期刊文献+
共找到478篇文章
< 1 2 24 >
每页显示 20 50 100
Investigation of the block toppling evolution of a layered model slope by centrifuge test and discrete element modeling
1
作者 Leilei Jin Hongkai Dong +3 位作者 Fei Ye Yufeng Wei Jianfeng Liu Changkui Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期112-122,共11页
Primary toppling usually occurs in layered rock slopes with large anti-dip angles.In this paper,the block toppling evolution was explored using a large-scale centrifuge system.Each block column in the layered model sl... Primary toppling usually occurs in layered rock slopes with large anti-dip angles.In this paper,the block toppling evolution was explored using a large-scale centrifuge system.Each block column in the layered model slope was made of cement mortar.Some artificial cracks perpendicular to the block column were prefabricated.Strain gages,displacement gages,and high-speed camera measurements were employed to monitor the deformation and failure processes of the model slope.The centrifuge test results show that the block toppling evolution can be divided into seven stages,i.e.layer compression,formation of major tensile crack,reverse bending of the block column,closure of major tensile crack,strong bending of the block column,formation of failure zone,and complete failure.Block toppling is characterized by sudden large deformation and occurs in stages.The wedge-shaped cracks in the model incline towards the slope.Experimental observations show that block toppling is mainly caused by bending failure rather than by shear failure.The tensile strength also plays a key factor in the evolution of block toppling.The simulation results from discrete element method(DEM)is in line with the testing results.Tensile stress exists at the backside of rock column during toppling deformation.Stress concentration results in the fragmented rock column and its degree is the most significant at the slope toe. 展开更多
关键词 Block toppling centrifuge Anti-dip slope Failure mechanism Discrete element method
下载PDF
A modified generalized scaling law for the similitude of dynamic strain in centrifuge modeling
2
作者 Ma Qiang Ling Daosheng +2 位作者 Meng Di Kyohei Ueda Zhou Yanguo 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第3期589-600,共12页
Soil strain is the key parameter to control the elasto-plastic deformation and even the failure processes.To overcome the defect that the strain of the model soil is always smaller than that of the prototype in Iai′s... Soil strain is the key parameter to control the elasto-plastic deformation and even the failure processes.To overcome the defect that the strain of the model soil is always smaller than that of the prototype in Iai′s generalized scaling law(GSL),a modified scaling law was proposed based on Iai′s GSL to secure the same dynamic shear strain between the centrifuge model and the prototype by modulating the amplitude and frequency of the input motion at the base.A suite of dynamic centrifuge model tests of dry sand level ground was conducted with the same overall scaling factor(λ=200)under different centrifugal accelerations by using the technique of“modeling of models”to validate the modified GSL.The test results show that the modified GSL could achieve the same dynamic strain in model as that of the prototype,leading to better modeling for geotechnical problems where dynamic strain dominates the response or failure of soils.Finally,the applicability of the proposed scaling law and possible constraints on geometry scaling due to the capability limits of existing centrifuge shaking tables are discussed. 展开更多
关键词 deep deposit seismic response generalized scaling law centrifuge model test
下载PDF
Centrifuge modeling of buried continuous pipelines subjected to normal faulting 被引量:12
3
作者 Majid Moradi Mahdi Rojhani +1 位作者 Abbas Galandarzadeh Shiro Takada 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第1期155-164,共10页
Seismic ground faulting is the greatest hazard for continuous buried pipelines.Over the years,researchers have attempted to understand pipeline behavior mostly via numerical modeling such as the finite element method.... Seismic ground faulting is the greatest hazard for continuous buried pipelines.Over the years,researchers have attempted to understand pipeline behavior mostly via numerical modeling such as the finite element method.The lack of well-documented field case histories of pipeline failure from seismic ground faulting and the cost and complicated facilities needed for full-scale experimental simulation mean that a centrifuge-based method to determine the behavior of pipelines subjected to faulting is best to verify numerical approaches.This paper presents results from three centrifuge tests designed to investigate continuous buried steel pipeline behavior subjected to normal faulting.The experimental setup and procedure are described and the recorded axial and bending strains induced in a pipeline are presented and compared to those obtained via analytical methods.The influence of factors such as faulting offset,burial depth and pipe diameter on the axial and bending strains of pipes and on ground soil failure and pipeline deformation patterns are also investigated.Finally,the tensile rupture of a pipeline due to normal faulting is investigated. 展开更多
