期刊文献+
共找到25篇文章
< 1 2 >
每页显示 20 50 100
CENTRIFUGAL TEST STUDY ON THE BEHAVIOR OF SOFT CLAY AT SEA BOTTOM UNDER THE ACTION OF WAVE FORCE 被引量:1
1
作者 闫澍旺 李飒 邓卫东 《Transactions of Tianjin University》 EI CAS 1999年第2期104-108,共5页
The importance of studying the behavior of the soil at the sea bottom under the action of wave force has arisen with the development of offshore engineering.In this paper,the behavior of the soft clay under the action... The importance of studying the behavior of the soil at the sea bottom under the action of wave force has arisen with the development of offshore engineering.In this paper,the behavior of the soft clay under the action of wave forces is studied by performing centrifugal tests.The soil profile and the wave characters were simulated in the centrifugal model cell according to the typical environmental conditions of the oil fields in the Bohai gulf.Test results show that the soft clay layer will be seriously softened near the upper surface under the maximum wave height and slightly affected in the deeper layer,and that no liquefaction was recorded in the silty sand sublayer during the test.It is proven that the centrifugal test is a valid technique for simulating the interaction between soil and wave. 展开更多
关键词 wave soft clay SOFTENING centrifugal model test
下载PDF
Centrifugal model test on a riverine landslide in the Three Gorges Reservoir induced by rainfall and water level fluctuation 被引量:9
2
作者 Fasheng Miao Yiping Wu +2 位作者 Ákos Török Linwei Li Yang Xue 《Geoscience Frontiers》 SCIE CAS CSCD 2022年第3期196-209,共14页
Frequent soil landslide events are recorded in the Three Gorges Reservoir area,China,making it necessary to investigate the failure mode of such riverside landslides.Geotechnical centrifugal test is considered to be t... Frequent soil landslide events are recorded in the Three Gorges Reservoir area,China,making it necessary to investigate the failure mode of such riverside landslides.Geotechnical centrifugal test is considered to be the most realistic laboratory model,which can reconstruct the required geo-stress.In this study,the Liangshuijing landslide in the Three Gorgers Reservoir area is selected for a scaled centrifugal model experiment,and a water pump system is employed to retain the rainfall condition.Using the techniques of digital photography and pore water pressure transducers,water level fluctuation is controlled,and multi-physical data are thus obtained,including the pore water pressure,earth pressure,surface displacement and deep displacement.The analysis results indicate that:Three stages were set in the test(waterflooding stage,rainfall stage and drainage stage).Seven transverse cracks with wide of 1–5 mm appeared during the model test,of which 3 cracks at the toe landslide were caused by reservoir water fluctuation,and the cracks at the middle and rear part were caused by rainfall.During rainfall process,the maximum displacement of landslide model reaches 3 cm.And the maximum deformation of the model exceeds 12 cm at the drainage stage.The failure process of the slope model can be divided into four stages:microcracks appearance and propagation stage,thrust-type failure stage,retrogressive failure stage,and holistic failure stage.When the thrust-type zone caused by rainfall was connected or even overlapped with the retrogressive failure zone caused by the drainage,the landslide would start,which displayed a typical composite failure pattern.The failure mode and deformation mechanism under the coupling actions of water level fluctuation and rainfall are revealed in the model test,which could appropriately guide for the analysis and evaluation of riverside landslides. 展开更多
关键词 Riverine landslide The Three Gorges Reservoir centrifugal model test RAINFALL Fluctuation of water level
下载PDF
Effectiveness of Fiber Bragg Grating monitoring in the centrifugal model test of soil slope under rainfall conditions 被引量:3
3
作者 LI Long-qi JU Neng-pan GUO Yong-xing 《Journal of Mountain Science》 SCIE CSCD 2017年第5期936-947,共12页
Centrifugal model testsare playing an increasingly importantrolein investigating slope characteristics under rainfall conditions. However, conventional electronic transducers usually fail during centrifugal model test... Centrifugal model testsare playing an increasingly importantrolein investigating slope characteristics under rainfall conditions. However, conventional electronic transducers usually fail during centrifugal model tests because of the impacts of limitedtest space, high centrifugal force, and presence of water, with the result that limited valid data is obtained. In this study, Fiber Bragg Grating(FBG) sensing technology is employed in the design and development of displacement gauge, an anchor force gauge and an anti-slide pile moment gauge for use on centrifugal model slopes with