The effects of ultrafine WC(WC_(UF),0.5μm) or W(1μm) and C(0.3μm)(W+C)_(UF) additives on the densification,microstructure and mechanical properties of coarse-grained cemented carbides were compared systematically.O...The effects of ultrafine WC(WC_(UF),0.5μm) or W(1μm) and C(0.3μm)(W+C)_(UF) additives on the densification,microstructure and mechanical properties of coarse-grained cemented carbides were compared systematically.Overall,the cemented carbides with WC_(UF)/(W+C)_(UF) additives are almost fully densification to be higher than 99%,and the average grain size is kept above 2.8μm.The WC_(UF) additive assists grains to(truncated)trigonal prism shape by two dimensional(2D) growth,whereas the(W+C)_(UF) additive assists grains to rounded shape by three dimensional(3D) growth,lowers WC contiguity and increases face-centered-cubic Co.The hardness and bending strength of(75WC_(C)-15WC_(UF))-10Co are 86.6 HRA and 2 272 MPa,respectively,both higher than those of(75WC_(C)-15(W+C)_(UF))-10Co,which could be ascribed to the enhanced densification and unblemished grains.However,the fracture toughness of the(75WC_(C)-15(W+C)_(UF))-10Co is 23.5 MPa·m^(1/2),higher than that of the(75WC_(C)-15WC_(UF))-10Co due to the uniform WC-Co structure and flexible binder phase.展开更多
WC-Co nanocrystalline nitrogen-containing cemented carbides were prepared by vacuum sintering and low pressure sintering.The sintering processes of Cr_(2)(C,N)doped nano WC-Co powders were studied by using thermogravi...WC-Co nanocrystalline nitrogen-containing cemented carbides were prepared by vacuum sintering and low pressure sintering.The sintering processes of Cr_(2)(C,N)doped nano WC-Co powders were studied by using thermogravimetric analysis(TGA)and differential scanning calorimetry(DSC).The effect of sintering temperature on the microstructure and mechanical properties of nanocrystalline cemented carbide was studied by scanning electron microscope(SEM),high resolution transmission electron microscope(HRTEM)and mechanical property test.The results showed that the nano WC grains began to grow in the solid phase sintering stage.A high-performance nano-nitrogen-containing cemented carbide with uniform microstructure and good interfacial bonding can be obtained by increasing the sintering temperature to 1380℃.It has a transverse rupture strength(TRS)of 5057 MPa and a hardness of 1956 HV30.展开更多
The morphologies and formation process of Ni-pool defects in WC?8Ni cemented carbides were studied. The SEM images show that Ni-pool generally has two kinds of morphologies: “island” in isolation and “ring” around...The morphologies and formation process of Ni-pool defects in WC?8Ni cemented carbides were studied. The SEM images show that Ni-pool generally has two kinds of morphologies: “island” in isolation and “ring” around a new phase. In the obtained samples with “ring-like Ni-pool”, WC, Ni and Ni2W4C (η phase) phases were detected in XRD patterns. Combined with SEM, EDX and XRD results, it is found that the phase in the center of the “ring-like Ni-pool” is Ni2W4C (η phase) and the main chemical components of Ni-pool are Ni, W and C. In addition, the relationships among large size Ni (agglomerated) particles, volatile impurities, pores and carbon content vs forming process of the Ni-pool defects for WC?8Ni cemented carbides are also presented and discussed.展开更多
Coarse grained WC-9Co cemented carbides with 0-1.0% TaC(mass fraction) were fabricated by HIP-sintering and gas quenching. The effects of TaC on the microstructures and mechanical properties were investigated using sc...Coarse grained WC-9Co cemented carbides with 0-1.0% TaC(mass fraction) were fabricated by HIP-sintering and gas quenching. The effects of TaC on the microstructures and mechanical properties were investigated using scanning electron microscopy(SEM), energy dispersive X-ray analysis(EDS), X-ray diffractometry(XRD) and mechanical properties tests. The results show that the maximum values of hardness and strength are HV 1124 and 2466 MPa respectively when 0.4% TaC is added. When the content of TaC is more than 0.6%, the grain size of WC is no longer affected by the amount of TaC, and(W,Ta)C occurs as well. Moreover, the strength and fracture toughness increase and the(Ta+W) content decreases with the increase of TaC content. The dependence of(Ta+W) content on the mechanical properties indicates that(Ta+W) content in Co should be decreased as low as possible to improve the mechanical properties of coarse grained WC-TaC-9Co cemented carbides with the microstructure of WC+γ two phase regions.展开更多
A new cup-type grinding wheel of the brazed monolayer diamond is developed with a defined grain pattern on the wheel surface. Grinding performance of the brazed wheel in the surface grinding of cemented carbide is stu...A new cup-type grinding wheel of the brazed monolayer diamond is developed with a defined grain pattern on the wheel surface. Grinding performance of the brazed wheel in the surface grinding of cemented carbide is studied. Experimental results show that when continuous dry grinding is employed, grits of the brazed diamond grinding wheel fail mainly in attritious wear and fracture modes and no pull-out ones are found in conventional electroplated and sintered diamond wheels. It indicates the strong retention of brazing alloy to diamond grits and the longer service life of the wheel. In addition, the ground surface has good roughness. The theoretical surface roughness agrees well with experimental results.展开更多