关键词 centrifuge models buried pipeline normal faulting EARTHQUAKE permanent ground deformation
下载PDF
Numerical modeling of centrifuge cyclic lateral pile load experiments 被引量:7
4
作者 Nikos Gerolymos Sandra Escoffier +1 位作者 George Gazetas Jacques Garnier 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2009年第1期61-76,共16页
To gain insight into the inelastic behavior of piles, the response of a vertical pile embedded in dry sand and subjected to cyclic lateral loading was studied experimentally in centrifuge tests conducted in Laboratoir... To gain insight into the inelastic behavior of piles, the response of a vertical pile embedded in dry sand and subjected to cyclic lateral loading was studied experimentally in centrifuge tests conducted in Laboratoire Central des Ponts et Chaussees. Three types of cyclic loading were applied, two asymmetric and one symmetric with respect to the unloaded pile. An approximately square-root variation of soil stiffness with depth was obtained from indirect in-flight density measurements, laboratory tests on reconstituted samples, and well-established empirical correlations. The tests were simulated using a cyclic nonlinear Winkler spring model, which describes the full range of inelastic phenomena, including separation and re-attachment of the pile from and to the soil. The model consists of three mathematical expressions capable of reproducing a wide variety of monotonic and cyclic experimentalp-y curves. The physical meaning of key model parameters is graphically explained and related to soil behavior. Comparisons with the centrifuge test results demonstrate the general validity of the model and its ability to capture several features of pile-soil interaction, including: soil plastification at an early stage of loading, "pinching" behavior due to the formation of a relaxation zone around the upper part of the pile, and stiffness and strength changes due to cyclic loading. A comparison of the p-y curves derived from the test results and the proposed model, as well as those from the classical curves of Reese et al. (1974) for sand, is also presented. 展开更多
关键词 centrifuge test Winkler model p-y curves cyclic loading pile-soil separation/gapping nonlinear response experimental validation
下载PDF
Centrifuge modeling of PGD response of buried pipe 被引量:5
5
作者 Michael O'Rourke Vikram Gadicherla Tarek Abdoun 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2005年第1期69-73,共5页
A new centrifuge based method for determining the response of continuous buried pipe to PGD is presented. The physical characteristics of the RPI's 100 g-ton geotechnical centrifuge and the current lifeline experi... A new centrifuge based method for determining the response of continuous buried pipe to PGD is presented. The physical characteristics of the RPI's 100 g-ton geotechnical centrifuge and the current lifeline experiment split-box are described: The split-box contains the model pipeline and surrounding soil and is manufactured such that half can be offset, in flight, simulating PGD. In addition, governing similitude relations which allow one to determine the physical characteristics, (diameter, wall thickness and material modulus of elasticity) of the model pipeline are presented. Finally, recorded strains induced in two buried pipes with prototype diameters of 0.63 m and 0.95 m (24 and 36 inch) subject to 0.6 and 2.0 meters (2 and 6 feet) of full scale fault offsets and presented and compared to corresponding FE results. 展开更多
关键词 EARTHQUAKES buried pipe permanent ground deformation centrifuge models fault crossings lifeline earthquake engineering
下载PDF
Centrifuge model tests on pile-reinforced slopes subjected to drawdown 被引量:4
6
作者 Sujia Liu Fangyue Luo Ga Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第6期1290-1300,共11页
