The Arun mega\|antiform, a large N—S structure transversal to the tectonic trend of the E Nepal Himalaya, is a tectonic window offering a complete section of the Himalayan nappe pile, from the Lesser Himalayan zone t...The Arun mega\|antiform, a large N—S structure transversal to the tectonic trend of the E Nepal Himalaya, is a tectonic window offering a complete section of the Himalayan nappe pile, from the Lesser Himalayan zone to the Tethyan Himalaya. At the northern end of the Arun tectonic window (ATW), the Ama Drime—Nyonno Ri range of south Tibet exposes a section of that portion of the Main Central Thrust (MCT) zone and Lesser Himalayan Crystallines (LHC) which elsewhere in Nepal is concealed below the overlying Higher Himalayan Crystalline (HHC) nappe (Fig. 1). As throughout the Himalaya at the structural level of the MCT, the ATW is characterized by an inverted metamorphic field gradient characterized by a progression from chlorite to sillimanite grade from low to high structural levels of the nappe pile. Metamorphic peak temperatures rise from circa 400℃ in the pelitic and psammitic Precambrian metasediments of the Lesser Himalayan Tumlingtar Unit, to 550~620℃ in the overlying LHC, to over 700℃ in the muscovite\|free Barun Gneiss, the lowermost HHC unit in the Arun valley.展开更多
The Zhalantun terrane from the Xing’an massif, northeast China, was used to be considered as Proterozoic basements. However, amounts of detrital zircon ages from the meta-sedimentary rocks deny the existence of Preca...The Zhalantun terrane from the Xing’an massif, northeast China, was used to be considered as Proterozoic basements. However, amounts of detrital zircon ages from the meta-sedimentary rocks deny the existence of Precambrian basements recently. Notably, magmatic rocks were barely reported to limit the exact ages of the Zhalantun basements. In this study, we collected rhyolite, gabbro and quartz diorite for zircon in-situ U-Pb isotopic dating, which yield crystallization ages of ~505 Ma, ~447 Ma and ~125 Ma, respectively. Muscovite schist and siltstone define maximum depositional ages of ~499 Ma and ~489 Ma, respectively. Additionally, these dated supracrustal rocks and plutons also yield ancient detrital/xenocryst zircon ages of ~600-1000 Ma, ~1600-2220 Ma, ~2400 Ma, ~2600-2860 Ma. Based on the whole-rock major and trace element compositions, the ~505 Ma rhyolites display high SiO2 and alkaline contents, low Fe2O3T, TiO2 and Al2O3, and relatively high Mg O and Mg#, which exhibit calc-alkaline characteristics. These rhyolites yield fractionated REE patterns and negative Nb, Ta, Ti, Sr, P and Eu anomalies and positive Zr anomalies. The geochemistry, petrology and Lu-Hf isotopes imply that rhyolites were derived from the partial melting of continental basalt induced by upwelling of sub-arc mantle magmas, and then experienced fractional crystallization of plagioclase, which points to a continental arc regime. The ~447 Ma gabbros exhibit low Si O2 and alkaline contents, high Fe2 O3 T, Ti O2, Mg O and Mg#. They show minor depletions of La and Ce, flat MREE and HREE patterns, and negative Nb, Ta, Zr and Hf anomalies. Both sub-arc mantle and N-MORB-like mantle were involved in the formation of the gabbros, indicative of a probable back-arc basin tectonic setting. Given that, the previously believed Proterozoic supracrustal rocks and several plutons from the Zhalantun Precambrian basements were proved to be Paleozoic to Mesozoic rocks, among which these Paleozoic magmatic rocks were generally related to subduction regime. So far, none Proterozoic rocks have been identified from the Zhalantun Precambrian basement, though some ~600-3210 Ma ancient detrital/xenocryst zircons were reported. Combined with ancient zircon ages and newly reported ~2.5 Ga and ~1.8 Ga granites from the south of the Zhalantun, therefore, the Precambrian rocks probably once exposed in the Zhalantun while they were re-worked and consumed during later long tectonic evolutionary history, resulting in absence of Precambrian rocks in the Zhalantun.展开更多