The effects of deep cryogenic treatment on the microstructure and properties of WC-11 Co cemented carbides with various carbon contents were investigated.The results show that after deep cryogenic treatment,WC grains ...The effects of deep cryogenic treatment on the microstructure and properties of WC-11 Co cemented carbides with various carbon contents were investigated.The results show that after deep cryogenic treatment,WC grains are refined into triangular prism with sound edges via the process of spheroidization,but WC grain size has no evident change compared with that of untreated alloys.The phase transformation of Co phase from α-Co(FCC) to ε-Co(HCP) is observed in the cryogenically treated alloys,which is attributed to the decrease of W solubility in the binder(Co).Deep cryogenic treatment enhances the hardness and bending strength of the alloys,while it has no significant effects on the density and cobalt magnetic performance.展开更多
Finite dement formulations are used to simulate the evolution of the elastoplastic response of functionally graded cemented carbides (FGCC) due to thermal loading. The geometry of specimens is an axisymmetric solid ...Finite dement formulations are used to simulate the evolution of the elastoplastic response of functionally graded cemented carbides (FGCC) due to thermal loading. The geometry of specimens is an axisymmetric solid cylinder with a two-dimensional gradient. The elastoplastic constitutive relationship is developed by constraint factors. Numerical results show that compressive stresses occur in the surface zone and tensile stresses in the cobalt rich zone when the temperature drops from the initial stress-free temperature of 800 to 0℃. The maximum value of the surface compressive stress is 254 MPa and the maximum value of the tensile stress is 252 MPa in the cobalt rich zones. When the cobalt concentration difference in the specimens is equal to or greater than 0.3, there is pronounced plastic flow in cobalt rich zone. When the temperature heats up from 0 to 800 ℃, the total plastic strain reaches 0.001 4. Plastic flow has a significant effect on the reduction of thermal stress concentration.展开更多
This paper presents the results of a study concerned with the surface hardening of Fe-based alloys and WC-8Co cemented carbide by inte- grating laser cladding and the electrospark deposition processes. Specimens of lo...This paper presents the results of a study concerned with the surface hardening of Fe-based alloys and WC-8Co cemented carbide by inte- grating laser cladding and the electrospark deposition processes. Specimens of low carbon steel were processed firstly by laser cladding with Fe-based alloy powders and then by electrospark deposition with WC-SCo cemented carbide. It is shown that, for these two treatments, the electrospark coating possesses finer microstructure than the laser coating, and the thickness and surface hardness of the electrospark coating can be substantially increased.展开更多
The effects of gradient structure on the microstructure and properties of coated cemented carbides were researched with optical microscopy (OM), scanning electron microscopy (SEM), strength measurements, and cutti...The effects of gradient structure on the microstructure and properties of coated cemented carbides were researched with optical microscopy (OM), scanning electron microscopy (SEM), strength measurements, and cutting tests. It shows that vacuum sintering of WC-Ti(C, N)-TaC-Co cemented carbides results in the formation of a surface ductile zone. The ductile zone prevents crack propagation and leads to the increase of transverse rupture strength of the substrate. The impact resistance of coated gradient inserts was obviously improved on the basis of maintaining resistance to abrasion and the forming mechanism of the gradient structure was also analyzed.展开更多
WC-8wt.% Co cemented carbides with varied nano-Al 2 O 3 and nano-ZrO 2 contents were prepared respectively following conventional powder metallurgical procedures. Effects of nano-Al 2 O 3 and nano-ZrO 2 on the microst...WC-8wt.% Co cemented carbides with varied nano-Al 2 O 3 and nano-ZrO 2 contents were prepared respectively following conventional powder metallurgical procedures. Effects of nano-Al 2 O 3 and nano-ZrO 2 on the microstructure, behavior, and abrasive wear resistance were investigated. The result shows that a finer and more homogenous microstructure can be achieved by increasing nano-Al 2 O 3 , and increasing nano-ZrO 2 makes the microstructure more refined. Nano-Al 2 O 3 and nano-ZrO 2 could both help to give increased hardness. Transverse rupture strength is higher if the above nano-oxides are doped appropriately, whereas excess addition is deleterious. Abrasive wear resistance presents different variations with respect to increasing nano-Al 2 O 3 and nano-ZrO 2 . By contrast, increasing nano-ZrO 2 enhances the abrasive wear resistance more effectively than increasing nano-Al 2 O 3 . The influence of the two nano-oxides contents on the abrasive wear resistance does not almost vary with wear time, and the optimum addition level of nano-Al 2 O 3 in WC-8% Co cemented carbide is 0.3 wt.% from the stand of abrasive wear resistance. In addition, both of the nano-oxides can retard the increase of wear rate in long-term abrasive wear.展开更多
