The Spanish Central System(SCS)contains several suites of Palaeozoic mafic igneous intrusions with contrasting geochemical affinity:Ordovician tholeiitic metabasites,Variscan calc-alkaline gabbros(Gb1)and microdiorite...The Spanish Central System(SCS)contains several suites of Palaeozoic mafic igneous intrusions with contrasting geochemical affinity:Ordovician tholeiitic metabasites,Variscan calc-alkaline gabbros(Gb1)and microdiorites(Gb2),shoshonitic monzogabbros(Gb3)and alkaline diabases and lamprophyres(Gb4).Not all of these rocks are accurately dated,and several aspects of their genesis are still poorly understood.We present new whole-rock geochemical data(major and trace elements,and Sr-Nd isotopes),U-Pb and Lu-Hf isotopic ratios on magmatic zircons and 40 Ar/39Ar amphibole geochronology results in order to establish a precise chronology for the successive events of magmatism in the SCS,and discuss the nature of their mantle sources.Accurate ages have been determined for the Variscan gabbros(305-294 Ma),the microdiorites(299 Ma)and the accompanying felsic porphyries(292 Ma),the shoshonitic monzogabbros(285 Ma),and the alkaline diabases(274 Ma)and monzosyenites(271-264 Ma).According to this information,the Variscan mafic magmatism would be mainly concentrated in the range of 305-294 Ma,with a final manifestation represented by the minor shoshonitic dykes.The alkaline magmatism proved to be slightly older than previously thought and yielded at least two distinct pulses:diabases and lamprophyres-monzosyenites.Zircon Hf isotopes evidence the involvement of depleted and slightly enriched mantle sources.The bulk of the eHf values are in the broad range of-8 to+11,indicative of melting both depleted and enriched mantle regions.The high within-sample Hf isotope variation(up to-11 epsilon units)shown by samples from the Variscan series(gabbros,microdiorites and monzogabbros)could be explained mainly by hybridisation of magmas derived from heterogeneous lithospheric mantle sources.Pressure estimates indicate that the Variscan mafic magmas were extracted from the lithosphere.The Nd-Hf isotopic composition of these suites of rocks suggests the recycling of pelitic sediments during the Cadomian orogeny.Deeper(asthenospheric)mantle levels were involved in the generation of the alkaline suite,whose anomalous negative eHf values(moderately decoupled with respect to radiogenic Nd)could be associated with subducted oceanic components raised by mantle upwelling associated with lithosphere thinning and extension during the Permian.展开更多
Copper is a transition metal and an essential element for the organism,as alterations in its homeostasis leading to metal accumulation or deficiency have pathological effects in several organs,including the central ne...Copper is a transition metal and an essential element for the organism,as alterations in its homeostasis leading to metal accumulation or deficiency have pathological effects in several organs,including the central nervous system.Central copper dysregulations have been evidenced in two genetic disorders characterized by mutations in the copper-ATPases ATP7A and ATP7B,Menkes disease and Wilson’s disease,respectively,and also in multifactorial neurological disorders such as Alzheimer’s disease,Parkinson’s disease,amyotrophic lateral sclerosis,and multiple sclerosis.This review summarizes current knowledge about the role of copper in central nervous system physiology and pathology,reports about unbalances in copper levels and/or distribution under disease,describes relevant animal models for human disorders where copper metabolism genes are dysregulated,and discusses relevant therapeutic approaches modulating copper availability.Overall,alterations in copper metabolism may contribute to the etiology of central nervous system disorders and represent relevant therapeutic targets to restore tissue homeostasis.展开更多
The development of neurodegenerative diseases is closely related to the disruption of central nervous system homeostasis.Microglia,as innate immune cells,play important roles in the maintenance of central nervous syst...The development of neurodegenerative diseases is closely related to the disruption of central nervous system homeostasis.Microglia,as innate immune cells,play important roles in the maintenance of central nervous system homeostasis,injury response,and neurodegenerative diseases.Lactate has been considered a metabolic waste product,but recent studies are revealing ever more of the physiological functions of lactate.Lactylation is an important pathway in lactate function and is involved in glycolysis-related functions,macrophage polarization,neuromodulation,and angiogenesis and has also been implicated in the development of various diseases.This review provides an overview of the lactate metabolic and homeostatic regulatory processes involved in microglia lactylation,histone versus non-histone lactylation,and therapeutic approaches targeting lactate.Finally,we summarize the current research on microglia lactylation in central nervous system diseases.A deeper understanding of the metabolic regulatory mechanisms of microglia lactylation will provide more options for the treatment of central nervous system diseases.展开更多
Meningeal lymphatic vessels form a relationship between the nervous system and periphery, which is relevant in both health and disease. Meningeal lymphatic vessels not only play a key role in the drainage of brain met...Meningeal lymphatic vessels form a relationship between the nervous system and periphery, which is relevant in both health and disease. Meningeal lymphatic vessels not only play a key role in the drainage of brain metabolites but also contribute to antigen delivery and immune cell activation. The advent of novel genomic technologies has enabled rapid progress in the characterization of myeloid and lymphoid cells and their interactions with meningeal lymphatic vessels within the central nervous system. In this review, we provide an overview of the multifaceted roles of meningeal lymphatic vessels within the context of the central nervous system immune network, highlighting recent discoveries on the immunological niche provided by meningeal lymphatic vessels. Furthermore, we delve into the mechanisms of crosstalk between meningeal lymphatic vessels and immune cells in the central nervous system under both homeostatic conditions and neurodegenerative diseases, discussing how these interactions shape the pathological outcomes. Regulation of meningeal lymphatic vessel function and structure can influence lymphatic drainage, cerebrospinal fluid-borne immune modulators, and immune cell populations in aging and neurodegenerative disorders, thereby playing a key role in shaping meningeal and brain parenchyma immunity.展开更多
Mature oligodendrocytes form myelin sheaths that are crucial for the insulation of axons and efficient signal transmission in the central nervous system.Recent evidence has challenged the classical view of the functio...Mature oligodendrocytes form myelin sheaths that are crucial for the insulation of axons and efficient signal transmission in the central nervous system.Recent evidence has challenged the classical view of the functionally static mature oligodendrocyte and revealed a gamut of dynamic functions such as the ability to modulate neuronal circuitry and provide metabolic support to axons.Despite the recognition of potential heterogeneity in mature oligodendrocyte function,a comprehensive summary of mature oligodendrocyte diversity is lacking.We delve into early 20th-century studies by Robertson and Río-Hortega that laid the foundation for the modern identification of regional and morphological heterogeneity in mature oligodendrocytes.Indeed,recent morphologic and functional studies call into question the long-assumed homogeneity of mature oligodendrocyte function through the identification of distinct subtypes with varying myelination preferences.Furthermore,modern molecular investigations,employing techniques such as single cell/nucleus RNA sequencing,consistently unveil at least six mature oligodendrocyte subpopulations in the human central nervous system that are highly transcriptomically diverse and vary with central nervous system region.Age and disease related mature oligodendrocyte variation denotes the impact of pathological conditions such as multiple sclerosis,Alzheimer's disease,and psychiatric disorders.Nevertheless,caution is warranted when subclassifying mature oligodendrocytes because of the simplification needed to make conclusions about cell identity from temporally confined investigations.Future studies leveraging advanced techniques like spatial transcriptomics and single-cell proteomics promise a more nuanced understanding of mature oligodendrocyte heterogeneity.Such research avenues that precisely evaluate mature oligodendrocyte heterogeneity with care to understand the mitigating influence of species,sex,central nervous system region,age,and disease,hold promise for the development of therapeutic interventions targeting varied central nervous system pathology.展开更多