and without a retaining structure. The two model slopes were installed and monitored at a centrifugal acceleration of 100 g. The test results show that the sensors developed succeed in capturing the deformation and retaining structure mechanical response of the model slopes during and after rainfall. The deformation curvefor the slope without retaining structure shows a steepresponse that turns gradualfor the slope with retaining structure. Importantly, for the slope with the retaining structure, results suggest that more attention be paid to increase of anchor force and antislide pile moment during rainfall. This study verifies the effectiveness of FBG sensing technology in centrifuge research and presents a new and innovative method for slope model testing under rainfall conditions. 展开更多
关键词 Fiber Bragg Grating sensing technology centrifugal model test Soil slope Rainfall conditions Slope displacement
下载PDF
Centrifugal model test and numerical simulation of vertical earth pressure on soft foundation box culvert 被引量:2
4
作者 张军辉 姚永胜 +1 位作者 郑健龙 张涛 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第9期3556-3563,共8页
To obtain the vertical earth pressure on a soft foundation box culvert and investigate the interaction of the soil-culvert-foundation system, both a centrifugal model test and a numerical simulation were conducted and... To obtain the vertical earth pressure on a soft foundation box culvert and investigate the interaction of the soil-culvert-foundation system, both a centrifugal model test and a numerical simulation were conducted and the comparisons with the current methods to determine the load on a culvert were completed. The results of the model test and numerical analysis are in satisfactory agreement, which shows that the direction of the shear stress between the culvert and the adjacent embankment depends on the differential settlement between them. A vertical earth pressure concentration appears on the culvert with a rigid piles foundation because of a downward shear stress. The ratio of the load on a soft foundation culvert and the overburden pressure above the culvert raises first and then decreases as the backfill height increases. In order to reduce the load on a culvert, it is suggested to limit the stiffness difference of the foundations under the culvert and embankment and to use a light backfill over the culvert. 展开更多
关键词 box culvert vertical earth pressure soft foundation centrifugal model test
下载PDF
Centrifugal Model Tests on Railway Embankments of Expansive Soils
5
作者 王鹰 《Journal of Modern Transportation》 1999年第1期65-72,共8页
Based on the centrifugal model tests on railway embankments of expansive soil in Nanning Kunming railway,the author studied several embankments under different physical conditions. The stress and strain states and s... Based on the centrifugal model tests on railway embankments of expansive soil in Nanning Kunming railway,the author studied several embankments under different physical conditions. The stress and strain states and settlement of the embankments were analyzed, and the obtained results can be used as a reference to field construction. 展开更多
关键词 Centrifuge model tests expansive soil railway embankment
下载PDF
Centrifugal Model Tests on the Settlement of Railway Embankment on Deep,Completely Decomposed Granite Soil
6
作者 肖红兵 蒋关鲁 +1 位作者 王景芝 李安洪 《Journal of Southwest Jiaotong University(English Edition)》 2010年第3期189-195,共7页
Settlement control of high-speed railways is a key technology in embankment engineering. In order to reveal the engineering characteristics of the deep, completely decomposed granite soil in the Hainan East Ring Railw... Settlement control of high-speed railways is a key technology in embankment engineering. In order to reveal the engineering characteristics of the deep, completely decomposed granite soil in the Hainan East Ring Railway, four groups of centrifuge model tests were conducted. We studied the settlement properties, under the embankment action, of untreated subsoil, subsoil treated by dynamic compaction, and subsoil reinforced with cement-mixed piles. In particular, we examined the relationship between settlement and time, including the settlement during and after construction. The results show that the Weibull model can describe the relationship between embankment settlement and time well, and that the post-construction settlements of the subsoil meet the requirements of the relevant code. Among the two foundation treatment measures, dynamic compaction is more effective than reinforcement with cement-mixed piles. The tested pressure on the contact surface between embankment and subsoil was obviously different from the commonly used calculated values. 展开更多
关键词 EMBANKMENT Centrifuge model test SETTLEMENT Completely decomposed granite
下载PDF