This paper deals with the effects of codoped VC/Cr3C2 and sintering temperature on the magnetic and mechanical properties of ultra-fine grained WC-12%Co alloys. Results show that the synergistic action of doped VC/Cr3...This paper deals with the effects of codoped VC/Cr3C2 and sintering temperature on the magnetic and mechanical properties of ultra-fine grained WC-12%Co alloys. Results show that the synergistic action of doped VC/Cr3C2 in optimal proportion enhances both the hardness and transverse rupture strength (TRS) of the alloys, with more homogeneous microstructtLre. When the alloy is sintered at 1430℃ and with 0.5% Cr3C2/0.2% VC, the TRS reaches 3786 MPa, the hardness is 91.7 HRA and the grain size smaller than 0.6 μm. The numerical analyses on grain growth during the sintering process show that both VC precipitating on the WC grain boundary and Cr3C2 dissolving in the Co phase decrease the solid/liquid interfacial energy γ, the process of dissolution and reprecipitation is greatly retarded and the coarsening of WC grains is inhibited.展开更多
In order to reveal the formation mechanism of cubic carbide free layers (CCFL), graded cemented carbides with CCFL in the surface zone were fabricated by a one-step sintering procedure in vacuum, and the analysis on...In order to reveal the formation mechanism of cubic carbide free layers (CCFL), graded cemented carbides with CCFL in the surface zone were fabricated by a one-step sintering procedure in vacuum, and the analysis on microstructure and element distribution were performed by scanning electron microscopy (SEM) and electron probe micro-analyzer (EPMA), respectively. A new physical model and ki- netic equation were established based on experimental results. Being different f^om previous models, this model suggests that nitrogen diffu- sion outward is only considered as an induction factor, and the diffusion of titanium through liquid phase plays a dominative role. The driving force of diffusion is expressed as the differential value between nitrogen partial pressure and nitrogen equilibrium pressure essentially. Simulation results by the kinetic equation are in good agreement with experimental values, and the effect of process parameters on the growth kinetics of CCFL can also be explained reasonably by the current model.展开更多
WC powders were uniformly coated by Ni nanoparticles through a combined chemical co-precipitation and subsequent high temperature hydrogen reduction strategy(abbreviated as CM-WCN),and then were consolidated by vacuum...WC powders were uniformly coated by Ni nanoparticles through a combined chemical co-precipitation and subsequent high temperature hydrogen reduction strategy(abbreviated as CM-WCN),and then were consolidated by vacuum sintering at 1450°C for 1 h to obtain WC−Ni cemented carbides.The microstructure and properties of the as-consolidated CM-WCN were investigated.The average grain size of WC in the consolidated CM-WCN was calculated to be in the range of 3.0−3.8μm and only few pores were observed.A relative density of 99.6%,hardness of HRA 86.5 and bending strength of 1860 MPa were obtained for the CM-WCN−10wt.%Ni,and the highest impact toughness of 6.17 J/cm^(2 )was obtained for the CM-WCN−12wt.%Ni,surpassing those of the hand mixed WC−Ni(HM-WCN)cemented carbides examined in this study and the other similar materials in the literature.CM-WCN cemented carbides possess excellent mechanical properties,due to their highly uniform structure and low porosity that could be ascribed to the intergranular-dominated fracture mode accompanied by a large number of plastic deformation tears of the bonding phase.In addition,the corrosion resistance of CM-WCN was superior to that of HM-WCN at the Ni content of 6−12 wt.%.展开更多
For developing new binder phase with high performance, Co-Ni-Fe alloy was used as binder in cemented carbides. The mechanical properties of WC-CoNiFe and WC-Co cemented carbides with different grain sizes were studied...For developing new binder phase with high performance, Co-Ni-Fe alloy was used as binder in cemented carbides. The mechanical properties of WC-CoNiFe and WC-Co cemented carbides with different grain sizes were studied. The results show that the reprecipitation of WC-CoNiFe is inhibited compared with that of WC-Co during sintering process, and the grains in WC-CoNiFe cemented carbides are more of smooth shape, resulting in a slightly lower hardness and higher transverse rupture strength. With the increase of the grain size, the hardness of the two cemented carbides decreases, and the transverse rupture strength increases. However, the slope values of K in Hall-Petch relationship are higher in WC-CoNiFe than those in WC-Co, indicating the high toughness of medium entropy alloy Co-Ni-Fe.展开更多