High-mobility group box 1 was first discovered in the calf thymus as a DNA-binding nuclear protein and has been widely studied in diverse fields,including neurology and neuroscience.High-mobility group box 1 in the ex...High-mobility group box 1 was first discovered in the calf thymus as a DNA-binding nuclear protein and has been widely studied in diverse fields,including neurology and neuroscience.High-mobility group box 1 in the extracellular space functions as a pro-inflammatory damage-associated molecular pattern,which has been proven to play an important role in a wide variety of central nervous system disorders such as ischemic stroke,Alzheimer’s disease,frontotemporal dementia,Parkinson’s disease,multiple sclerosis,epilepsy,and traumatic brain injury.Several drugs that inhibit high-mobility group box 1 as a damage-associated molecular pattern,such as glycyrrhizin,ethyl pyruvate,and neutralizing anti-high-mobility group box 1 antibodies,are commonly used to target high-mobility group box 1 activity in central nervous system disorders.Although it is commonly known for its detrimental inflammatory effect,high-mobility group box 1 has also been shown to have beneficial pro-regenerative roles in central nervous system disorders.In this narrative review,we provide a brief summary of the history of high-mobility group box 1 research and its characterization as a damage-associated molecular pattern,its downstream receptors,and intracellular signaling pathways,how high-mobility group box 1 exerts the repair-favoring roles in general and in the central nervous system,and clues on how to differentiate the pro-regenerative from the pro-inflammatory role.Research targeting high-mobility group box 1 in the central nervous system may benefit from differentiating between the two functions rather than overall suppression of high-mobility group box 1.展开更多
Various nanoparticle-based drug delivery systems for the treatment of neurological disorders have been widely studied.However,their inability to cross the blood–brain barrier hampers the clinical translation of these...Various nanoparticle-based drug delivery systems for the treatment of neurological disorders have been widely studied.However,their inability to cross the blood–brain barrier hampers the clinical translation of these therapeutic strategies.Liposomes are nanoparticles composed of lipid bilayers,which can effectively encapsulate drugs and improve drug delivery across the blood–brain barrier and into brain tissue through their targeting and permeability.Therefore,they can potentially treat traumatic and nontraumatic central nervous system diseases.In this review,we outlined the common properties and preparation methods of liposomes,including thin-film hydration,reverse-phase evaporation,solvent injection techniques,detergent removal methods,and microfluidics techniques.Afterwards,we comprehensively discussed the current applications of liposomes in central nervous system diseases,such as Alzheimer's disease,Parkinson's disease,Huntington's disease,amyotrophic lateral sclerosis,traumatic brain injury,spinal cord injury,and brain tumors.Most studies related to liposomes are still in the laboratory stage and have not yet entered clinical trials.Additionally,their application as drug delivery systems in clinical practice faces challenges such as drug stability,targeting efficiency,and safety.Therefore,we proposed development strategies related to liposomes to further promote their development in neurological disease research.展开更多
Exosomes,lipid bilayer-enclosed small cellular vesicles,are actively secreted by various cells and play crucial roles in intercellular communication.These nanosized vesicles transport internalized proteins,mRNA,miRNA,...Exosomes,lipid bilayer-enclosed small cellular vesicles,are actively secreted by various cells and play crucial roles in intercellular communication.These nanosized vesicles transport internalized proteins,mRNA,miRNA,and other bioactive molecules.Recent findings have provided compelling evidence that exosomes derived from stem cells hold great promise as a therapeutic modality for central nervous system disorders.These exosomes exhibit multifaceted properties including antiapoptotic,anti-inflammatory,neurogenic,and vasculogenic effects.Furthermore,exosomes offer several advantages over stem cell therapy,such as high preservation capacity,low immunogenicity,the ability to traverse the blood-brain barrier,and the potential for drug encapsulation.Consequently,researchers have turned their attention to exosomes as a novel therapeutic avenue.Nonetheless,akin to the limitations of stem cell treatment,the limited accumulation of exosomes in the injured brain poses a challenge to their clinical application.To overcome this hurdle,intranasal administration has emerged as a non-invasive and efficacious route for delivering drugs to the central nervous system.By exploiting the olfactory and trigeminal nerve axons,this approach enables the direct transport of therapeutics to the brain while bypassing the blood-brain barrier.Notably,exosomes,owing to their small size,can readily access the nerve pathways using this method.As a result,intranasal administration has gained increasing recognition as an optimal therapeutic strategy for exosomebased treatments.In this comprehensive review,we aim to provide an overview of both basic and clinical research studies investigating the intranasal administration of exosomes for the treatment of central nervous system diseases.Furthermore,we elucidate the underlying therapeutic mechanisms and offer insights into the prospect of this approach.展开更多
Central nervous system injuries have a high rate of resulting in disability and mortality;however,at present,effective treatments are lacking.Programmed cell death,which is a genetically determined fo rm of active and...Central nervous system injuries have a high rate of resulting in disability and mortality;however,at present,effective treatments are lacking.Programmed cell death,which is a genetically determined fo rm of active and ordered cell death with many types,has recently attra cted increasing attention due to its functions in determining the fate of cell survival.A growing number of studies have suggested that programmed cell death is involved in central nervous system injuries and plays an important role in the progression of brain damage.In this review,we provide an ove rview of the role of programmed cell death in central nervous system injuries,including the pathways involved in mitophagy,pyroptosis,ferroptosis,and necroptosis,and the underlying mechanisms by which mitophagy regulates pyroptosis,ferroptosis,and necro ptosis.We also discuss the new direction of therapeutic strategies to rgeting mitophagy for the treatment of central nervous system injuries,with the aim to determine the connection between programmed cell death and central nervous system injuries and to identify new therapies to modulate programmed cell death following central nervous system injury.In conclusion,based on these properties and effects,interventions targeting programmed cell death could be developed as potential therapeutic agents for central nervous system injury patients.展开更多