A great amount of alkali-feldspar and alkaline granites have been found around Nenjiang, Northwest Lesser Xing’an Ranges, but their forming ages have been a controversial subject due to the lack of reliable geologica...A great amount of alkali-feldspar and alkaline granites have been found around Nenjiang, Northwest Lesser Xing’an Ranges, but their forming ages have been a controversial subject due to the lack of reliable geological and isotopic geochronological evidence. The zircon U-Pb isotopic dating results conducted in this note indicate that these granites emplaced at 260-290 Ma, coeval with the late stage of Late Paleozoic. Studies of mineralogy, petrology andgeochemistry show that they are post-orogenic A-type granites, and consist of the northeastern extension of huge belt of Late Paleozoic A-type granite along North Xinjiang-Southeast Mongolia-Central Inner Mongolia. Therefore, we can determine that the Suolunshan-Hegenshan-Zhalaite collisional suture zone extends northeastward to Heihe with the collision age of Carboniferous.展开更多
The Arun Tectonic Window (ATW) and its inverted metamorphic zonation were first described by Bordet (1961) and Hagen (1969) in their regional surveys of the eastern Nepal Himalaya. The ATW is centred on the Arun antif...The Arun Tectonic Window (ATW) and its inverted metamorphic zonation were first described by Bordet (1961) and Hagen (1969) in their regional surveys of the eastern Nepal Himalaya. The ATW is centred on the Arun antiform (“ trans\|anticlinal de l’Arun”, Bordet, 1961), a major late structure, c. 100km long, which strikes north to north\|northeast, transversely to the E—W tectonic trend of the eastern Himalaya from the lower Arun valley to southern Tibet. From south to north, i.e. from the core of the window upwards in the nappe pile, the tectonic units exposed in the ATW are:(1) The Lesser Himalayan Tumlingtar Unit (Nawakot nappes of Hagen,1969), a thick sequence of greenschist\|facies Upper Precambrian metasediments, bounded to the north by a thrust zone (Main Central Thrust 1 of Maruo & Kizaki, 1983; Main Central Thrust Zone of Meyer & Hiltner, 1993). (2) The Lesser Himalayan Crystalline nappe (LHC), comprised of staurolite to kyanite grade micaschists and granitic orthogneiss (Kathmandu Nappes of Hagen,1969), lying on top of the low\|grade metasediments. (3) The Higher Himalayan Crystalline nappe (Tibetan Slab of Bordet, 1977), bounded on both side of the ATW by thrust sheets defining a major syn\|metamorphic thrust (Main Central Thrust of Bordet,1961; Main Central Thrust 2 of Maruo & Kizaki, 1983).In this contribution some results of geological investigations in the hitherto unrecognized northern part of the ATW (Kharta region of the Arun—Phung Chu valley and Ama Drime—Nyonno Ri range), are presented. The Kharta region is 30km east of the Everest—Makalu massif and sits in the western limb of the Arun antiform, whereas the Ama Drime—Nyonno Ri Range, to the east of Kharta, is right in the core of the Arun antiform. Here the ATW exposes a section of deep tectonic levels of the Lesser Himalayan Crystalline nappe and MCT zone which elsewhere in the Nepal Himalaya are concealed below the overlying Higher Himalayan Crystalline nappe.展开更多
文摘The Arun mega\|antiform, a large N—S structure transversal to the tectonic trend of the E Nepal Himalaya, is a tectonic window offering a complete section of the Himalayan nappe pile, from the Lesser Himalayan zone to the Tethyan Himalaya. At the northern end of the Arun tectonic window (ATW), the Ama Drime—Nyonno Ri range of south Tibet exposes a section of that portion of the Main Central Thrust (MCT) zone and Lesser Himalayan Crystallines (LHC) which elsewhere in Nepal is concealed below the overlying Higher Himalayan Crystalline (HHC) nappe (Fig. 1). As throughout the Himalaya at the structural level of the MCT, the ATW is characterized by an inverted metamorphic field gradient characterized by a progression from chlorite to sillimanite grade from low to high structural levels of the nappe pile. Metamorphic peak temperatures rise from circa 400℃ in the pelitic and psammitic Precambrian metasediments of the Lesser Himalayan Tumlingtar Unit, to 550~620℃ in the overlying LHC, to over 700℃ in the muscovite\|free Barun Gneiss, the lowermost HHC unit in the Arun valley.