Varying the morphology and the structure of γ-phase (Co-base Co-W-C solid solution) by means of altering the cooling rate and the preparing method of liquid sintered WC-Co cemented carbides samples, the mechanism of ...Varying the morphology and the structure of γ-phase (Co-base Co-W-C solid solution) by means of altering the cooling rate and the preparing method of liquid sintered WC-Co cemented carbides samples, the mechanism of fcc→hcp transformation of γ-phase in WC-Co alloy has been explored. The results show that, the cooling rate is an important affecting factor on fcc→hcp transformation of γ-phase and the fcc→hcp transformation is mainly a diffusive type when cooling WC-Co samples above room temperature展开更多
WC- 10Co nanocomposite powder produced by spray pyrolysis-continuoas reduction and carbonization technology was used, and the vacuum sinteriag plus sinterhip process was cdopted to prepare ultrafine WCCo cemented carb...WC- 10Co nanocomposite powder produced by spray pyrolysis-continuoas reduction and carbonization technology was used, and the vacuum sinteriag plus sinterhip process was cdopted to prepare ultrafine WCCo cemented carbide. The microstructure, grain size, porosity, density, Rockwell A hardness ( HRA ), transverse rupture strength ( TRS ) , saturated magnetization and coercivity force were studied. The experimental results show that average grain size of the sample prepared by vacuum sintering plas sinterhip technology was about 420 nm, transverse rupture strength was more than 3460 MPa, and Rockwell A hardness of sintered specimen was more than 92.5. Ultrafine WC- 10Co cemented carbide with high strength and high hardness is obtained.展开更多
The relative density of WC-Co cemented carbides during spark plasma sintering(SPS) was analyzed.Based on the change in displacement of the ram in the SPS system,the relative densities in the sintering process can be...The relative density of WC-Co cemented carbides during spark plasma sintering(SPS) was analyzed.Based on the change in displacement of the ram in the SPS system,the relative densities in the sintering process can be achieved at different temperatures.The results indicated that densification of the samples started at near 900°C,the density rapidly reached its maximum at the increasing temperature stage,in which the temperature was lower than the sintering temperature of 1200°C,and most of the densification took place in the stage.Besides,the theoretical values were consistent with the experimental results.展开更多
Two types of fatigue tests, a rotating bending fatigue test and a three- or four-point bending fatigue test, were carried out on a fine grained WC-Co cemented carbide to evaluate its fatigue crack growth behavior and ...Two types of fatigue tests, a rotating bending fatigue test and a three- or four-point bending fatigue test, were carried out on a fine grained WC-Co cemented carbide to evaluate its fatigue crack growth behavior and fatigue lifetime. From successive observations of the specimen surface during the fatigue process, it was revealed that most of the fatigue lifetime of the tested WC-Co cemented carbide was occupied with crack growth cycles. Using the basic equation of fracture mechanics, the relationship between the fatigue crack growth rate(da/dN) and the maximum stress intensity factor(Kmax) was derived. From this relation, both the values of the threshold intensity factor(Kth) and the fatigue fracture toughness(Kfc) of the material were determined. The fatigue lifetime of the WC-Co cemented carbide was estimated by analysis based on the modified linear elastic fracture mechanics approach. Good agreement between the estimated and experimental fatigue lifetimes was confirmed.展开更多
The sintering characteristics, microstructure, and mechanical properties of ultrafine WC-12%Co-0.2%VC/0.5%Cr3C2 cemented carbides were investigated. Dilatometric and differential thermal analyses (DTA) indicate that...The sintering characteristics, microstructure, and mechanical properties of ultrafine WC-12%Co-0.2%VC/0.5%Cr3C2 cemented carbides were investigated. Dilatometric and differential thermal analyses (DTA) indicate that the compacts start to shrink at 600°C, the shrinkage rate peak is at 1190°C, and the liquid formation temperature is lower than the W-C-Co eutectic temperature (1330°C). Microstructure analysis results show that the cemented carbides with fine and homogeneous microstructure were obtained when sintered at 1430°C. Continuous and discontinuous grain growth was suppressed due to the synergistic action of VC/Cr3C2. The transverse rupture strength (TRS) of the samples reaches 4286 MPa, with the hardness HRA 92.1. The fine and homogeneous microstructure, alloy strengthening, and different phase constitutions of binder in the cemented carbides result in high hardness and TRS. Continuous and discontinuous grain growth was observed in the cemented carbide sintered at 1450°C, which results in significant decreases of hardness and TRS. It indicates that VC/Cr3C2 additions in the cemented carbides can only suppress the grain growth at a certain temperature.展开更多