Centrifugal and field studies on water infiltration characteristics below canals under wetting-drying-freezing-thawing cycles 被引量:6
7
作者 ZHU Rui CAI Zheng-yin +3 位作者 HUANG Ying-hao ZHANG Chen GUO Wan-li ZHU Xun 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第5期1519-1533,共15页
Seepage is one of the main causes for the deformation and instability of canal slopes in Xinjiang,China.In this study,centrifugal model tests under wetting-drying(WD)and wetting-drying-freezing-thawing(WDFT)cycles wer... Seepage is one of the main causes for the deformation and instability of canal slopes in Xinjiang,China.In this study,centrifugal model tests under wetting-drying(WD)and wetting-drying-freezing-thawing(WDFT)cycles were performed to investigate the water infiltration characteristics below a canal.The results show that the shallow soil of the canal models was fully saturated in the wetting process.Compared with the canal model under the WD cycles,the canal model under the WDFT cycles had larger saturated areas and a higher degree of saturation below the canal top after each cycle,indicating that the freezing-thawing(FT)process in the WDFT cycles promoted the water infiltration behavior below the canal slope.The cracks on the surface of the canal model under the cyclic action of WDFT developed further and had a higher connectivity,which provided the conditions for slope instability from a transverse tensile crack running through the canal top.On this basis,a field test was conducted to understand the water infiltration distribution below a typical canal in Xinjiang,China,which also verified the accuracy of the centrifugal results.This study provides a preliminary basis for the maintenance and seepage treatment of canals in Xinjiang,China. 展开更多
关键词 wetting-drying FREEZING-THAWING water infiltration crack CANALS centrifugal model test
下载PDF
Centrifuge model tests on pile-reinforced slopes subjected to drawdown 被引量:6
8
作者 Sujia Liu Fangyue Luo Ga Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第6期1290-1300,共11页
Piles are generally an effective way to reduce the risk of slope failure.However,previous approaches for slope stability analysis did not consider the effect of the piles coupled with the decrease of the water level(d... Piles are generally an effective way to reduce the risk of slope failure.However,previous approaches for slope stability analysis did not consider the effect of the piles coupled with the decrease of the water level(drawdown).In this study,a series of centrifuge model tests was performed to understand the deformation and failure characteristics of slopes reinforced with various pile layouts.In the centrifuge model tests,the pile-reinforced slopes exhibited two typical failure modes under drawdown conditions:across-pile failure and through-pile failure.In the through-pile slope failure,a discontinuous slip surface was observed,implying that the assumption of the slip surface in previous stability analysis methods was unreasonable.The test results showed that drawdown led to instability of the piles in cohesive soil,as the saturated cohesive soil failed to provide sufficient constraint for piles.The slope exhibited progressive failure,from top to bottom,during drawdown.The deformation of the piles was reduced by increasing the embedment depth and row number of piles.In addition,the deformation of soils outside the piles was influenced by the piles and showed a similar distribution shape as the piles,and the similarity degree weakened as the distance from the piles increased.This study also found that the failure mechanism of unreinforced and pile-reinforced slopes induced by drawdown could be described by coupling between the deformation localization and local failure,and it revealed that pile-reinforced slopes could reduce slope deformation localization during drawdown. 展开更多
关键词 SLOPE PILE DRAWDOWN FAILURE REINFORCEMENT Centrifuge model test
下载PDF
Centrifuge model test of an irrigation-induced loess landslide in the Heifangtai loess platform, Northwest China 被引量:11
9
作者 CUI Sheng-hua PEI Xiang-jun +1 位作者 WU Hao-yu HUANG Run-qiu 《Journal of Mountain Science》 SCIE CSCD 2018年第1期130-143,共14页
The Heifangtai platform in Northwest China is famous for irrigation-induced loess landslides.This study conducted a centrifuge model test with reference to an irrigation-induced loess landslide that occurred in Heifan... The Heifangtai platform in Northwest China is famous for irrigation-induced loess landslides.This study conducted a centrifuge model test with reference to an irrigation-induced loess landslide that occurred in Heifangtai in 2011.The loess slope model was constructed by whittling a cubic loess block obtaining from the landslide site.The irrigation water was simulated by applying continuous infiltration from back of the slope.The deformation,earth pressure,and pore pressure were investigated during test by a series of transducers.For this particular study,the results showed that the failure processes were characterized by retrogressive landslides and cracks.The time dependent reductions of cohesion and internal friction angle at basal layer with increasing pore-water pressure were responsible for these failures.The foot part of slope is very important for slope instability and hazard prevention in the study area,where concentration of earth pressure and generation of high pore-water pressures would form before failures.The measurements of earth pressure and pore-water pressure might be effective for early warning in the study area. 展开更多