基金financially supported by China Geological Survey Project (Grant Number: DD20190039-01, DD20160048-01)the Fundamental Research Funds for the Central Universities (Grant Number: N160104003)
文摘The Zhalantun terrane from the Xing’an massif, northeast China, was used to be considered as Proterozoic basements. However, amounts of detrital zircon ages from the meta-sedimentary rocks deny the existence of Precambrian basements recently. Notably, magmatic rocks were barely reported to limit the exact ages of the Zhalantun basements. In this study, we collected rhyolite, gabbro and quartz diorite for zircon in-situ U-Pb isotopic dating, which yield crystallization ages of ~505 Ma, ~447 Ma and ~125 Ma, respectively. Muscovite schist and siltstone define maximum depositional ages of ~499 Ma and ~489 Ma, respectively. Additionally, these dated supracrustal rocks and plutons also yield ancient detrital/xenocryst zircon ages of ~600-1000 Ma, ~1600-2220 Ma, ~2400 Ma, ~2600-2860 Ma. Based on the whole-rock major and trace element compositions, the ~505 Ma rhyolites display high SiO2 and alkaline contents, low Fe2O3T, TiO2 and Al2O3, and relatively high Mg O and Mg#, which exhibit calc-alkaline characteristics. These rhyolites yield fractionated REE patterns and negative Nb, Ta, Ti, Sr, P and Eu anomalies and positive Zr anomalies. The geochemistry, petrology and Lu-Hf isotopes imply that rhyolites were derived from the partial melting of continental basalt induced by upwelling of sub-arc mantle magmas, and then experienced fractional crystallization of plagioclase, which points to a continental arc regime. The ~447 Ma gabbros exhibit low Si O2 and alkaline contents, high Fe2 O3 T, Ti O2, Mg O and Mg#. They show minor depletions of La and Ce, flat MREE and HREE patterns, and negative Nb, Ta, Zr and Hf anomalies. Both sub-arc mantle and N-MORB-like mantle were involved in the formation of the gabbros, indicative of a probable back-arc basin tectonic setting. Given that, the previously believed Proterozoic supracrustal rocks and several plutons from the Zhalantun Precambrian basements were proved to be Paleozoic to Mesozoic rocks, among which these Paleozoic magmatic rocks were generally related to subduction regime. So far, none Proterozoic rocks have been identified from the Zhalantun Precambrian basement, though some ~600-3210 Ma ancient detrital/xenocryst zircons were reported. Combined with ancient zircon ages and newly reported ~2.5 Ga and ~1.8 Ga granites from the south of the Zhalantun, therefore, the Precambrian rocks probably once exposed in the Zhalantun while they were re-worked and consumed during later long tectonic evolutionary history, resulting in absence of Precambrian rocks in the Zhalantun.
基金the National Natural Science Foundation of China (Grant No. 49872031)the Excellent Young Teachers and Doctor's Disciplines Foundation of the Ministry of Education of China (Grant No. 9518701).
文摘A great amount of alkali-feldspar and alkaline granites have been found around Nenjiang, Northwest Lesser Xing’an Ranges, but their forming ages have been a controversial subject due to the lack of reliable geological and isotopic geochronological evidence. The zircon U-Pb isotopic dating results conducted in this note indicate that these granites emplaced at 260-290 Ma, coeval with the late stage of Late Paleozoic. Studies of mineralogy, petrology andgeochemistry show that they are post-orogenic A-type granites, and consist of the northeastern extension of huge belt of Late Paleozoic A-type granite along North Xinjiang-Southeast Mongolia-Central Inner Mongolia. Therefore, we can determine that the Suolunshan-Hegenshan-Zhalaite collisional suture zone extends northeastward to Heihe with the collision age of Carboniferous.
文摘The Arun Tectonic Window (ATW) and its inverted metamorphic zonation were first described by Bordet (1961) and Hagen (1969) in their regional surveys of the eastern Nepal Himalaya. The ATW is centred on the Arun antiform (“ trans\|anticlinal de l’Arun”, Bordet, 1961), a major late structure, c. 100km long, which strikes north to north\|northeast, transversely to the E—W tectonic trend of the eastern Himalaya from the lower Arun valley to southern Tibet. From south to north, i.e. from the core of the window upwards in the nappe pile, the tectonic units exposed in the ATW are:(1) The Lesser Himalayan Tumlingtar Unit (Nawakot nappes of Hagen,1969), a thick sequence of greenschist\|facies Upper Precambrian metasediments, bounded to the north by a thrust zone (Main Central Thrust 1 of Maruo & Kizaki, 1983; Main Central Thrust Zone of Meyer & Hiltner, 1993). (2) The Lesser Himalayan Crystalline nappe (LHC), comprised of staurolite to kyanite grade micaschists and granitic orthogneiss (Kathmandu Nappes of Hagen,1969), lying on top of the low\|grade metasediments. (3) The Higher Himalayan Crystalline nappe (Tibetan Slab of Bordet, 1977), bounded on both side of the ATW by thrust sheets defining a major syn\|metamorphic thrust (Main Central Thrust of Bordet,1961; Main Central Thrust 2 of Maruo & Kizaki, 1983).In this contribution some results of geological investigations in the hitherto unrecognized northern part of the ATW (Kharta region of the Arun—Phung Chu valley and Ama Drime—Nyonno Ri range), are presented. The Kharta region is 30km east of the Everest—Makalu massif and sits in the western limb of the Arun antiform, whereas the Ama Drime—Nyonno Ri Range, to the east of Kharta, is right in the core of the Arun antiform. Here the ATW exposes a section of deep tectonic levels of the Lesser Himalayan Crystalline nappe and MCT zone which elsewhere in the Nepal Himalaya are concealed below the overlying Higher Himalayan Crystalline nappe.