(Ti,Al,Zr)N/(Ti,Al,Zr,Cr)N bilayer films were deposited on cemented carbide (WC-8%Co) substrates by multi-arc ion plating (MAIP) using two Ti-AI-Zr alloy targets and one pure Cr target. To investigate the comp...(Ti,Al,Zr)N/(Ti,Al,Zr,Cr)N bilayer films were deposited on cemented carbide (WC-8%Co) substrates by multi-arc ion plating (MAIP) using two Ti-AI-Zr alloy targets and one pure Cr target. To investigate the composition, morphology, and crystalline structure of the bilayer films, a number of complementary methods of elemental and structural analysis were used, namely, scanning electron microscopy (SEM), energy disperse X-ray spectroscopy (EDS), and X-ray diffraction (XRD). Adhesive strength and mechanical properties of the films were evaluated by scratch testing and Vickers microindentation, respectively. It is shown that the resulting films have a TiN-type face-centered cubic (FCC) structure. The films exhibit fully dense, uniform, and columnar morphology. Furthermore, as the bias voltages vary from -50 to -200 V, the microhardness (max. Hv001 4100) and adhesive strength (max. 〉 200 N) of the bilayer films are superior to those of the (Ti,Al,Zr)N and (Ti,Al,Zr, Cr)N monolayer films.展开更多
基金Funded by the Technology Innovation Leading Program of Shaanxi(No.2022QFY08-02)。
文摘The effects of ultrafine WC(WC_(UF),0.5μm) or W(1μm) and C(0.3μm)(W+C)_(UF) additives on the densification,microstructure and mechanical properties of coarse-grained cemented carbides were compared systematically.Overall,the cemented carbides with WC_(UF)/(W+C)_(UF) additives are almost fully densification to be higher than 99%,and the average grain size is kept above 2.8μm.The WC_(UF) additive assists grains to(truncated)trigonal prism shape by two dimensional(2D) growth,whereas the(W+C)_(UF) additive assists grains to rounded shape by three dimensional(3D) growth,lowers WC contiguity and increases face-centered-cubic Co.The hardness and bending strength of(75WC_(C)-15WC_(UF))-10Co are 86.6 HRA and 2 272 MPa,respectively,both higher than those of(75WC_(C)-15(W+C)_(UF))-10Co,which could be ascribed to the enhanced densification and unblemished grains.However,the fracture toughness of the(75WC_(C)-15(W+C)_(UF))-10Co is 23.5 MPa·m^(1/2),higher than that of the(75WC_(C)-15WC_(UF))-10Co due to the uniform WC-Co structure and flexible binder phase.
基金Funded by the National Key Research and Development Plan of China(No.2017YFB0305900)。
文摘WC-Co nanocrystalline nitrogen-containing cemented carbides were prepared by vacuum sintering and low pressure sintering.The sintering processes of Cr_(2)(C,N)doped nano WC-Co powders were studied by using thermogravimetric analysis(TGA)and differential scanning calorimetry(DSC).The effect of sintering temperature on the microstructure and mechanical properties of nanocrystalline cemented carbide was studied by scanning electron microscope(SEM),high resolution transmission electron microscope(HRTEM)and mechanical property test.The results showed that the nano WC grains began to grow in the solid phase sintering stage.A high-performance nano-nitrogen-containing cemented carbide with uniform microstructure and good interfacial bonding can be obtained by increasing the sintering temperature to 1380℃.It has a transverse rupture strength(TRS)of 5057 MPa and a hardness of 1956 HV30.
文摘The morphologies and formation process of Ni-pool defects in WC?8Ni cemented carbides were studied. The SEM images show that Ni-pool generally has two kinds of morphologies: “island” in isolation and “ring” around a new phase. In the obtained samples with “ring-like Ni-pool”, WC, Ni and Ni2W4C (η phase) phases were detected in XRD patterns. Combined with SEM, EDX and XRD results, it is found that the phase in the center of the “ring-like Ni-pool” is Ni2W4C (η phase) and the main chemical components of Ni-pool are Ni, W and C. In addition, the relationships among large size Ni (agglomerated) particles, volatile impurities, pores and carbon content vs forming process of the Ni-pool defects for WC?8Ni cemented carbides are also presented and discussed.
基金Project(2013zzts025)supported by the Fundamental Research Funds for the Central Universities of China
文摘Coarse grained WC-9Co cemented carbides with 0-1.0% TaC(mass fraction) were fabricated by HIP-sintering and gas quenching. The effects of TaC on the microstructures and mechanical properties were investigated using scanning electron microscopy(SEM), energy dispersive X-ray analysis(EDS), X-ray diffractometry(XRD) and mechanical properties tests. The results show that the maximum values of hardness and strength are HV 1124 and 2466 MPa respectively when 0.4% TaC is added. When the content of TaC is more than 0.6%, the grain size of WC is no longer affected by the amount of TaC, and(W,Ta)C occurs as well. Moreover, the strength and fracture toughness increase and the(Ta+W) content decreases with the increase of TaC content. The dependence of(Ta+W) content on the mechanical properties indicates that(Ta+W) content in Co should be decreased as low as possible to improve the mechanical properties of coarse grained WC-TaC-9Co cemented carbides with the microstructure of WC+γ two phase regions.