Cytokines including tumor necrosis factor, interleukins, interferons, and chemokines are abundantly produced in various diseases. As pleiotropic factors, cytokines are involved in nearly every aspect of cellular funct...Cytokines including tumor necrosis factor, interleukins, interferons, and chemokines are abundantly produced in various diseases. As pleiotropic factors, cytokines are involved in nearly every aspect of cellular functions such as migration, survival, proliferation, and differentiation. Oligodendrocytes are the myelin-forming cells in the central nervous system and play critical roles in the conduction of action potentials, supply of metabolic components for axons, and other functions. Emerging evidence suggests that both oligodendrocytes and oligodendrocyte precursor cells are vulnerable to cytokines released under pathological conditions. This review mainly summarizes the effects of cytokines on oligodendrocyte lineage cells in central nervous system diseases. A comprehensive understanding of the effects of cytokines on oligodendrocyte lineage cells contributes to our understanding of central nervous system diseases and offers insights into treatment strategies.展开更多
CD36 is a highly glycosylated integral membrane protein that belongs to the scavenger receptor class B family and regulates the pathological progress of metabolic diseases.CD36 was recently found to be widely expresse...CD36 is a highly glycosylated integral membrane protein that belongs to the scavenger receptor class B family and regulates the pathological progress of metabolic diseases.CD36 was recently found to be widely expressed in various cell types in the nervous system,including endothelial cells,pericytes,astrocytes,and microglia.CD36 mediates a number of regulatory processes,such as endothelial dysfunction,oxidative stress,mitochondrial dysfunction,and inflammatory responses,which are involved in many central nervous system diseases,such as stroke,Alzheimer’s disease,Parkinson’s disease,and spinal cord injury.CD36 antagonists can suppress CD36 expression or prevent CD36 binding to its ligand,thereby achieving inhibition of CD36-mediated pathways or functions.Here,we reviewed the mechanisms of action of CD36 antagonists,such as Salvianolic acid B,tanshinone IIA,curcumin,sulfosuccinimidyl oleate,antioxidants,and small-molecule compounds.Moreover,we predicted the structures of binding sites between CD36 and antagonists.These sites can provide targets for more efficient and safer CD36 antagonists for the treatment of central nervous system diseases.展开更多
Based on seismic,drilling,and source rock analysis data,the petroleum geological characteristics and future exploration direction of the oil-rich sags in the Central and West African Rift System(CWARS)are discussed.Th...Based on seismic,drilling,and source rock analysis data,the petroleum geological characteristics and future exploration direction of the oil-rich sags in the Central and West African Rift System(CWARS)are discussed.The study shows that the Central African Rift System mainly develops high-quality lacustrine source rocks in the Lower Cretaceous,and the West African Rift System mainly develops high-quality terrigenous organic matter-rich marine source rocks in the Upper Cretaceous,and the two types of source rocks provide a material basis for the enrichment of oil and gas in the CWARS.Multiple sets of reservoir rocks including fractured basement and three sets of regional cap rocks in the Lower Cretaceous,the Upper Cretaceous,and the Paleogene are developed in the CWARS.Since the Late Mesozoic,due to the geodynamic factors including the dextral strike-slip movement of the Central African Shear Zone,the basins in different directions of the CWARS differ in terms of rifting stages,intervals of regional cap rocks,trap types and accumulation models.The NE-SW trending basins have mainly preserved one stage of rifting in the Early Cretaceous,with regional cap rocks developed in the Lower Cretaceous strata,forming traps of reverse anticlines,flower-shaped structures and basement buried hill,and two types of hydrocarbon accumulation models of"source and reservoir in the same formation,and accumulation inside source rocks"and"up-source and down-reservoir,and accumulation below source rocks".The NW–SE basins are characterized by multiple rifting stages superimposition,with the development of regional cap rocks in the Upper Cretaceous and Paleogene,forming traps of draping anticlines,faulted anticlines,antithetic fault blocks and the accumulation model of"down-source and up-reservoir,and accumulation above source rocks".The combination of reservoir and cap rocks inside source rocks of basins with multiple superimposed rifting stages,as well as the lithologic reservoirs and the shale oil inside source rocks of strong inversion basins are important fields for future exploration in basins of the CWARS.展开更多
BACKGROUND Primary central nervous system lymphoma(PCNSL)is a non-Hodgkin lymphoma that originates in the central nervous system(CNS)and is exclusively limited to the CNS.Although most PCNSLs are diffuse large B-cell ...BACKGROUND Primary central nervous system lymphoma(PCNSL)is a non-Hodgkin lymphoma that originates in the central nervous system(CNS)and is exclusively limited to the CNS.Although most PCNSLs are diffuse large B-cell lymphomas,primary CNS T-cell lymphomas(PCNSTLs)are rare.PCNSTLs typically demonstrate some degree of enhancement on contrast-enhanced magnetic resonance imaging(MRI).To the best of our knowledge,non-enhancing PCNSTL has not been reported previously.CASE SUMMARY A 69-year-old male presented to the neurology department with complaints of mild cognitive impairment and gradual onset of left lower leg weakness over a span of two weeks.Initial MRI showed asymmetric T2-hyperintense lesions within the brain.No enhancement was observed on the contrast-enhanced T1 image.The initial diagnosis was neuro-Behçet’s disease.Despite high-dose steroid therapy,no alterations in the lesions were identified on initial MRI.The patient’s symptoms deteriorated further.An MRI performed one month after the initial scan revealed an increased lesion extent.Subsequently,brain biopsy confirmed the diagnosis of PCNSTL.The patient underwent definitive combined chemoradiotherapy.However,the patient developed bacteremia and died of septic shock approximately three months after diagnosis.CONCLUSION The absence of enhancement in the lesion did not rule out PCNSTL.A biopsy approach is advisable for pathological confirmation.展开更多
Rice production is crucial for food security in China,and its relationship with rural labor migration has been studied extensively.Labor migration in rural China has taken new forms in recent years.There has been a di...Rice production is crucial for food security in China,and its relationship with rural labor migration has been studied extensively.Labor migration in rural China has taken new forms in recent years.There has been a discernible trend wherein adult children have started migrating to cities while their elderly parents return to villages to re-engage in on-farm work.The phenomenon has notably shaped the intergenerational division of labor(IDL)within households.However,it remains to be seen how farmers adjust their rice production systems in response to the IDL.The age of 60 years for employment injury insurance is the eligibility threshold for off-farm employment and is used to obtain a source of exogenous variation in the IDL.Based on a representative household survey of 1,752 rice farmers in the Hubei Province of Central China,our fuzzy regression discontinuity analysis reveals that farmers in IDL households are more likely to adopt ratoon rice(RR)than single cropping rice(SR)or double cropping rice(DR).The effect of the IDL varies under different levels of operational scales and specialized agricultural service availability.Further analysis suggests that farmers’arrangements are associated with two potential mechanisms of downward intergenerational transfer.Monetary transfer for urban housing purchases increases RR in IDL households,and time transfer for intergenerational childcare significantly promotes SR in IDL households.This study enhances the understanding of the relationship between rural labor migration and rice production in China,providing a reference for adjusting rice production systems to ensure food security.展开更多