Piles are generally an effective way to reduce the risk of slope failure.However,previous approaches for slope stability analysis did not consider the effect of the piles coupled with the decrease of the water level(d... Piles are generally an effective way to reduce the risk of slope failure.However,previous approaches for slope stability analysis did not consider the effect of the piles coupled with the decrease of the water level(drawdown).In this study,a series of centrifuge model tests was performed to understand the deformation and failure characteristics of slopes reinforced with various pile layouts.In the centrifuge model tests,the pile-reinforced slopes exhibited two typical failure modes under drawdown conditions:across-pile failure and through-pile failure.In the through-pile slope failure,a discontinuous slip surface was observed,implying that the assumption of the slip surface in previous stability analysis methods was unreasonable.The test results showed that drawdown led to instability of the piles in cohesive soil,as the saturated cohesive soil failed to provide sufficient constraint for piles.The slope exhibited progressive failure,from top to bottom,during drawdown.The deformation of the piles was reduced by increasing the embedment depth and row number of piles.In addition,the deformation of soils outside the piles was influenced by the piles and showed a similar distribution shape as the piles,and the similarity degree weakened as the distance from the piles increased.This study also found that the failure mechanism of unreinforced and pile-reinforced slopes induced by drawdown could be described by coupling between the deformation localization and local failure,and it revealed that pile-reinforced slopes could reduce slope deformation localization during drawdown. 展开更多
关键词 SLOPE PILE DRAWDOWN FAILURE REINFORCEMENT centrifuge model test
下载PDF
Uplift mechanism for a shallow-buried structure in liquefi able sand subjected to seismic load: centrifuge model test and DEM modeling 被引量:4
7
作者 Zhou Jian Wang Zihan +1 位作者 Chen Xiaoliang Zhang Jiao 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2014年第2期203-214,共12页
Based on a centrifuge model test and distinct element method(DEM), this study provides new insights into the uplift response of a shallow-buried structure and the liquefaction mechanism for saturated sand around the s... Based on a centrifuge model test and distinct element method(DEM), this study provides new insights into the uplift response of a shallow-buried structure and the liquefaction mechanism for saturated sand around the structure under seismic action. In the centrifuge test, a high-speed microscopic camera was installed in the structure model, by which the movements of particles around the structure were monitored. Then, a two-dimensional digital image processing technology was used to analyze the microstructure of saturated sand during the shaking event. Herein, a numerical simulation of the centrifuge experiment was conducted using a two-phase(solid and fl uid) fully coupled distinct element code. This code incorporates a particle-fl uid coupling model by means of a "fi xed coarse-grid" fl uid scheme in PFC3D(Particle Flow Code in Three Dimensions), with the modeling parameters partially calibrated based on earlier studies. The physical and numerical models both indicate the uplifts of the shallow-buried structure and the sharp rise in excess pore pressure. The corresponding micro-scale responses and explanations are provided. Overall, the uplift response of an underground structure and the occurrence of liquefaction in saturated sand are predicted successfully by DEM modeling. However, the dynamic responses during the shaking cannot be modeled accurately due to the restricted computer power. 展开更多
关键词 centrifuge modeling underground structure LIQUEFACTION distinct element method saturated sand
下载PDF
Centrifuge experiment on the penetration test for evaluating undrained strength of deep-sea surface soils 被引量:4
8
作者 Xingsen Guo Tingkai Nian +4 位作者 Wei Zhao Zhongde Gu Chunpeng Liu Xiaolei Liu Yonggang Jia 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第2期363-373,共11页
Rapid advances in deep-sea mining engineering have created an urgent need for the accurate evaluation of the undrained strength of marine soils,especially surface soils.Significant achievements have been made using fu... Rapid advances in deep-sea mining engineering have created an urgent need for the accurate evaluation of the undrained strength of marine soils,especially surface soils.Significant achievements have been made using full-flow penetration penetrometers to evaluate marine soil strength in the deep penetration;however,a method considering the effect of ambient water on the surface penetration needs to be established urgently.In this study,penetrometers with multiple probes were developed and used to conduct centrifuge experiments on South China Sea soil and kaolin clay.First,the forces on the probes throughout the penetration process were systematically analyzed and quantified.Second,the spatial influence zone was determined by capturing the resistance changes and sample crack development,and the penetration depth for a sample to reach a stable failure mode was given.Third,the vane shear strength was used to invert the penetration resistance factor of the ball and determine the range of the penetration resistance factor values.Furthermore,a methodology to determine the penetration resistance factors for surface marine soils was established.Finally,the effect of the water cavity above various probes in the surface penetration was used to formulate an internal mechanism for variations in the penetration resistance factor. 展开更多