文摘A new cup-type grinding wheel of the brazed monolayer diamond is developed with a defined grain pattern on the wheel surface. Grinding performance of the brazed wheel in the surface grinding of cemented carbide is studied. Experimental results show that when continuous dry grinding is employed, grits of the brazed diamond grinding wheel fail mainly in attritious wear and fracture modes and no pull-out ones are found in conventional electroplated and sintered diamond wheels. It indicates the strong retention of brazing alloy to diamond grits and the longer service life of the wheel. In addition, the ground surface has good roughness. The theoretical surface roughness agrees well with experimental results.
基金Project(12JJ8018)supported by the Natural Science Foundation of Hunan Province,China
文摘The effects of deep cryogenic treatment on the microstructure and properties of WC-11 Co cemented carbides with various carbon contents were investigated.The results show that after deep cryogenic treatment,WC grains are refined into triangular prism with sound edges via the process of spheroidization,but WC grain size has no evident change compared with that of untreated alloys.The phase transformation of Co phase from α-Co(FCC) to ε-Co(HCP) is observed in the cryogenically treated alloys,which is attributed to the decrease of W solubility in the binder(Co).Deep cryogenic treatment enhances the hardness and bending strength of the alloys,while it has no significant effects on the density and cobalt magnetic performance.
基金The National Natural Science Foundation of China(No.50323008,31070517)Scientific Research Foundation of Guangxi Education Department(No.201203YB097)
文摘Finite dement formulations are used to simulate the evolution of the elastoplastic response of functionally graded cemented carbides (FGCC) due to thermal loading. The geometry of specimens is an axisymmetric solid cylinder with a two-dimensional gradient. The elastoplastic constitutive relationship is developed by constraint factors. Numerical results show that compressive stresses occur in the surface zone and tensile stresses in the cobalt rich zone when the temperature drops from the initial stress-free temperature of 800 to 0℃. The maximum value of the surface compressive stress is 254 MPa and the maximum value of the tensile stress is 252 MPa in the cobalt rich zones. When the cobalt concentration difference in the specimens is equal to or greater than 0.3, there is pronounced plastic flow in cobalt rich zone. When the temperature heats up from 0 to 800 ℃, the total plastic strain reaches 0.001 4. Plastic flow has a significant effect on the reduction of thermal stress concentration.
文摘This paper presents the results of a study concerned with the surface hardening of Fe-based alloys and WC-8Co cemented carbide by inte- grating laser cladding and the electrospark deposition processes. Specimens of low carbon steel were processed firstly by laser cladding with Fe-based alloy powders and then by electrospark deposition with WC-SCo cemented carbide. It is shown that, for these two treatments, the electrospark coating possesses finer microstructure than the laser coating, and the thickness and surface hardness of the electrospark coating can be substantially increased.
文摘The effects of gradient structure on the microstructure and properties of coated cemented carbides were researched with optical microscopy (OM), scanning electron microscopy (SEM), strength measurements, and cutting tests. It shows that vacuum sintering of WC-Ti(C, N)-TaC-Co cemented carbides results in the formation of a surface ductile zone. The ductile zone prevents crack propagation and leads to the increase of transverse rupture strength of the substrate. The impact resistance of coated gradient inserts was obviously improved on the basis of maintaining resistance to abrasion and the forming mechanism of the gradient structure was also analyzed.
基金supported by the Science and Technology Projects of Sichuan Province, China (No. 2008GZ0179)
文摘WC-8wt.% Co cemented carbides with varied nano-Al 2 O 3 and nano-ZrO 2 contents were prepared respectively following conventional powder metallurgical procedures. Effects of nano-Al 2 O 3 and nano-ZrO 2 on the microstructure, behavior, and abrasive wear resistance were investigated. The result shows that a finer and more homogenous microstructure can be achieved by increasing nano-Al 2 O 3 , and increasing nano-ZrO 2 makes the microstructure more refined. Nano-Al 2 O 3 and nano-ZrO 2 could both help to give increased hardness. Transverse rupture strength is higher if the above nano-oxides are doped appropriately, whereas excess addition is deleterious. Abrasive wear resistance presents different variations with respect to increasing nano-Al 2 O 3 and nano-ZrO 2 . By contrast, increasing nano-ZrO 2 enhances the abrasive wear resistance more effectively than increasing nano-Al 2 O 3 . The influence of the two nano-oxides contents on the abrasive wear resistance does not almost vary with wear time, and the optimum addition level of nano-Al 2 O 3 in WC-8% Co cemented carbide is 0.3 wt.% from the stand of abrasive wear resistance. In addition, both of the nano-oxides can retard the increase of wear rate in long-term abrasive wear.