AIM:To investigate the association between central serous chorioretinopathy(CSC)and Helicobacter pylori(Hp)by summarizing all available evidence.METHODS:The Scopus,Embase,EBSCO,PubMed,Web of Science,and Cochrane Libra...AIM:To investigate the association between central serous chorioretinopathy(CSC)and Helicobacter pylori(Hp)by summarizing all available evidence.METHODS:The Scopus,Embase,EBSCO,PubMed,Web of Science,and Cochrane Library databases for all relevant studies published from inception to October 2022 were searched,and manually searched for relevant reference lists as a supplement.Studies investigating the association between CSC and Hp infection were included.Finally,8 case-control studies were included in the Meta-analysis after study selection.RESULTS:The results showed no significant correlation between Hp infection and CSC[odds ratio(OR)1.89,95%confidential interval(CI)0.58–6.15,I2=96%,P=0.29].After subgroup analysis based on the degree of development of the study(developing/developed countries),it was found that the results of the two subgroups were the same as the whole,and no significant difference between the two subgroups existed.Meta-regression showed that the effect of sample size on heterogeneity among studies was more prominent(P<0.01,adjusted R^(2)=89.72%),which can explain 89.72%of the sources of heterogeneity.CONCLUSION:This Meta-analysis reveals no significant correlation between Hp infection and CSC,which still warrants further well-designed extensive sample studies to reach a more reliable conclusion and promote a better understanding of the treatment of CSC.展开更多
The Xihu Depression is the largest hydrocarbon-bearing depression of the East China Sea Shelf Basin(also referred to as the ECSSB).However,the depositional systems and reservoir distribution of the Oligocene Huagang F...The Xihu Depression is the largest hydrocarbon-bearing depression of the East China Sea Shelf Basin(also referred to as the ECSSB).However,the depositional systems and reservoir distribution of the Oligocene Huagang Formation in the Xihu Depression are still controversial.Under the guidance of sedimentology and stratigraphy,this study documented a marine-terrestrial transitional environment in the restricted bay setting of the Oligocene Huagang Formation through core description,well logging,and seismic data analysis.This study also revealed that the Oligocene Huagang Formation is dominated by tidal delta,estuary,and gravity flow deposits in the central anticline zone of the Xihu Depression.The new understanding of the sedimentary systems and the discovery of the transgressive gap in the eastern Diaoyu Islands uplift explain the origin of fine-grained sediments and the EW-trending sand bodies in the central depression and the sand bodies parallel to shoreline in the west slope belt,which cannot be explained by previous study results,such as southern transgression or fluvial deltas and even lacustrine deposition.Moreover,the tidal channels,tidal sand flats,and gravity flow sand bodies formed by the transgressive tides are high-quality reservoirs.The study will provide a basis for well placement and serve as guidance for the selection of favorable hydrocarbon exploration areas in the Xihu Depression.展开更多
In this editorial I comment on the article,published in the current issue of the World Journal of Clinical Oncology.Primary central nervous system lymphoma(PCNSL)is a disease of elderly and immunocompromised patients....In this editorial I comment on the article,published in the current issue of the World Journal of Clinical Oncology.Primary central nervous system lymphoma(PCNSL)is a disease of elderly and immunocompromised patients.The authors reported clinical results of 19 patients with PCNSL treated with zanubrutinib/high dose methotrexate(HD-MTX)until disease progression.They demonstrated that the combination of zanubrutinib with HD-MTX led to a marked clinical response and tolerability among these patients.They also observed that cerebrospinal fluid liquid biopsy to detect circulating tumor DNA may be a good option for evaluating treatment response and tumor burden in patients with PCNSL.PCNSL is a challenging disease for treatment as these patients present with different neurological states and comorbidities.Treatment has evolved over the years from whole brain radiotherapy to HD-MTX followed by autologous stem cell transplant.Gradually,treatment of patients with PCNSL is going to become individualized.展开更多
In this editorial,we comment on the article by Wang et al.This manuscript explores the potential synergistic effects of combining zanubrutinib,a novel oral inhibitor of Bruton’s tyrosine kinase,with high-dose methotr...In this editorial,we comment on the article by Wang et al.This manuscript explores the potential synergistic effects of combining zanubrutinib,a novel oral inhibitor of Bruton’s tyrosine kinase,with high-dose methotrexate(HD-MTX)as a therapeutic intervention for primary central nervous system lymphoma(PCNSL).The study involves a retrospective analysis of 19 PCNSL patients,highlighting clinicopathological characteristics,treatment outcomes,and genomic biomarkers.The results indicate the combination’s good tolerance and strong antitumor activity,with an 84.2%overall response rate.The authors emphasize the potential of zanubrutinib to modulate key genomic features of PCNSL,particularly mutations in myeloid differentiation primary response 88 and cluster of differentiation 79B.Furthermore,the study investigates the role of circulating tumor DNA in cerebrospinal fluid for disease surveillance and treatment response monitoring.In essence,the study provides valuable insights into the potential of combining zanubrutinib with HD-MTX as a frontline therapeutic regimen for PCNSL.The findings underscore the importance of exploring alternative treatment modalities and monitoring genomic and liquid biopsy markers to optimize patient outcomes.While the findings suggest promise,the study’s limitations should be considered,and further research is needed to establish the clinical relevance of this therapeutic approach for PCNSL.展开更多
Objective:To summarize the clinical features,imaging manifestations,therapeutic options,and prognosis of the primary angiitis of the central nervous system(PACNS)and to explore the role of high-resolution magnetic res...Objective:To summarize the clinical features,imaging manifestations,therapeutic options,and prognosis of the primary angiitis of the central nervous system(PACNS)and to explore the role of high-resolution magnetic resonance imaging(HR-MRI)in the PACNS diagnosis and treatment.Methods:One patient with PACNS treated by HR-MRI was retrospectively analyzed and summarized by combining relevant literature.Results:The patient was a young female who was hospitalized with progressive cerebral infarction and multiple intracranial arterial stenosis.HR-MRI indicated vasculitic changes.After excluding other diseases,hormone shock combined with immunosuppression was given,followed by long-term rehabilitation treatment.The patient’s condition tended to stabilize,and the prognosis was satisfactory.Conclusion PACNS is challenging to diagnose and is characterized by poor prognosis and easy recurrence.HR-MRI plays an important role in the clinical diagnosis and treatment adjustment for PACNS.展开更多
Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes...Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes at individual injury sites,neglecting multilevel pathological analysis of the overall nervous system and target organs.This has led to restrictions on current therapeutic approaches.In this paper,we first summarize the potential mechanisms of peripheral nerve injury from a holistic perspective,covering the central nervous system,peripheral nervous system,and target organs.After peripheral nerve injury,the cortical plasticity of the brain is altered due to damage to and regeneration of peripheral nerves;changes such as neuronal apoptosis and axonal demyelination occur in the spinal cord.The nerve will undergo axonal regeneration,activation of Schwann cells,inflammatory response,and vascular system regeneration at the injury site.Corresponding damage to target organs can occur,including skeletal muscle atrophy and sensory receptor disruption.We then provide a brief review of the research advances in therapeutic approaches to peripheral nerve injury.The main current treatments are conducted passively and include physical factor rehabilitation,pharmacological treatments,cell-based therapies,and physical exercise.However,most treatments only partially address the problem and cannot complete the systematic recovery of the entire central nervous system-peripheral nervous system-target organ pathway.Therefore,we should further explore multilevel treatment options that produce effective,long-lasting results,perhaps requiring a combination of passive(traditional)and active(novel)treatment methods to stimulate rehabilitation at the central-peripheral-target organ levels to achieve better functional recovery.展开更多