关键词 Static penetrometer centrifuge experiment Deep-sea surface soil Undrained shear strength Penetration resistance factor Water cavity
下载PDF
Failure behavior of soil-rock mixture slopes based on centrifuge model test 被引量:3
9
作者 WANG Teng ZHANG Ga 《Journal of Mountain Science》 SCIE CSCD 2019年第8期1928-1942,共15页
The stability of soil-rock mixtures(SRMs) that widely distributed in slopes is of significant concern for slope safety evaluation and disaster prevention. The failure behavior of SRM slopes under surface loading condi... The stability of soil-rock mixtures(SRMs) that widely distributed in slopes is of significant concern for slope safety evaluation and disaster prevention. The failure behavior of SRM slopes under surface loading conditions was investigated through a series of centrifuge model tests considering various volumetric gravel contents. The displacement field of the slope was determined with image-based displacement system to observe the deformation of the soil and the movement of the block during loading in the tests. The test results showed that the ultimate bearing capacity and the stiffness of SRM slopes increased evidently when the volumetric block content exceeded a threshold value. Moreover, there were more evident slips around the blocks in the SRM slope. The microscopic analysis of the block motion showed that the rotation of the blocks could aggravate the deformation localization to facilitate the development of the slip surface. The high correlation between the rotation of the key blocks and the slope failure indicated that the blocks became the dominant load-bearing medium that influenced the slope failure. The blocks in the sliding body formed a chain to bear the load and change the displacement distribution of the adjacent matrix sand through the block rotation. 展开更多
关键词 Soil ROCK MIXTURE SLOPE stability SLOPE FAILURE centrifuge model test
下载PDF
DNA recovery from agarose gels with a simple centrifuge-driven sephadex filtration 被引量:3
10
作者 Niu Chen Li Yun 《Forestry Studies in China》 CAS 2006年第1期32-34,共3页
Conventional methods of DNA recovery from agarose gel generally require expensive equipment, extended elution times, or considerable handling of the sample after elution. We developed a simple protocol for a quick and... Conventional methods of DNA recovery from agarose gel generally require expensive equipment, extended elution times, or considerable handling of the sample after elution. We developed a simple protocol for a quick and effective recovery of DNA from agarose gels with good yield and quality. Using a Sephadex resin filled spin column, DNA fragments of 500 bp to 6 kb in an agarose gel slice were easily recovered by a 2 min centrifugation. The recovery efficiencies were over 40% -50% and the eluted DNA can be used directly for downstream application, such as polymerase chain reactions (PCR) and restriction enzyme digestion. This method could also be used to recover large DNA fragment (48 kb) without degradation. The use of Sephadex helps to remove small molecular impurities from agarose and it also reduces the chance of clogging the column filter caused by direct contact with agarose. 展开更多
关键词 DNA recovery agarose gel SEPHADEX filter column centrifuge
下载PDF
Experimental p-y curves for liquefied soils from centrifuge tests 被引量:2
11
作者 Suresh R.Dash Subhamoy Bhattacharya 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2021年第4期863-876,共14页
The present study aims to obtain p-y curves(Winkler spring properties for lateral pile-soil interaction)for liquefied soil from 12 comprehensive centrifuge test cases where pile groups were embedded in liquefiable soi... The present study aims to obtain p-y curves(Winkler spring properties for lateral pile-soil interaction)for liquefied soil from 12 comprehensive centrifuge test cases where pile groups were embedded in liquefiable soil.The p-y curve for fully liquefied soil is back-calculated from the dynamic centrifuge test data using a numerical procedure from the recorded soil response and strain records from the instrumented pile.The p-y curves were obtained for two ground conditions:(a)lateral spreading of liquefied soil,and(b)liquefied soil in level ground.These ground conditions are simulated in the model by having collapsing and non-collapsing intermittent boundaries,which are modelled as quay walls.The p-y curves back-calculated from the centrifuge tests are compared with representative reduced API p-y curves for liquefied soils(known as p-multiplier).The response of p-y curves at full liquefaction is presented and critical observations of lateral pile-soil interaction are discussed.Based on the results of these model tests,guidance for the construction of p-y curves for use in engineering practice is also provided. 展开更多