基金the National Natural Science Foundation of China (No. 50372043).
文摘This paper deals with the effects of codoped VC/Cr3C2 and sintering temperature on the magnetic and mechanical properties of ultra-fine grained WC-12%Co alloys. Results show that the synergistic action of doped VC/Cr3C2 in optimal proportion enhances both the hardness and transverse rupture strength (TRS) of the alloys, with more homogeneous microstructtLre. When the alloy is sintered at 1430℃ and with 0.5% Cr3C2/0.2% VC, the TRS reaches 3786 MPa, the hardness is 91.7 HRA and the grain size smaller than 0.6 μm. The numerical analyses on grain growth during the sintering process show that both VC precipitating on the WC grain boundary and Cr3C2 dissolving in the Co phase decrease the solid/liquid interfacial energy γ, the process of dissolution and reprecipitation is greatly retarded and the coarsening of WC grains is inhibited.
基金financially supported by the National Key Technology Support Program (No.2007BAE05B02)
文摘In order to reveal the formation mechanism of cubic carbide free layers (CCFL), graded cemented carbides with CCFL in the surface zone were fabricated by a one-step sintering procedure in vacuum, and the analysis on microstructure and element distribution were performed by scanning electron microscopy (SEM) and electron probe micro-analyzer (EPMA), respectively. A new physical model and ki- netic equation were established based on experimental results. Being different f^om previous models, this model suggests that nitrogen diffu- sion outward is only considered as an induction factor, and the diffusion of titanium through liquid phase plays a dominative role. The driving force of diffusion is expressed as the differential value between nitrogen partial pressure and nitrogen equilibrium pressure essentially. Simulation results by the kinetic equation are in good agreement with experimental values, and the effect of process parameters on the growth kinetics of CCFL can also be explained reasonably by the current model.
基金the financial supports from the National Natural Science Foundation of China (Nos. 51778213, 52078189)the Fundamental Research Funds for the Central Universities, China (No. B200202073)。
文摘WC powders were uniformly coated by Ni nanoparticles through a combined chemical co-precipitation and subsequent high temperature hydrogen reduction strategy(abbreviated as CM-WCN),and then were consolidated by vacuum sintering at 1450°C for 1 h to obtain WC−Ni cemented carbides.The microstructure and properties of the as-consolidated CM-WCN were investigated.The average grain size of WC in the consolidated CM-WCN was calculated to be in the range of 3.0−3.8μm and only few pores were observed.A relative density of 99.6%,hardness of HRA 86.5 and bending strength of 1860 MPa were obtained for the CM-WCN−10wt.%Ni,and the highest impact toughness of 6.17 J/cm^(2 )was obtained for the CM-WCN−12wt.%Ni,surpassing those of the hand mixed WC−Ni(HM-WCN)cemented carbides examined in this study and the other similar materials in the literature.CM-WCN cemented carbides possess excellent mechanical properties,due to their highly uniform structure and low porosity that could be ascribed to the intergranular-dominated fracture mode accompanied by a large number of plastic deformation tears of the bonding phase.In addition,the corrosion resistance of CM-WCN was superior to that of HM-WCN at the Ni content of 6−12 wt.%.
基金Project(51671217)supported by the National Natural Science Foundation of ChinaProject(2016YFB0700302)supported by the National Key Research and Development Plan of China。
文摘For developing new binder phase with high performance, Co-Ni-Fe alloy was used as binder in cemented carbides. The mechanical properties of WC-CoNiFe and WC-Co cemented carbides with different grain sizes were studied. The results show that the reprecipitation of WC-CoNiFe is inhibited compared with that of WC-Co during sintering process, and the grains in WC-CoNiFe cemented carbides are more of smooth shape, resulting in a slightly lower hardness and higher transverse rupture strength. With the increase of the grain size, the hardness of the two cemented carbides decreases, and the transverse rupture strength increases. However, the slope values of K in Hall-Petch relationship are higher in WC-CoNiFe than those in WC-Co, indicating the high toughness of medium entropy alloy Co-Ni-Fe.