关键词 Irrigation-induced landslide Centrifuge model test Early warning Pore pressure Earth pressure
下载PDF
A modified generalized scaling law for the similitude of dynamic strain in centrifuge modeling
10
作者 Ma Qiang Ling Daosheng +2 位作者 Meng Di Kyohei Ueda Zhou Yanguo 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第3期589-600,共12页
Soil strain is the key parameter to control the elasto-plastic deformation and even the failure processes.To overcome the defect that the strain of the model soil is always smaller than that of the prototype in Iai′s... Soil strain is the key parameter to control the elasto-plastic deformation and even the failure processes.To overcome the defect that the strain of the model soil is always smaller than that of the prototype in Iai′s generalized scaling law(GSL),a modified scaling law was proposed based on Iai′s GSL to secure the same dynamic shear strain between the centrifuge model and the prototype by modulating the amplitude and frequency of the input motion at the base.A suite of dynamic centrifuge model tests of dry sand level ground was conducted with the same overall scaling factor(λ=200)under different centrifugal accelerations by using the technique of“modeling of models”to validate the modified GSL.The test results show that the modified GSL could achieve the same dynamic strain in model as that of the prototype,leading to better modeling for geotechnical problems where dynamic strain dominates the response or failure of soils.Finally,the applicability of the proposed scaling law and possible constraints on geometry scaling due to the capability limits of existing centrifuge shaking tables are discussed. 展开更多
关键词 deep deposit seismic response generalized scaling law centrifuge model test
下载PDF
Experimental study and numerical analysis on bearing behaviors of super-long rock-socketed bored pile groups 被引量:2
11
作者 高睿 胡念 朱斌 《Journal of Southeast University(English Edition)》 EI CAS 2010年第4期597-602,共6页
A centrifuge modeling test and a three-dimensional finite element analysis(FEA)of super-long rock-socketed bored pile groups of the Tianxingzhou Bridge are proposed.Based on the similarity theory,different prototypi... A centrifuge modeling test and a three-dimensional finite element analysis(FEA)of super-long rock-socketed bored pile groups of the Tianxingzhou Bridge are proposed.Based on the similarity theory,different prototypical materials are simulated using different indicators in the centrifuge model.The silver sand,the shaft and the pile cap are simulated according to the natural density,the compressive stiffness and the bending stiffness,respectively.The finite element method(FEM)is implemented and analyzed in ANSYS,in which the stress field during the undisturbed soil stage,the boring stage,the concrete-casting stage and the curing stage are discussed in detail.Comparisons in terms of load-settlement,shaft axial force distribution and lateral friction between the numerical results and the test data are carried out to investigate the bearing behaviors of super-long rock-socketed bored pile groups under loading and unloading conditions.Results show that there is a good agreement between the centrifuge modeling tests and the FEM.In addition,the load distribution at the pile top is complicated,which is related to the stiffness of the cap,the corresponding assumptions and the analysis method.The shaft axial force first increases slightly with depth then decreases sharply,and the rate of decrease in rock is greater than that in sand and soil. 展开更多
关键词 super-long rock-socketed pile bored pile groups centrifuge modeling test finite element analysis
下载PDF
Comparison between responses of reinforced and unreinforced embankments due to road widening 被引量:14
12
作者 黄晓明 汪浩 《Journal of Central South University》 SCIE EI CAS 2009年第5期857-864,共8页
