The glass and mineral chemistry of basaits examined from the northern central Indian ridge (NCIR) provides an insight into magma genesis around the vicinity of two transform faults: Vityaz (VT) and Vema (VM). T...The glass and mineral chemistry of basaits examined from the northern central Indian ridge (NCIR) provides an insight into magma genesis around the vicinity of two transform faults: Vityaz (VT) and Vema (VM). The studied mid-ocean ridge basalts (MORBs) from the outer ridge flank (VT area) and a near-ridge seamount (VM area) reveal that they are moderately phyric plagioclase basalts composed of plagioclase (phenocryst [An60-90] and groundmass [An35-79]), olivine (Fo81-88), diopside (Wo45-51, En25-37, Fs14-24), and titanomagnetite (FeOt -63.75 wt% and TiO2 -22.69 wt%). The wholerock composition of these basalts has similar Mg# [mole Mg/mole(Mg+Fe2+)] (VT basalt: -0.56-0.58; VM basalt: -0.57), but differ in their total alkali content (VT basalt: -2.65; VM basalt: -3.24). The bulk composition of the magma was gradually depleted in MgO and enriched in FeOt, TiO2, P2O5, and Na2O with progressive fractionation, the basalts were gradually enriched in Y and Zr and depleted in Ni and Cr. In addition, the ∑REE of magma also increased with fractionation, without any change in the (La/ Yb)N value. Glass from the VM seamount shows more fractionated characters (Mg#: 0.56-0.57) compared to the outer ridge flank lava of the VT area (Mg#: 0.63-0.65). This study concludes that present basalts experienced low-pressure crystallization at a relatively shallow depth. The geochemical changes in the NCIR magmas resulted from fractional crystallization at a shallow depth. As a consequence, spinel was the first mineral to crystallize at a pressure 〉10 kbar, followed by Fe-rich olivine at 〈10 kbar pressure.展开更多
To understand the source and nature of the ore-forming fluids of the Edmond hydrothermal field on the Central Indian Ridge, we studied the He-Ar isotope composition and fluid inclusions of the hydrothermal precipitate...To understand the source and nature of the ore-forming fluids of the Edmond hydrothermal field on the Central Indian Ridge, we studied the He-Ar isotope composition and fluid inclusions of the hydrothermal precipitates.Our results show that the sulfide samples contain noble gases He, Ne, Kr, and Xe with their abundances in between those of air-saturated water(ASW) and mid-ocean ridge basalt(MORB). The ^3He/^4He ratio varies from1.3 to 8.7 Ra(n=10, average: 5.1 Ra), whereas the ^40Ar/^36Ar ratio is from 285.3 to 314.7(n=10, average: 294.8). These results suggest that the He was derived from a mixture of MORB with variable amounts of seawater, but the Ar in the ore-forming fluids trapped in the sulfides is predominantly derived from seawater. The fluid inclusions of barite have a wide range of homogenization temperatures and salinities varying from 163℃ to 260℃ and 2.6 wt%to 8.5 wt% Na Cl equiv., respectively. It is suggested that the ore-forming fluids were produced by phase separation, which agreed with the present-day vent fluid study.展开更多
Planktic foraminifera from the calcareous substrate of a ferromanganese crust in the Vityaz Fracture Zone (VFZ), Central Indian Ridge were studied to reconstruct the early Pliocene paleoceanography of this region. E...Planktic foraminifera from the calcareous substrate of a ferromanganese crust in the Vityaz Fracture Zone (VFZ), Central Indian Ridge were studied to reconstruct the early Pliocene paleoceanography of this region. Eleven species of planktic foraminifera were encountered, among them Globorotalia menardii, Neogloboquadrina dutertrei, Globigerina bulloides and Globigerinoides tuber are prominent. Predominance of N. dutertrei in the top 3 cm of the carbonate substrate is attributed to an influx of fresh water which eventually triggered their productivity by increasing the nutrient level. The presence of G. bulloides and G. menardii in significant proportions in deeper layers suggests the prevalence of open ocean upwelling. The bulk chemical compositions of the substrate at different depth intervals indicates higher enrichment of trace metals in the upper sections which could have been supplied through oceanic water by the chemical weathering of terrestrial matter during the peak of Pliocene Asian monsoon. Thus, it is concluded that during the early Pliocene the biogenic components of the substrate were distinctly contributed by both upwelling and productivity triggered by an influx of fresh water originating from the intensification of the Asian monsoon during the early Pliocene Period.展开更多