关键词 LIQUEFACTION pile foundation p-y curve centrifuge test
下载PDF
Experimental study of vertical and batter pile groups in saturated sand using a centrifuge shaking table 被引量:2
12
作者 Zhang Jian Li Yurun +3 位作者 Yan Zhixiao Huang Da Rong Xian Liang Yan 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2022年第1期23-36,共14页
To study the dynamic response of vertical and batter pile groups in saturated sand,dynamic tests of these pile groups in saturated sand were carried out using the ZJU400 geotechnical centrifuge at Zhejiang University.... To study the dynamic response of vertical and batter pile groups in saturated sand,dynamic tests of these pile groups in saturated sand were carried out using the ZJU400 geotechnical centrifuge at Zhejiang University.The following results were obtained.(1)As the motion intensity increased,the peak acceleration in soil layers at different depths significantly decreased,indicating that the soil stiffness was significantly reduced.(2)During the motion process,the instantaneous bending moment of the vertical and batter pile groups at different depths changed continuously,which had a strong relationship with the saturated sand liquefaction.In the process of sand liquefaction,the residual bending moment generated by the batter pile was more obvious than that of the vertical pile.(3)With the liquefaction of the saturated sand,the distribution of the maximum bending moment of the vertical pile group changed,and the bending moment near the pile cap of the vertical and batter pile groups was always large.(4)In certain cases,the horizontal acceleration and dynamic displacement of the vertical pile cap were amplified.When the motion intensity was large,residual displacement of the batter pile cap occurred. 展开更多
关键词 centrifuge shaking table vertical and batter pile group saturated sand LIQUEFACTION dynamic response
下载PDF
Influence of pile spacing on seismic response of piled raft in soft clay: centrifuge modeling 被引量:1
13
作者 Yang Jun Yang Min Chen Haibing 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2019年第4期719-733,共15页
In order to study the infl uence of pile spacing on the seismic response of piled raft in soft clay, a series of shaking table tests were conducted by using a geotechnical centrifuge. The dynamic behavior of accelerat... In order to study the infl uence of pile spacing on the seismic response of piled raft in soft clay, a series of shaking table tests were conducted by using a geotechnical centrifuge. The dynamic behavior of acceleration, displacement and internal forces was examined. The test results indicate that the seismic acceleration responses of models are generally greater than the surrounding soil surface in the period ranges of 2–10 seconds. Foundation instant settlements for 4×4 and 3×3 piled raft (with pile spacing equal to 4 and 6 times pile diameter) are somewhat close to each other at the end of the earthquake, but reconsolidation settlements are greater for 3×3 piled raft. The seismic acceleration of superstructure, the uneven settlement of the foundation and the maximum bending moment of pile are relatively lower for 3×3 piled raft. Successive earthquakes lead to the softening behavior of soft clay, which causes a reduction of the pile bearing capacity and thus loads are transferred from the pile group to the raft. For the case of a 3×3 piled raft, there is relatively smaller change of the load sharing ratio of the pile group and raft after the earthquake and the distribution of maximum bending moments at the pile head is more uniform. 展开更多
关键词 piled raft PILE SPACING soft clay dynamic centrifuge model test seismic response SUBSIDENCE load sharing bending MOMENT
下载PDF
Six-Degree-of-Freedom Measurement of Plate Anchors in Centrifuge by Magnetometers 被引量:1
14
作者 SHU Shuang CHEN Chuan +1 位作者 CHEN Hao-ran LAI Ying 《China Ocean Engineering》 SCIE EI CSCD 2022年第6期871-879,共9页
The six-degree-of-freedom movement of an offshore plate anchor is essential to evaluate anchor performance.As an emerging technology,magnetometer has shown its potential in measuring the six-degree-of-freedom movement... The six-degree-of-freedom movement of an offshore plate anchor is essential to evaluate anchor performance.As an emerging technology,magnetometer has shown its potential in measuring the six-degree-of-freedom movement of offshore anchors under 1-g model laboratory tests.The paper presents the feasibility of adopting a magnetometer system in geotechnical centrifuge testing.Interference factors that may affect the measuring accuracy of the magnetometer system are investigated.The results demonstrate that the magnetometer system can accurately catch the anchor movement in the soils with the restrictions of:(1)the model anchor was made with stainless steel;(2)the system was placed at least 30 cm away from the side wall of soil model tank;(3)started the measurement when the artificial acceleration by centrifuge was stable. 展开更多