The objective of this work is to compare the responses of geosynthetically-reinforced embankment and unreinforced embankment due to road widening by using the centrifuge model tests and a two-dimensional(2D) finite el... The objective of this work is to compare the responses of geosynthetically-reinforced embankment and unreinforced embankment due to road widening by using the centrifuge model tests and a two-dimensional(2D) finite element(FE) model. The measured and calculated responses of the embankment and foundation exposed to road widening include the settlement,horizontal displacement,pore water pressure,and shear stresses. It is found that the road widening changed the transverse slope of the original pavement surface resulting from the nonuniform settlements. The maximum horizontal movement is found to be located at the shoulder of the original embankment. Although the difference is small,it is clearly seen that the geosynthetic reinforcement reduces the nonuniform settlements and horizontal movements due to road widening. Thus the reinforcement reduces the potential of pavement cracking and increases the stability of the embankment on soft ground in road widening. 展开更多
关键词 REINFORCEMENT centrifuge model test finite element model EMBANKMENT road widening
下载PDF
Accuracy of three-dimensional seismic ground response analysis in time domain using nonlinear numerical simulations 被引量:7
13
作者 Liang Fayun Chen Haibing Huang Maosong 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2017年第3期487-498,共12页
To provide appropriate uses of nonlinear ground response analysis for engineering practice, a three-dimensional soil column with a distributed mass system and a time domain numerical analysis were implemented on the O... To provide appropriate uses of nonlinear ground response analysis for engineering practice, a three-dimensional soil column with a distributed mass system and a time domain numerical analysis were implemented on the Open Sees simulation platform. The standard mesh of a three-dimensional soil column was suggested to be satisfied with the specified maximum frequency. The layered soil column was divided into multiple sub-soils with a different viscous damping matrix according to the shear velocities as the soil properties were significantly different. It was necessary to use a combination of other one-dimensional or three-dimensional nonlinear seismic ground analysis programs to confirm the applicability of nonlinear seismic ground motion response analysis procedures in soft soil or for strong earthquakes. The accuracy of the three-dimensional soil column finite element method was verified by dynamic centrifuge model testing under different peak accelerations of the earthquake. As a result, nonlinear seismic ground motion response analysis procedures were improved in this study. The accuracy and efficiency of the three-dimensional seismic ground response analysis can be adapted to the requirements of engineering practice. 展开更多
关键词 three dimensional soil column seismic ground response centrifugal model test nonlinear analysis accuracyverification
下载PDF
Stability of long trench in soft soils by bentonite-water slurry 被引量:5
14
作者 卓弘春 杨宇友 +2 位作者 张子新 潘春晖 段创峰 《Journal of Central South University》 SCIE EI CAS 2014年第9期3674-3681,共8页
A series of centrifuge model tests exploring the effects of different types of slurry on long-trench stability in soft clay were conducted. The influence of groundwater conditions relative to trench stability was exam... A series of centrifuge model tests exploring the effects of different types of slurry on long-trench stability in soft clay were conducted. The influence of groundwater conditions relative to trench stability was examined by constructing long trenches using different slurries. The soil deformation and surface settlement induced by the excavation of the trench are found to be closely related to slurry type and excavation depth of the long trench. Increasing the bentonite concentration of the slurry has beneficial effects on stability: 1) larger particles can improve local and global stability in cases where filter cakes do not form, and 2) larger viscosity can promote filter cake formation on the walls of long trenches excavated in soft clay and enhance their stability. 展开更多
关键词 slurry trench soft clay STABILITY centrifuge model test
下载PDF
Stability analysis of bank slope under conditions of reservoir impounding and rapid drawdown 被引量:5
15
作者 Xiaoping Chen Jingwu Huang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2011年第S1期429-437,共9页
