the cement paste was not destroyed. Otherwise, paste resistance would decrease. Corrosive media were found to cause the dispersion of hydrated gels with certain degree of polymerization. Because spatial resistance was found to cause difficulty in the transportation of ion clusters, the decreases in resistance caused by long-term corrosion might be reduced due to a compensation effect. This effect was found to be related to the severity of structural damage to the paste. The magnitudes of corrosive effects of chemical media on the radicals in the cement paste structure were found to occur in the following order: SiO4 > AlO4 > PO4. The resistance and strength of the PC was always lower than those of PALC. In addition, losses of resistance and strength by PALC were mainly due to deterioration of the radical structure of AlO6.
文摘The present work reports the effect of waste glass (WG) on the properties of Portland cement through Electron Para- magnetic Resonance (EPR) study. Cement pastes containing 0, 10, and 30% replacement of waste glass with cement and in a water to cement ratio of 0.4 have been prepared. The g factors of Fe(III) and Mn(II) impurities at different hydration ages have been calculated. The decreased gFe values and simultaneous increase in gMn values with increase in replacement % of WG are explained due to retardation of cement hydration.
文摘Quality of cement is evaluated via group of tests. The most important, and close to understanding, is the compressive strength test. Recently, Egyptian standards adopted the European standards EN-196 and EN-197 for specifying and evaluating quality of cements. This was motivated by the large European investments in the local production of cement. The current study represents a comparative investigation, experimental and numerical, of the effect of different parameters on evaluation of compressive strength. Main parameters are shape of specimens and type of sand used for producing tested mortars. Three sets of specimens were made for ten types of cements. First set were 70.6 mm cubes molded according to old standards using single sized sand. Second group were prisms molded from standard sand (CEN sand) according to the recent standards. Third group were prisms molded from local sand sieved and regenerated to simulate same grading of CEN sand. All specimens were cured according to relevant standards and tested at different ages (2,3,7,10 and 28 days). Results show that CEM-I Type of cement does not fulfill, in all of its grades, the strength requirements of Ordinary Portland cement OPC specified in old standards. Also, the use of simulated CEN sand from local source gives strengths lower than those obtained using standard certified CEN sand. A limited number of tests were made on concrete specimens from two most common CEM-I types to investigate effect on concrete strength and results were also reported. Numerical investigation of the effect of specimen shape and type of sand on evaluation of compressive strength of mortar specimens, presented in the current study, applies one of the artificial intelligence techniques to simulate and predict the strength behavior at different ages. The Artificial Neural Network (ANN) technique is introduced in the current study to simulate the strength behavior using the available experimental data and predict the strength value at any age in the range of the experiments or in the future. The results of the numerical study showed that the ANN method with less effort was very efficiently capable of simulating the effect of specimen shape and type of sand on the strength behavior of tested mortar with different cement types.