基金supported largely by the Office of Naval Research,USA (grant no.:00144-97-1-0925,CLP 0886).This is NIO's contribution # 4362
文摘The glass and mineral chemistry of basaits examined from the northern central Indian ridge (NCIR) provides an insight into magma genesis around the vicinity of two transform faults: Vityaz (VT) and Vema (VM). The studied mid-ocean ridge basalts (MORBs) from the outer ridge flank (VT area) and a near-ridge seamount (VM area) reveal that they are moderately phyric plagioclase basalts composed of plagioclase (phenocryst [An60-90] and groundmass [An35-79]), olivine (Fo81-88), diopside (Wo45-51, En25-37, Fs14-24), and titanomagnetite (FeOt -63.75 wt% and TiO2 -22.69 wt%). The wholerock composition of these basalts has similar Mg# [mole Mg/mole(Mg+Fe2+)] (VT basalt: -0.56-0.58; VM basalt: -0.57), but differ in their total alkali content (VT basalt: -2.65; VM basalt: -3.24). The bulk composition of the magma was gradually depleted in MgO and enriched in FeOt, TiO2, P2O5, and Na2O with progressive fractionation, the basalts were gradually enriched in Y and Zr and depleted in Ni and Cr. In addition, the ∑REE of magma also increased with fractionation, without any change in the (La/ Yb)N value. Glass from the VM seamount shows more fractionated characters (Mg#: 0.56-0.57) compared to the outer ridge flank lava of the VT area (Mg#: 0.63-0.65). This study concludes that present basalts experienced low-pressure crystallization at a relatively shallow depth. The geochemical changes in the NCIR magmas resulted from fractional crystallization at a shallow depth. As a consequence, spinel was the first mineral to crystallize at a pressure 〉10 kbar, followed by Fe-rich olivine at 〈10 kbar pressure.
基金The National Natural Science Foundation of China under contract No.41306056the China Ocean Mineral Resources R&D Association Project under contract No.DY125-12-R-03the Scientific Research Fund of the Second Institute of Oceanography,SOA under contract No.JG1308
文摘To understand the source and nature of the ore-forming fluids of the Edmond hydrothermal field on the Central Indian Ridge, we studied the He-Ar isotope composition and fluid inclusions of the hydrothermal precipitates.Our results show that the sulfide samples contain noble gases He, Ne, Kr, and Xe with their abundances in between those of air-saturated water(ASW) and mid-ocean ridge basalt(MORB). The ^3He/^4He ratio varies from1.3 to 8.7 Ra(n=10, average: 5.1 Ra), whereas the ^40Ar/^36Ar ratio is from 285.3 to 314.7(n=10, average: 294.8). These results suggest that the He was derived from a mixture of MORB with variable amounts of seawater, but the Ar in the ore-forming fluids trapped in the sulfides is predominantly derived from seawater. The fluid inclusions of barite have a wide range of homogenization temperatures and salinities varying from 163℃ to 260℃ and 2.6 wt%to 8.5 wt% Na Cl equiv., respectively. It is suggested that the ore-forming fluids were produced by phase separation, which agreed with the present-day vent fluid study.
文摘Planktic foraminifera from the calcareous substrate of a ferromanganese crust in the Vityaz Fracture Zone (VFZ), Central Indian Ridge were studied to reconstruct the early Pliocene paleoceanography of this region. Eleven species of planktic foraminifera were encountered, among them Globorotalia menardii, Neogloboquadrina dutertrei, Globigerina bulloides and Globigerinoides tuber are prominent. Predominance of N. dutertrei in the top 3 cm of the carbonate substrate is attributed to an influx of fresh water which eventually triggered their productivity by increasing the nutrient level. The presence of G. bulloides and G. menardii in significant proportions in deeper layers suggests the prevalence of open ocean upwelling. The bulk chemical compositions of the substrate at different depth intervals indicates higher enrichment of trace metals in the upper sections which could have been supplied through oceanic water by the chemical weathering of terrestrial matter during the peak of Pliocene Asian monsoon. Thus, it is concluded that during the early Pliocene the biogenic components of the substrate were distinctly contributed by both upwelling and productivity triggered by an influx of fresh water originating from the intensification of the Asian monsoon during the early Pliocene Period.