关键词 MAGNETOMETER offshore plate anchors centrifuge testing TRAJECTORY orientation
下载PDF
Numerical Analysis and Centrifuge Modeling of Shallow Foundations 被引量:1
15
作者 罗强 栾茂田 +2 位作者 杨蕴明 王忠涛 赵守正 《China Ocean Engineering》 SCIE EI CSCD 2014年第2期163-180,共18页
The influence of non-coaxial constitutive model on predictions of dense sand behavior is investigated in this paper. The non-coaxial model with strain softening plasticity is applied into finite-element program ABAQUS... The influence of non-coaxial constitutive model on predictions of dense sand behavior is investigated in this paper. The non-coaxial model with strain softening plasticity is applied into finite-element program ABAQUS, which is first used to predict the stress-strain behavior and the non-coaxial characteristic between the orientations of the principal stress and principal plastic strain rate in simple shear tests. The model is also used to predict load settlement responses and bearing capacity factors of shallow foundations. A series of centrifuge tests for shallow foundations on saturated dense sand are performed under drained conditions and the test results are compared with the corresponding numerical results. Various footing dimensions, depths of embedment, and footing shapes are considered in these tests. In view of the load settlement relationships, the stiffness of the load-displacement curves is significantly affected by the non-coaxial model compared with those predicted by the coaxial model, and a lower value of non-coaxial modulus gives a softer response. Considering the soil behavior at failure, the coaxial model predictions of bearing capacity factors are more advanced than those of centrifuge test results and the non-coaxial model results;besides, the non-coaxial model gives better predictions. The non-coaxial model predictions are closer to those of the centrifuge results when a proper non-coaxial plastic modulus is chosen. 展开更多
关键词 non-coaxial model strain softening FEM analysis centrifuge test shallow foundation
下载PDF
A Practical Strategy of Unbalance Identification and Correction for 2-DOF Precision Centrifuges 被引量:1
16
作者 Xin Huo Shuangpeng Zheng +1 位作者 Yu Yao Weishan Chen 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2018年第1期29-38,共10页
Unbalance existing in the mechanical systems is one of the most common causes which leads to unexpected vibration,nonsmooth motions,uncertain dynamics and even instability. In this paper,the problem of unbalance ident... Unbalance existing in the mechanical systems is one of the most common causes which leads to unexpected vibration,nonsmooth motions,uncertain dynamics and even instability. In this paper,the problem of unbalance identification and correction is investigated for the countershaft system of a precision centrifuge with two degrees of freedom. According to the characteristics of the load under test installed on the countershaft,a gradual subdivision algorithm is proposed to identify the phase of the unbalance,and its amplitude is calculated by using a space vector algorithm,where the vibration information of the mainshaft system is obtained by utilizing two axis-layout displacement transducers installed associated to the mainshaft.Based on ADAMS software,some numerical simulations are presented and compared,and further,the validity of the strategy is demonstrated by experimental examples. 展开更多
关键词 dynamic UNBALANCE IDENTIFICATION and CORRECTION precision centrifuge countershaft system ADAIMS
下载PDF
Centrifuge modelling of ground-borne vibrations induced by railway traffic in underground tunnels 被引量:1
17
作者 Yang Wenbo Qian Zhihao +4 位作者 Tu Jiulin Zhou Ziyang Yan Qixiang Fang Yong He Chuan 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2022年第2期517-528,共12页
Increased attention has been given to ground-borne vibrations induced by railway vehicles and to the effects of these vibrations as they propagate through the ground into nearby buildings.Various studies,mainly based ... Increased attention has been given to ground-borne vibrations induced by railway vehicles and to the effects of these vibrations as they propagate through the ground into nearby buildings.Various studies,mainly based on numerical methods as well as physical modelling,have been carried out to investigate this problem.To study the dynamic response of tunnels and the surrounding soil due to train-induced vibration loads,a centrifuge test was conducted with a small-scale model in 1 g and 50 g stress field environments.An aluminum tube was embedded in sand to model the underground tunnel.A small parallel pre-stressed actuator(PPA)was employed to apply vibration loads on the tunnel invert.The model responses were measured using accelerometers.Both time and frequency domain analyzes were performed.The test results demonstrated that electronic noise had a clear impact on the test results and should be eliminated.It also found that the dynamic response of both the tunnel and soil were affected by the stress field.Therefore,it is important to account for the stress field effects when assessing the ground-borne vibration from tunnels. 展开更多
