In order to investigate the protective effect of hypoxic preconditioning on the cerebral ischemia-reperfusion injury, the expression of Bcl-2 and Bax was detected by using immunohistochemical staining after 3 h cerebr...In order to investigate the protective effect of hypoxic preconditioning on the cerebral ischemia-reperfusion injury, the expression of Bcl-2 and Bax was detected by using immunohistochemical staining after 3 h cerebral ischemia followed by 1, 6, 12, 24 and 48 h reperfusion respectively in rats treated with or without hypoxic preconditioning before cerebral ischemia. In addition, the apoptosis of neural cells and the behavioral scores for neurological functions recovery were evaluated by TUNEL staining and "crawling method", respectively. Compared with control group (cerebral ischemia-reperfusion without hypoxic preconditioning), the expression of Bcl-2 was significantly increased, but that of Bax decreased in the hypoxic preconditioning group (cerebral ischemiareperfusion with hypoxie preconditioning), both P〈0.05. The pre-treatment with hypoxic preconditioning could reduce the apoptosis of neural cells and promote the neurological function recovery as compared to control group. It was suggested that hypoxic preconditioning may have protective effects on the cerebral ischemia-reperfusion injury by inhibiting the apoptosis of neural cells, increase the expression of Bcl-2 and decrease the expression of Bax.展开更多
Hypoxic preconditioning can protect against cerebral ischemia/reperfusion injury. However, the underlying mechanisms that mediate this effect are not completely clear. In this study, mice were pretreated with continuo...Hypoxic preconditioning can protect against cerebral ischemia/reperfusion injury. However, the underlying mechanisms that mediate this effect are not completely clear. In this study, mice were pretreated with continuous, intermittent hypoxic preconditioning;1 hour later, cerebral ischemia/reperfusion models were generated by middle cerebral artery occlusion and reperfusion. Compared with control mice, mice with cerebral ischemia/reperfusion injury showed increased Bederson neurological function scores, significantly increased cerebral infarction volume, obvious pathological damage to the hippocampus, significantly increased apoptosis;upregulated interleukin-1β, interleukin-6, and interleukin-8 levels in brain tissue;and increased expression levels of NOD-like receptor family pyrin domain containing 3(NLRP3), NLRP inflammasome-related protein caspase-1, and gasdermin D. However, hypoxic preconditioning significantly inhibited the above phenomena. Taken together, these data suggest that hypoxic preconditioning mitigates cerebral ischemia/reperfusion injury in mice by reducing NLRP3 inflammasome expression. This study was approved by the Medical Ethics Committee of the Fourth Hospital of Baotou, China(approval No. DWLL2019001) in November 2019.展开更多
NLRP3 inflammasome-mediated cell pyroptosis aggravates the development of cerebral ischemia/reperfusion(I/R)injury,and the aim of this study is to investigate the potential utilization of the Chinese medicine,Puerarin...NLRP3 inflammasome-mediated cell pyroptosis aggravates the development of cerebral ischemia/reperfusion(I/R)injury,and the aim of this study is to investigate the potential utilization of the Chinese medicine,Puerarin,in treating this disease.Through conducting in vitro and in vivo experiments,the present study illustrated that Puerarin regulated LncRNA double homeobox A pseudogene 8(DUXAP8)/miR-223-3p axis to inactivate NLRP3-mediated pyroptotic cell death,resulting in the attenuation of I/R injury.Specifically,the cerebral I/R injury in rat models and hypoxia/reoxygenation(H/R)in primary hippocampus neuron(PHN)cells were inducted,which were subsequently exposed to Puerarin treatment.As expected,we validated that Puerarin suppressed cell