基金supported by the CGL2016-78796 project of the Ministerio de Economiay Competitividad of Spain and the UCM Research Group 2018/19 n°910492。
文摘The Spanish Central System(SCS)contains several suites of Palaeozoic mafic igneous intrusions with contrasting geochemical affinity:Ordovician tholeiitic metabasites,Variscan calc-alkaline gabbros(Gb1)and microdiorites(Gb2),shoshonitic monzogabbros(Gb3)and alkaline diabases and lamprophyres(Gb4).Not all of these rocks are accurately dated,and several aspects of their genesis are still poorly understood.We present new whole-rock geochemical data(major and trace elements,and Sr-Nd isotopes),U-Pb and Lu-Hf isotopic ratios on magmatic zircons and 40 Ar/39Ar amphibole geochronology results in order to establish a precise chronology for the successive events of magmatism in the SCS,and discuss the nature of their mantle sources.Accurate ages have been determined for the Variscan gabbros(305-294 Ma),the microdiorites(299 Ma)and the accompanying felsic porphyries(292 Ma),the shoshonitic monzogabbros(285 Ma),and the alkaline diabases(274 Ma)and monzosyenites(271-264 Ma).According to this information,the Variscan mafic magmatism would be mainly concentrated in the range of 305-294 Ma,with a final manifestation represented by the minor shoshonitic dykes.The alkaline magmatism proved to be slightly older than previously thought and yielded at least two distinct pulses:diabases and lamprophyres-monzosyenites.Zircon Hf isotopes evidence the involvement of depleted and slightly enriched mantle sources.The bulk of the eHf values are in the broad range of-8 to+11,indicative of melting both depleted and enriched mantle regions.The high within-sample Hf isotope variation(up to-11 epsilon units)shown by samples from the Variscan series(gabbros,microdiorites and monzogabbros)could be explained mainly by hybridisation of magmas derived from heterogeneous lithospheric mantle sources.Pressure estimates indicate that the Variscan mafic magmas were extracted from the lithosphere.The Nd-Hf isotopic composition of these suites of rocks suggests the recycling of pelitic sediments during the Cadomian orogeny.Deeper(asthenospheric)mantle levels were involved in the generation of the alkaline suite,whose anomalous negative eHf values(moderately decoupled with respect to radiogenic Nd)could be associated with subducted oceanic components raised by mantle upwelling associated with lithosphere thinning and extension during the Permian.
文摘Copper is a transition metal and an essential element for the organism,as alterations in its homeostasis leading to metal accumulation or deficiency have pathological effects in several organs,including the central nervous system.Central copper dysregulations have been evidenced in two genetic disorders characterized by mutations in the copper-ATPases ATP7A and ATP7B,Menkes disease and Wilson’s disease,respectively,and also in multifactorial neurological disorders such as Alzheimer’s disease,Parkinson’s disease,amyotrophic lateral sclerosis,and multiple sclerosis.This review summarizes current knowledge about the role of copper in central nervous system physiology and pathology,reports about unbalances in copper levels and/or distribution under disease,describes relevant animal models for human disorders where copper metabolism genes are dysregulated,and discusses relevant therapeutic approaches modulating copper availability.Overall,alterations in copper metabolism may contribute to the etiology of central nervous system disorders and represent relevant therapeutic targets to restore tissue homeostasis.
文摘The development of neurodegenerative diseases is closely related to the disruption of central nervous system homeostasis.Microglia,as innate immune cells,play important roles in the maintenance of central nervous system homeostasis,injury response,and neurodegenerative diseases.Lactate has been considered a metabolic waste product,but recent studies are revealing ever more of the physiological functions of lactate.Lactylation is an important pathway in lactate function and is involved in glycolysis-related functions,macrophage polarization,neuromodulation,and angiogenesis and has also been implicated in the development of various diseases.This review provides an overview of the lactate metabolic and homeostatic regulatory processes involved in microglia lactylation,histone versus non-histone lactylation,and therapeutic approaches targeting lactate.Finally,we summarize the current research on microglia lactylation in central nervous system diseases.A deeper understanding of the metabolic regulatory mechanisms of microglia lactylation will provide more options for the treatment of central nervous system diseases.
基金supported by the National Natural Science Foundation of China, No.82274616the Key Laboratory Project for General Universities in Guangdong Province, No.2019KSYS005Guangdong Province Science and Technology Plan International Cooperation Project, No.2020A0505100052 (all to QW)。
文摘Meningeal lymphatic vessels form a relationship between the nervous system and periphery, which is relevant in both health and disease. Meningeal lymphatic vessels not only play a key role in the drainage of brain metabolites but also contribute to antigen delivery and immune cell activation. The advent of novel genomic technologies has enabled rapid progress in the characterization of myeloid and lymphoid cells and their interactions with meningeal lymphatic vessels within the central nervous system. In this review, we provide an overview of the multifaceted roles of meningeal lymphatic vessels within the context of the central nervous system immune network, highlighting recent discoveries on the immunological niche provided by meningeal lymphatic vessels. Furthermore, we delve into the mechanisms of crosstalk between meningeal lymphatic vessels and immune cells in the central nervous system under both homeostatic conditions and neurodegenerative diseases, discussing how these interactions shape the pathological outcomes. Regulation of meningeal lymphatic vessel function and structure can influence lymphatic drainage, cerebrospinal fluid-borne immune modulators, and immune cell populations in aging and neurodegenerative disorders, thereby playing a key role in shaping meningeal and brain parenchyma immunity.
基金supported by a grant from the Progressive MS Alliance(BRAVE in MS)Le Grand Portage Fund。
文摘Mature oligodendrocytes form myelin sheaths that are crucial for the insulation of axons and efficient signal transmission in the central nervous system.Recent evidence has challenged the classical view of the functionally static mature oligodendrocyte and revealed a gamut of dynamic functions such as the ability to modulate neuronal circuitry and provide metabolic support to axons.Despite the recognition of potential heterogeneity in mature oligodendrocyte function,a comprehensive summary of mature oligodendrocyte diversity is lacking.We delve into early 20th-century studies by Robertson and Río-Hortega that laid the foundation for the modern identification of regional and morphological heterogeneity in mature oligodendrocytes.Indeed,recent morphologic and functional studies call into question the long-assumed homogeneity of mature oligodendrocyte function through the identification of distinct subtypes with varying myelination preferences.Furthermore,modern molecular investigations,employing techniques such as single cell/nucleus RNA sequencing,consistently unveil at least six mature oligodendrocyte subpopulations in the human central nervous system that are highly transcriptomically diverse and vary with central nervous system region.Age and disease related mature oligodendrocyte variation denotes the impact of pathological conditions such as multiple sclerosis,Alzheimer's disease,and psychiatric disorders.Nevertheless,caution is warranted when subclassifying mature oligodendrocytes because of the simplification needed to make conclusions about cell identity from temporally confined investigations.Future studies leveraging advanced techniques like spatial transcriptomics and single-cell proteomics promise a more nuanced understanding of mature oligodendrocyte heterogeneity.Such research avenues that precisely evaluate mature oligodendrocyte heterogeneity with care to understand the mitigating influence of species,sex,central nervous system region,age,and disease,hold promise for the development of therapeutic interventions targeting varied central nervous system pathology.