Stability of an ancient landslide in a reservoir area is analyzed by using centrifugal model tests, soil laboratory tests and numerical analysis. Special attention is paid to variation in water level, simulation of la... Stability of an ancient landslide in a reservoir area is analyzed by using centrifugal model tests, soil laboratory tests and numerical analysis. Special attention is paid to variation in water level, simulation of large-scale heterogeneous prototype slope, and strength reduction of sliding zone soils after slope sliding. The results of centrifugal model test show that reservoir impounding can reduce sliding resistance at the slope toe, followed by toe collapsing and front cracking of slope. Rapid drawdown can produce hydrodynamic pressure towards reservoir at the front of slope. Deformation is observed in the middle and upper slope, which reduces the slope stability further and forms the pull-typed landslide trend. Reinforcement of slope toe is effective for preventing the progressive failure. The results of laboratory test show that slope toe sliding will lead to the redistribution of soil density and moisture content, which will reduce the shear strength of soil in sliding zone, and the cohesion of immersed soil is reduced gradually and finally vanishes with time. The numerical results show that the strength reduction method used in finite element method (FEM) is very effective in capturing the progressive failure induced by reservoir water level fluctuations, and the evolution of failure surface derived from numerical simulation is very similar to that observed in centrifugal model test. 展开更多
关键词 slope stability reservoir impounding centrifugal model test strength reduction progressive failure
下载PDF
Deformation and failure modes of composite foundation with sub-embankment plain concrete piles 被引量:2
16
作者 Qian Su JunJie Huang 《Research in Cold and Arid Regions》 CSCD 2013年第5期614-625,共12页
With the development of high-speed railway in China, composite foundation with rigid piles has become a stamdard solution of meeting the high requirements of stability and post-construction settlement of embankment on... With the development of high-speed railway in China, composite foundation with rigid piles has become a stamdard solution of meeting the high requirements of stability and post-construction settlement of embankment on soft subgrade. Among several im- provement pattems, plain concrete piles have been extensively used to treat soft ground supported embankment. To investigate the deformation and failure modes of unimproved soft ground and soft ground reinforced by sub-embankment plain concrete piles, and to learn the influences of track and vehicle load, the effect of pile spacing, as well as the compression moduli of soil layers and upper load condition on the failure modes, a series of centrifuge model tests were performed. Test results indicate that the dis- placement of unimproved soft ground under the embankment increases continuously as embankment, track and train loading, and slip circle failure takes place. The deformation law of soft ground reinforced by sub-embankment plain concrete piles depends on pile spacing, compression modulus of the soft ground, and loading conditions. It was also found that plain concrete piles show displacement and failure patterns depending on its location, compression modulus of soft soil around the pile, and loading condi- tions. Furthermore, the evaluation of improved ground stability as well as the model test procedure is also presented. 展开更多
关键词 centrifuge model test composite foundation plain concrete pile deformation and failure modes EMBANKMENT soft ground
下载PDF
A new method for the stability analysis of geosynthetic-reinforced slopes 被引量:1
17
作者 SONG Fei CHEN Ru-yi +1 位作者 MA Li-qiu CAO Geng-ren 《Journal of Mountain Science》 SCIE CSCD 2016年第11期2069-2078,共10页
This paper is concerned with the stability analysis of reinforced slopes.A new approach based on the limit equilibrium principle is proposed to evaluate the stability of the reinforced slopes.The effect of reinforceme... This paper is concerned with the stability analysis of reinforced slopes.A new approach based on the limit equilibrium principle is proposed to evaluate the stability of the reinforced slopes.The effect of reinforcement is modeled as an equivalent restoring force acting the bottom of the slice and added into the general limit equilibrium(GLE) method.The equations of force and moment equilibrium of the slice are derived and corresponding iterative solution methods are provided.The new method can satisfy both the force and the moment equilibrium and be applicable to the critical failure surface of arbitrary form.Furthermore,the results predicted by the proposed method are compared with the calculation examples of other researchers and the centrifuge model test results to validate its correctness and effectiveness. 展开更多
关键词 Reinforced slope Stability analysis Limit equilibrium General limit equilibrium method Centrifuge model test
下载PDF
Simplified method for analyzing soil slope deformation under cyclic loading
18
作者 Ga Zhang Yaliang Wang Fangyue Luo 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第6期1967-1976,共10页