关键词 centrifuge test stress field frequency response function peak particle acceleration dynamic response
下载PDF
ELECTRO-HYDRAULIC SERVO SYSTEM IN THE CENTRIFUGE FIELD 被引量:1
18
作者 DongLonglei YanGuirong LiRonglin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2004年第2期237-242,共6页
The mechanical characteristics of the electro-hydraulic servo system in thecentrifuge field are analyzed. The hydraulic pressure law in the centrifuge field indicates theexistence of the centrifuge hydraulic pressure.... The mechanical characteristics of the electro-hydraulic servo system in thecentrifuge field are analyzed. The hydraulic pressure law in the centrifuge field indicates theexistence of the centrifuge hydraulic pressure. The mechanical characteristics of the slide-valveand the dual nozzle flapper valve are studied, and it is found that the centrifuge field can notonly increase the driving force or moment of the function units, but also decrease the stability ofthe components. Finally by applying Gauss minimum constraint principle, the dynamic model of theelectro-hydraulic vibrator in the centrifuge field is established, and the mechanical restriction ofthe system is also presented. The study will be helpful for the realization of the combinedvibration and centrifuge test system. 展开更多
关键词 Electro-hydraulic servo system centrifuge field Mechanical characteristics
下载PDF
Centrifuge model test on performance of thermosyphon cooled sandbags stabilizing warm oil pipeline buried in permafrost 被引量:1
19
作者 GuoYu Li HongYuan Jing +2 位作者 Nikolay Volkov Wei Ma PengChao Chen 《Research in Cold and Arid Regions》 CSCD 2021年第3期234-255,共22页
The thaw settlement of pipeline foundation soils in response to the operation of the first China-Russia Crude Oil Pipeline along the eastern flank of the northern Da Xing'anling Mountains in Northeast China was si... The thaw settlement of pipeline foundation soils in response to the operation of the first China-Russia Crude Oil Pipeline along the eastern flank of the northern Da Xing'anling Mountains in Northeast China was simulated in a physical model test(with a similitude ratio of 1/73) in a geotechnical centrifuge. Two pipes of a supported and an unsupported section were evaluated over a testing period for simulating 20 years of actual pipeline operation with seasonal cyclically changing oil and ambient temperatures. The results show that pipe settlement of the supported pipe was 45% of settlement of the unsupported pipe. Settlement for the unsupported section was approximately 35% of the thaw bulb depth below the initial pipe elevation, only 30% of that for the supported pipe due to the influence of the supports. The final thaw bulbs extended approximately 3.6 and 1.6 times of the pipe diameter below the unsupported and supported pipe bottom elevations, respectively. The sandbag supports kept frozen during the test period because of cooling effect of the thermosyphons. The maximum bending stress induced over the 20 m span length from bearing of the full cover over the pipe would be equivalent to40% specified minimum yield strength(SMYS). Potential buckling of the pipe should be considered as the ground thaws.This study also offers important data for calibration and validation of numerical simulation models. 展开更多
关键词 centrifuge test oil pipeline frost heave THERMOSYPHON thaw settlement permafrost engineering
下载PDF
Study on High Stiffness Gas Bearing for Precision Centrifuger 被引量:1
20
作者 齐乃明 李中郢 +1 位作者 杨国军 刘暾 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 1998年第4期47-50,共4页
A high stiffness and precision gas bearing system is developed in accordance with the requirements for a precision centrifuger. Finite element method and optimiztion of parameters are employed for optimization of gas ... A high stiffness and precision gas bearing system is developed in accordance with the requirements for a precision centrifuger. Finite element method and optimiztion of parameters are employed for optimization of gas bearing design, and this enable the bearing system to be successfully used in the inertial navigation test system. 展开更多
关键词 PRECISION centrifuger GAS BEARING STIFFNESS of GAS BEARING
下载PDF
上一页 1 2 24 下一页 到第
使用帮助 返回顶部