基金supported by a grant of the M.D.-Ph.D./Medical Scientist Training Program through the Korea Health Industry Development Institute(KHIDI)funded by the Ministry of Health&Welfare,Republic of Korea(to HK)+3 种基金supported by National Research Foundation of Korea(NRF)grants funded by the Korean government(MSITMinistry of Science and ICT)(NRF2019R1A5A2026045 and NRF-2021R1F1A1061819)a grant from the Korean Health Technology R&D Project through the Korea Health Industry Development Institute(KHIDI),funded by the Ministry of Health&Welfare,Republic of Korea(HR21C1003)New Faculty Research Fund of Ajou University School of Medicine(to JYC)。
文摘High-mobility group box 1 was first discovered in the calf thymus as a DNA-binding nuclear protein and has been widely studied in diverse fields,including neurology and neuroscience.High-mobility group box 1 in the extracellular space functions as a pro-inflammatory damage-associated molecular pattern,which has been proven to play an important role in a wide variety of central nervous system disorders such as ischemic stroke,Alzheimer’s disease,frontotemporal dementia,Parkinson’s disease,multiple sclerosis,epilepsy,and traumatic brain injury.Several drugs that inhibit high-mobility group box 1 as a damage-associated molecular pattern,such as glycyrrhizin,ethyl pyruvate,and neutralizing anti-high-mobility group box 1 antibodies,are commonly used to target high-mobility group box 1 activity in central nervous system disorders.Although it is commonly known for its detrimental inflammatory effect,high-mobility group box 1 has also been shown to have beneficial pro-regenerative roles in central nervous system disorders.In this narrative review,we provide a brief summary of the history of high-mobility group box 1 research and its characterization as a damage-associated molecular pattern,its downstream receptors,and intracellular signaling pathways,how high-mobility group box 1 exerts the repair-favoring roles in general and in the central nervous system,and clues on how to differentiate the pro-regenerative from the pro-inflammatory role.Research targeting high-mobility group box 1 in the central nervous system may benefit from differentiating between the two functions rather than overall suppression of high-mobility group box 1.
基金supported by the National Natural Science Foundation of China, Nos. 82271411 (to RG), 51803072 (to WLiu)grants from the Department of Finance of Jilin Province, Nos. 2022SCZ25 (to RG), 2022SCZ10 (to WLiu), 2021SCZ07 (to RG)+2 种基金Jilin Provincial Science and Technology Program, No. YDZJ202201ZYTS038 (to WLiu)The Youth Support Programmed Project of China-Japan Union Hospital of Jilin University, No. 2022qnpy11 (to WLuo)The Project of China-Japan Union Hospital of Jilin University, No. XHQMX20233 (to RG)
文摘Various nanoparticle-based drug delivery systems for the treatment of neurological disorders have been widely studied.However,their inability to cross the blood–brain barrier hampers the clinical translation of these therapeutic strategies.Liposomes are nanoparticles composed of lipid bilayers,which can effectively encapsulate drugs and improve drug delivery across the blood–brain barrier and into brain tissue through their targeting and permeability.Therefore,they can potentially treat traumatic and nontraumatic central nervous system diseases.In this review,we outlined the common properties and preparation methods of liposomes,including thin-film hydration,reverse-phase evaporation,solvent injection techniques,detergent removal methods,and microfluidics techniques.Afterwards,we comprehensively discussed the current applications of liposomes in central nervous system diseases,such as Alzheimer's disease,Parkinson's disease,Huntington's disease,amyotrophic lateral sclerosis,traumatic brain injury,spinal cord injury,and brain tumors.Most studies related to liposomes are still in the laboratory stage and have not yet entered clinical trials.Additionally,their application as drug delivery systems in clinical practice faces challenges such as drug stability,targeting efficiency,and safety.Therefore,we proposed development strategies related to liposomes to further promote their development in neurological disease research.
基金supported by KAKENHI under grant number 23K08535,22K09274(to MK)。
文摘Exosomes,lipid bilayer-enclosed small cellular vesicles,are actively secreted by various cells and play crucial roles in intercellular communication.These nanosized vesicles transport internalized proteins,mRNA,miRNA,and other bioactive molecules.Recent findings have provided compelling evidence that exosomes derived from stem cells hold great promise as a therapeutic modality for central nervous system disorders.These exosomes exhibit multifaceted properties including antiapoptotic,anti-inflammatory,neurogenic,and vasculogenic effects.Furthermore,exosomes offer several advantages over stem cell therapy,such as high preservation capacity,low immunogenicity,the ability to traverse the blood-brain barrier,and the potential for drug encapsulation.Consequently,researchers have turned their attention to exosomes as a novel therapeutic avenue.Nonetheless,akin to the limitations of stem cell treatment,the limited accumulation of exosomes in the injured brain poses a challenge to their clinical application.To overcome this hurdle,intranasal administration has emerged as a non-invasive and efficacious route for delivering drugs to the central nervous system.By exploiting the olfactory and trigeminal nerve axons,this approach enables the direct transport of therapeutics to the brain while bypassing the blood-brain barrier.Notably,exosomes,owing to their small size,can readily access the nerve pathways using this method.As a result,intranasal administration has gained increasing recognition as an optimal therapeutic strategy for exosomebased treatments.In this comprehensive review,we aim to provide an overview of both basic and clinical research studies investigating the intranasal administration of exosomes for the treatment of central nervous system diseases.Furthermore,we elucidate the underlying therapeutic mechanisms and offer insights into the prospect of this approach.
基金supported by the National Natural Science Foundation of China,No.82101461(to ZL)。
文摘Central nervous system injuries have a high rate of resulting in disability and mortality;however,at present,effective treatments are lacking.Programmed cell death,which is a genetically determined fo rm of active and ordered cell death with many types,has recently attra cted increasing attention due to its functions in determining the fate of cell survival.A growing number of studies have suggested that programmed cell death is involved in central nervous system injuries and plays an important role in the progression of brain damage.In this review,we provide an ove rview of the role of programmed cell death in central nervous system injuries,including the pathways involved in mitophagy,pyroptosis,ferroptosis,and necroptosis,and the underlying mechanisms by which mitophagy regulates pyroptosis,ferroptosis,and necro ptosis.We also discuss the new direction of therapeutic strategies to rgeting mitophagy for the treatment of central nervous system injuries,with the aim to determine the connection between programmed cell death and central nervous system injuries and to identify new therapies to modulate programmed cell death following central nervous system injury.In conclusion,based on these properties and effects,interventions targeting programmed cell death could be developed as potential therapeutic agents for central nervous system injury patients.