Reasonable assessment of slope deformation under cyclic loading is of great significance for securing the safety of slopes. The observations of centrifuge model tests are analyzed on the slope deformation behavior und... Reasonable assessment of slope deformation under cyclic loading is of great significance for securing the safety of slopes. The observations of centrifuge model tests are analyzed on the slope deformation behavior under cyclic loading conditions. The potential slip surface is the key for slope failure and follows two rules:(i) the relative horizontal displacement along the potential slip surface is invariable at an elevation, and(ii) the soil along the slip surface exhibits the same degradation pattern. These rules are effective regardless of the location of the potential slip surface throughout the entire deformation process of a homogeneous slope, ranging from the initial deformation stage to the failure process and to the post-failure stage. A new, simplified method is proposed by deriving the displacement compatibility equation and unified degradation equation according to the fundamental rules. The method has few parameters that can be determined through traditional element tests. The predictions from the proposed method agree with the centrifuge test results with vertical loading and shaking table loading. This result confirms that the proposed method is effective in predicting the full deformation process of slopes under different cyclic loading conditions. 展开更多
关键词 Soil slope Cyclic load DEFORMATION Centrifuge model test Slice method
下载PDF
Verification of Seismic Performance of Pile Foundation in Composite Ground through Experimental and Numerical Methods
19
作者 Tomisawa Koichi Miura Seiichi 《Journal of Civil Engineering and Architecture》 2013年第6期656-669,共14页
A new construction method of pile foundation in composite ground, in which, prior to installing piles, the ground is improved around the heads of the piles in soft ground or ground subject to liquefaction, which is in... A new construction method of pile foundation in composite ground, in which, prior to installing piles, the ground is improved around the heads of the piles in soft ground or ground subject to liquefaction, which is introduced in this paper. This construction method uses a combination of pile foundation construction together with common ground improvement methods, including deep mixing, preloading and sand compaction piling, and it is referred to as the composite ground pile method. Since an artificial ground with relatively high rigidity comparing with that of the original ground was formed around the pile in this method, and the seismic performance has not been made clear, thus the seismic performance of piles in composite ground was systematically analyzed through a series of centrifuge model tests and numerical analyses by using dynamic nonlinear finite element method, and a verification method for the seismic performance of piles in composite ground was proposed on the basis of the experimental and numerical results. 展开更多
关键词 Pile foundation composite ground centrifuge model test dynamic nonlinear finite element method.
下载PDF
Geotechnical centrifuge model tests for explosion cratering and propagation laws of blast wave in sand 被引量:2
20
作者 Yi-kai FAN Zu-yu CHEN +2 位作者 Xiang-qian LIANG Xue-dong ZHANG Xin HUANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2012年第5期335-343,共9页
This paper presents the explosion cratering effects and their propagation laws of blast waves in dry standard sands using a 450 g-t geotechnical centrifuge apparatus.Ten centrifuge model tests were completed with vari... This paper presents the explosion cratering effects and their propagation laws of blast waves in dry standard sands using a 450 g-t geotechnical centrifuge apparatus.Ten centrifuge model tests were completed with various ranges of explosive mass,burial depth and centrifuge accelerations.Eleven accelerometers were installed to record the acceleration response in sand.The dimensions of the explosion craters were measured after the tests.The results demonstrated that the relationship between the dimensionless parameters of cratering efficiency and gravity scaled yield is a power regression function.Three specific function equations were obtained.The results are in general agreement with those obtained by other studies.A scaling law based on the combination of the π terms was used to fit the results of the ten model tests with a correlation coefficient of 0.931.The relationship can be conveniently used to predict the cratering effects in sand.The results also showed that the peak acceleration is a power increasing function of the acceleration level.An empirical exponent relation between the proportional peak acceleration and distance is proposed.The propagation velocity of blast waves is found to be ranged between 200 and 714 m/s. 展开更多
关键词 Centrifuge model tests Explosion CRATERS Blast waves SAND
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部