文摘Varying the morphology and the structure of γ-phase (Co-base Co-W-C solid solution) by means of altering the cooling rate and the preparing method of liquid sintered WC-Co cemented carbides samples, the mechanism of fcc→hcp transformation of γ-phase in WC-Co alloy has been explored. The results show that, the cooling rate is an important affecting factor on fcc→hcp transformation of γ-phase and the fcc→hcp transformation is mainly a diffusive type when cooling WC-Co samples above room temperature
基金Funded by he National Natural Science Foundation of China(50502026) , Key Project for Science and Technology Developmentof Wuhan City (20041003068-04) ,andthe Key Project forthe Sci .&Tech. Research of Chinese Ministry of Education (105123)
文摘WC- 10Co nanocomposite powder produced by spray pyrolysis-continuoas reduction and carbonization technology was used, and the vacuum sinteriag plus sinterhip process was cdopted to prepare ultrafine WCCo cemented carbide. The microstructure, grain size, porosity, density, Rockwell A hardness ( HRA ), transverse rupture strength ( TRS ) , saturated magnetization and coercivity force were studied. The experimental results show that average grain size of the sample prepared by vacuum sintering plas sinterhip technology was about 420 nm, transverse rupture strength was more than 3460 MPa, and Rockwell A hardness of sintered specimen was more than 92.5. Ultrafine WC- 10Co cemented carbide with high strength and high hardness is obtained.
文摘The relative density of WC-Co cemented carbides during spark plasma sintering(SPS) was analyzed.Based on the change in displacement of the ram in the SPS system,the relative densities in the sintering process can be achieved at different temperatures.The results indicated that densification of the samples started at near 900°C,the density rapidly reached its maximum at the increasing temperature stage,in which the temperature was lower than the sintering temperature of 1200°C,and most of the densification took place in the stage.Besides,the theoretical values were consistent with the experimental results.
文摘Two types of fatigue tests, a rotating bending fatigue test and a three- or four-point bending fatigue test, were carried out on a fine grained WC-Co cemented carbide to evaluate its fatigue crack growth behavior and fatigue lifetime. From successive observations of the specimen surface during the fatigue process, it was revealed that most of the fatigue lifetime of the tested WC-Co cemented carbide was occupied with crack growth cycles. Using the basic equation of fracture mechanics, the relationship between the fatigue crack growth rate(da/dN) and the maximum stress intensity factor(Kmax) was derived. From this relation, both the values of the threshold intensity factor(Kth) and the fatigue fracture toughness(Kfc) of the material were determined. The fatigue lifetime of the WC-Co cemented carbide was estimated by analysis based on the modified linear elastic fracture mechanics approach. Good agreement between the estimated and experimental fatigue lifetimes was confirmed.
基金supported by the Foundation of Scientific and Technologic Development for Universityin Tianjin (No. 20060912)
文摘The sintering characteristics, microstructure, and mechanical properties of ultrafine WC-12%Co-0.2%VC/0.5%Cr3C2 cemented carbides were investigated. Dilatometric and differential thermal analyses (DTA) indicate that the compacts start to shrink at 600°C, the shrinkage rate peak is at 1190°C, and the liquid formation temperature is lower than the W-C-Co eutectic temperature (1330°C). Microstructure analysis results show that the cemented carbides with fine and homogeneous microstructure were obtained when sintered at 1430°C. Continuous and discontinuous grain growth was suppressed due to the synergistic action of VC/Cr3C2. The transverse rupture strength (TRS) of the samples reaches 4286 MPa, with the hardness HRA 92.1. The fine and homogeneous microstructure, alloy strengthening, and different phase constitutions of binder in the cemented carbides result in high hardness and TRS. Continuous and discontinuous grain growth was observed in the cemented carbide sintered at 1450°C, which results in significant decreases of hardness and TRS. It indicates that VC/Cr3C2 additions in the cemented carbides can only suppress the grain growth at a certain temperature.
基金financially supported by the Foundation of Education Department of Liaoning Province(No.L2012430)the Foundation of Science and Technology Department of Liaoning Province(No.2011221007)the Open Foundation of Key Laboratory for Advanced Materials Preparation Technology of Liaoning Province,China(No.1120211406)
文摘(Ti,Al,Zr)N/(Ti,Al,Zr,Cr)N bilayer films were deposited on cemented carbide (WC-8%Co) substrates by multi-arc ion plating (MAIP) using two Ti-AI-Zr alloy targets and one pure Cr target. To investigate the composition, morphology, and crystalline structure of the bilayer films, a number of complementary methods of elemental and structural analysis were used, namely, scanning electron microscopy (SEM), energy disperse X-ray spectroscopy (EDS), and X-ray diffraction (XRD). Adhesive strength and mechanical properties of the films were evaluated by scratch testing and Vickers microindentation, respectively. It is shown that the resulting films have a TiN-type face-centered cubic (FCC) structure. The films exhibit fully dense, uniform, and columnar morphology. Furthermore, as the bias voltages vary from -50 to -200 V, the microhardness (max. Hv001 4100) and adhesive strength (max. 〉 200 N) of the bilayer films are superior to those of the (Ti,Al,Zr)N and (Ti,Al,Zr, Cr)N monolayer films.