基金supported by the Natural Science Foundation of Zhejiang Province,No.LQ23C090003 (to CZ)the Major Project on Brain Science and Analog Brain Research of Ministry of Science and Technology of China,No.2022ZD0204701 (to MQ)the National Natural Science Foundation of China,No.32170969 (to MQ)。
文摘Cytokines including tumor necrosis factor, interleukins, interferons, and chemokines are abundantly produced in various diseases. As pleiotropic factors, cytokines are involved in nearly every aspect of cellular functions such as migration, survival, proliferation, and differentiation. Oligodendrocytes are the myelin-forming cells in the central nervous system and play critical roles in the conduction of action potentials, supply of metabolic components for axons, and other functions. Emerging evidence suggests that both oligodendrocytes and oligodendrocyte precursor cells are vulnerable to cytokines released under pathological conditions. This review mainly summarizes the effects of cytokines on oligodendrocyte lineage cells in central nervous system diseases. A comprehensive understanding of the effects of cytokines on oligodendrocyte lineage cells contributes to our understanding of central nervous system diseases and offers insights into treatment strategies.
基金supported by the National Major Project of Research and Development,No.2022YFA1105500(to SZ)the National Natural Science Foundation of China,No.81870975(to SZ)Innovation Program for Graduate Students in Jiangsu Province of China,No.KYCX223335(to MZ)。
文摘CD36 is a highly glycosylated integral membrane protein that belongs to the scavenger receptor class B family and regulates the pathological progress of metabolic diseases.CD36 was recently found to be widely expressed in various cell types in the nervous system,including endothelial cells,pericytes,astrocytes,and microglia.CD36 mediates a number of regulatory processes,such as endothelial dysfunction,oxidative stress,mitochondrial dysfunction,and inflammatory responses,which are involved in many central nervous system diseases,such as stroke,Alzheimer’s disease,Parkinson’s disease,and spinal cord injury.CD36 antagonists can suppress CD36 expression or prevent CD36 binding to its ligand,thereby achieving inhibition of CD36-mediated pathways or functions.Here,we reviewed the mechanisms of action of CD36 antagonists,such as Salvianolic acid B,tanshinone IIA,curcumin,sulfosuccinimidyl oleate,antioxidants,and small-molecule compounds.Moreover,we predicted the structures of binding sites between CD36 and antagonists.These sites can provide targets for more efficient and safer CD36 antagonists for the treatment of central nervous system diseases.
基金Supported by the National Natural Science Foundation Project(92255302)National Science and Technology Major Project(2016ZX05029005)Scientific Research and Technological Development Project of PetroChina(2021DJ31).
文摘Based on seismic,drilling,and source rock analysis data,the petroleum geological characteristics and future exploration direction of the oil-rich sags in the Central and West African Rift System(CWARS)are discussed.The study shows that the Central African Rift System mainly develops high-quality lacustrine source rocks in the Lower Cretaceous,and the West African Rift System mainly develops high-quality terrigenous organic matter-rich marine source rocks in the Upper Cretaceous,and the two types of source rocks provide a material basis for the enrichment of oil and gas in the CWARS.Multiple sets of reservoir rocks including fractured basement and three sets of regional cap rocks in the Lower Cretaceous,the Upper Cretaceous,and the Paleogene are developed in the CWARS.Since the Late Mesozoic,due to the geodynamic factors including the dextral strike-slip movement of the Central African Shear Zone,the basins in different directions of the CWARS differ in terms of rifting stages,intervals of regional cap rocks,trap types and accumulation models.The NE-SW trending basins have mainly preserved one stage of rifting in the Early Cretaceous,with regional cap rocks developed in the Lower Cretaceous strata,forming traps of reverse anticlines,flower-shaped structures and basement buried hill,and two types of hydrocarbon accumulation models of"source and reservoir in the same formation,and accumulation inside source rocks"and"up-source and down-reservoir,and accumulation below source rocks".The NW–SE basins are characterized by multiple rifting stages superimposition,with the development of regional cap rocks in the Upper Cretaceous and Paleogene,forming traps of draping anticlines,faulted anticlines,antithetic fault blocks and the accumulation model of"down-source and up-reservoir,and accumulation above source rocks".The combination of reservoir and cap rocks inside source rocks of basins with multiple superimposed rifting stages,as well as the lithologic reservoirs and the shale oil inside source rocks of strong inversion basins are important fields for future exploration in basins of the CWARS.
文摘BACKGROUND Primary central nervous system lymphoma(PCNSL)is a non-Hodgkin lymphoma that originates in the central nervous system(CNS)and is exclusively limited to the CNS.Although most PCNSLs are diffuse large B-cell lymphomas,primary CNS T-cell lymphomas(PCNSTLs)are rare.PCNSTLs typically demonstrate some degree of enhancement on contrast-enhanced magnetic resonance imaging(MRI).To the best of our knowledge,non-enhancing PCNSTL has not been reported previously.CASE SUMMARY A 69-year-old male presented to the neurology department with complaints of mild cognitive impairment and gradual onset of left lower leg weakness over a span of two weeks.Initial MRI showed asymmetric T2-hyperintense lesions within the brain.No enhancement was observed on the contrast-enhanced T1 image.The initial diagnosis was neuro-Behçet’s disease.Despite high-dose steroid therapy,no alterations in the lesions were identified on initial MRI.The patient’s symptoms deteriorated further.An MRI performed one month after the initial scan revealed an increased lesion extent.Subsequently,brain biopsy confirmed the diagnosis of PCNSTL.The patient underwent definitive combined chemoradiotherapy.However,the patient developed bacteremia and died of septic shock approximately three months after diagnosis.CONCLUSION The absence of enhancement in the lesion did not rule out PCNSTL.A biopsy approach is advisable for pathological confirmation.
基金supported by the National Natural Science Foundation of China(42207529)the China Postdoctoral Science Foundation(2022M721289).
文摘Rice production is crucial for food security in China,and its relationship with rural labor migration has been studied extensively.Labor migration in rural China has taken new forms in recent years.There has been a discernible trend wherein adult children have started migrating to cities while their elderly parents return to villages to re-engage in on-farm work.The phenomenon has notably shaped the intergenerational division of labor(IDL)within households.However,it remains to be seen how farmers adjust their rice production systems in response to the IDL.The age of 60 years for employment injury insurance is the eligibility threshold for off-farm employment and is used to obtain a source of exogenous variation in the IDL.Based on a representative household survey of 1,752 rice farmers in the Hubei Province of Central China,our fuzzy regression discontinuity analysis reveals that farmers in IDL households are more likely to adopt ratoon rice(RR)than single cropping rice(SR)or double cropping rice(DR).The effect of the IDL varies under different levels of operational scales and specialized agricultural service availability.Further analysis suggests that farmers’arrangements are associated with two potential mechanisms of downward intergenerational transfer.Monetary transfer for urban housing purchases increases RR in IDL households,and time transfer for intergenerational childcare significantly promotes SR in IDL households.This study enhances the understanding of the relationship between rural labor migration and rice production in China,providing a reference for adjusting rice production systems to ensure food security.
基金Supported by 1.3.5 Project for Disciplines of Excellence,West China Hospital,Sichuan University(No.ZYJC21025)。
文摘AIM:To investigate the association between central serous chorioretinopathy(CSC)and Helicobacter pylori(Hp)by summarizing all available evidence.METHODS:The Scopus,Embase,EBSCO,PubMed,Web of Science,and Cochrane Library databases for all relevant studies published from inception to October 2022 were searched,and manually searched for relevant reference lists as a supplement.Studies investigating the association between CSC and Hp infection were included.Finally,8 case-control studies were included in the Meta-analysis after study selection.RESULTS:The results showed no significant correlation between Hp infection and CSC[odds ratio(OR)1.89,95%confidential interval(CI)0.58–6.15,I2=96%,P=0.29].After subgroup analysis based on the degree of development of the study(developing/developed countries),it was found that the results of the two subgroups were the same as the whole,and no significant difference between the two subgroups existed.Meta-regression showed that the effect of sample size on heterogeneity among studies was more prominent(P<0.01,adjusted R^(2)=89.72%),which can explain 89.72%of the sources of heterogeneity.CONCLUSION:This Meta-analysis reveals no significant correlation between Hp infection and CSC,which still warrants further well-designed extensive sample studies to reach a more reliable conclusion and promote a better understanding of the treatment of CSC.
文摘The Xihu Depression is the largest hydrocarbon-bearing depression of the East China Sea Shelf Basin(also referred to as the ECSSB).However,the depositional systems and reservoir distribution of the Oligocene Huagang Formation in the Xihu Depression are still controversial.Under the guidance of sedimentology and stratigraphy,this study documented a marine-terrestrial transitional environment in the restricted bay setting of the Oligocene Huagang Formation through core description,well logging,and seismic data analysis.This study also revealed that the Oligocene Huagang Formation is dominated by tidal delta,estuary,and gravity flow deposits in the central anticline zone of the Xihu Depression.The new understanding of the sedimentary systems and the discovery of the transgressive gap in the eastern Diaoyu Islands uplift explain the origin of fine-grained sediments and the EW-trending sand bodies in the central depression and the sand bodies parallel to shoreline in the west slope belt,which cannot be explained by previous study results,such as southern transgression or fluvial deltas and even lacustrine deposition.Moreover,the tidal channels,tidal sand flats,and gravity flow sand bodies formed by the transgressive tides are high-quality reservoirs.The study will provide a basis for well placement and serve as guidance for the selection of favorable hydrocarbon exploration areas in the Xihu Depression.
文摘In this editorial I comment on the article,published in the current issue of the World Journal of Clinical Oncology.Primary central nervous system lymphoma(PCNSL)is a disease of elderly and immunocompromised patients.The authors reported clinical results of 19 patients with PCNSL treated with zanubrutinib/high dose methotrexate(HD-MTX)until disease progression.They demonstrated that the combination of zanubrutinib with HD-MTX led to a marked clinical response and tolerability among these patients.They also observed that cerebrospinal fluid liquid biopsy to detect circulating tumor DNA may be a good option for evaluating treatment response and tumor burden in patients with PCNSL.PCNSL is a challenging disease for treatment as these patients present with different neurological states and comorbidities.Treatment has evolved over the years from whole brain radiotherapy to HD-MTX followed by autologous stem cell transplant.Gradually,treatment of patients with PCNSL is going to become individualized.
文摘In this editorial,we comment on the article by Wang et al.This manuscript explores the potential synergistic effects of combining zanubrutinib,a novel oral inhibitor of Bruton’s tyrosine kinase,with high-dose methotrexate(HD-MTX)as a therapeutic intervention for primary central nervous system lymphoma(PCNSL).The study involves a retrospective analysis of 19 PCNSL patients,highlighting clinicopathological characteristics,treatment outcomes,and genomic biomarkers.The results indicate the combination’s good tolerance and strong antitumor activity,with an 84.2%overall response rate.The authors emphasize the potential of zanubrutinib to modulate key genomic features of PCNSL,particularly mutations in myeloid differentiation primary response 88 and cluster of differentiation 79B.Furthermore,the study investigates the role of circulating tumor DNA in cerebrospinal fluid for disease surveillance and treatment response monitoring.In essence,the study provides valuable insights into the potential of combining zanubrutinib with HD-MTX as a frontline therapeutic regimen for PCNSL.The findings underscore the importance of exploring alternative treatment modalities and monitoring genomic and liquid biopsy markers to optimize patient outcomes.While the findings suggest promise,the study’s limitations should be considered,and further research is needed to establish the clinical relevance of this therapeutic approach for PCNSL.
基金Basic and Applied Basic Research Fund Project of Guangdong Province(2022A1515220161).
文摘Objective:To summarize the clinical features,imaging manifestations,therapeutic options,and prognosis of the primary angiitis of the central nervous system(PACNS)and to explore the role of high-resolution magnetic resonance imaging(HR-MRI)in the PACNS diagnosis and treatment.Methods:One patient with PACNS treated by HR-MRI was retrospectively analyzed and summarized by combining relevant literature.Results:The patient was a young female who was hospitalized with progressive cerebral infarction and multiple intracranial arterial stenosis.HR-MRI indicated vasculitic changes.After excluding other diseases,hormone shock combined with immunosuppression was given,followed by long-term rehabilitation treatment.The patient’s condition tended to stabilize,and the prognosis was satisfactory.Conclusion PACNS is challenging to diagnose and is characterized by poor prognosis and easy recurrence.HR-MRI plays an important role in the clinical diagnosis and treatment adjustment for PACNS.
基金supported by grants from the Natural Science Foundation of Tianjin(General Program),Nos.23JCYBJC01390(to RL),22JCYBJC00220(to XC),and 22JCYBJC00210(to QL).
文摘Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes at individual injury sites,neglecting multilevel pathological analysis of the overall nervous system and target organs.This has led to restrictions on current therapeutic approaches.In this paper,we first summarize the potential mechanisms of peripheral nerve injury from a holistic perspective,covering the central nervous system,peripheral nervous system,and target organs.After peripheral nerve injury,the cortical plasticity of the brain is altered due to damage to and regeneration of peripheral nerves;changes such as neuronal apoptosis and axonal demyelination occur in the spinal cord.The nerve will undergo axonal regeneration,activation of Schwann cells,inflammatory response,and vascular system regeneration at the injury site.Corresponding damage to target organs can occur,including skeletal muscle atrophy and sensory receptor disruption.We then provide a brief review of the research advances in therapeutic approaches to peripheral nerve injury.The main current treatments are conducted passively and include physical factor rehabilitation,pharmacological treatments,cell-based therapies,and physical exercise.However,most treatments only partially address the problem and cannot complete the systematic recovery of the entire central nervous system-peripheral nervous system-target organ pathway.Therefore,we should further explore multilevel treatment options that produce effective,long-lasting results,perhaps requiring a combination of passive(traditional)and active(novel)treatment methods to stimulate rehabilitation at the central-peripheral-target organ levels to achieve better functional recovery.