pyroptosis and rescued cell viability in I/R rat hippocampus tissues and H/R PHN cells.Next,through bioinformatics analysis,we noticed that miR-223-3p targeted both LncRNA DUXAP8 and NLRP3 mRNA,and both LncRNA DUXAP8 ablation and miR-223-3p overexpression inactivate NLRP3-mediated cell pyroptosis to rescue cell viability in H/R PHN cells.Interestingly,we evidenced that Puerarin restrained LncRNA DUXAP8 expressions,but upregulated miR-223-3p in I/R rat tissues and H/R PHN cells,and the protective effects of Puerarin on H/R PHN cells were abrogated by overexpressing LncRNA DUXAP8 and silencing miR-223-3p.Collectively,we concluded that Puerarin regulated LncRNA DUXAP8/miR-223-3p/NLRP3 signaling cascade to attenuate I/R injury.展开更多
The study aims to investigate the effects of(-)-Linarinic acid(LA) and one of its derivatives(LAd) on brain injury induced by ischemia. Malonaldehyde(MDA) is determined as an index for lipid peroxidation both in vitro...The study aims to investigate the effects of(-)-Linarinic acid(LA) and one of its derivatives(LAd) on brain injury induced by ischemia. Malonaldehyde(MDA) is determined as an index for lipid peroxidation both in vitro and vivo. Mice were pre-treated with LA and LAd for 3 d.Thereafter, they were induced to have incomplete cerebral ischemia with both bilateral carotid artery occlusion and hypotension(BCAOH). In the first part of the in vivo experiment, mice were divided into four groups: sham(control), ischemia, ischemia + LA(200 mg/kg, i.g.) and ischemia + LAd(200 mg/kg, i.g.). In the second part, the dose-response of LAd was investigated at 100, 200 and 400 mg/kg i.g., respectively. A modified neurological severity score was developed for evaluating behavioral deficits of the mice with ischemia. Brains of the mice were excised in order to determinate MDA after ischemia for 6 h. Survival time, survival rate, neurological injury score and MDA level in brains were observed. Results were: 1) The data in vitro showed that both LA and LAd could inhibit the generation of MDA. IC50 values obtained by Probit analysis were 2.9 mM for LAd and 4.88 mM for LA;2) BCAOH could significantly shorten the survival span, reduce the survival rate and cause neurological deficits,which were associated with high level of lipid hydroperoxide production in cerebral tissues;3) LAd decreased lipid peroxidation and improved the neurological outcome more than LA.It is concluded that LAd offers a better neuroprotection than LA against brain damage caused by cerebral ischemia.展开更多
Bumetanide has been shown to lessen cerebral edema and reduce the infarct area in the acute stage of cerebral ischemia. Few studies focus on the effects of bumetanide on neuroprotection and neurogenesis in the chronic...Bumetanide has been shown to lessen cerebral edema and reduce the infarct area in the acute stage of cerebral ischemia. Few studies focus on the effects of bumetanide on neuroprotection and neurogenesis in the chronic stage of cerebral ischemia. We established a rat model of cerebral ischemia by injecting endothelin-1 in the left cortical motor area and left corpus striatum. Seven days later, bumetanide 200 μg/kg/day was injected into the lateral ventricle for 21 consecutive days with a mini-osmotic pump. Results demonstrated that the number of neuroblasts cells and the total length of dendrites increased, escape latency reduced, and the number of platform crossings increased in the rat hippocampal dentate gyrus in the chronic stage of cerebral ischemia. These findings suggest that bumetanide promoted neural precursor cell regeneration, dendritic development and the recovery of cognitive function, and protected brain tissue in the chronic stage of ischemia.展开更多
目的观察半胱氨酸天冬氨酸蛋白酶(caspase)-3在新生儿缺氧缺血性脑病(NHIE)小鼠模型脑组织中表达的变化。方法选取7 d CD1新生小鼠30只,按随机数字表法分为假手术组(9只)和NHIE模型组(21只),后者制备NHIE动物模型。用TTC染色法检查2组...目的观察半胱氨酸天冬氨酸蛋白酶(caspase)-3在新生儿缺氧缺血性脑病(NHIE)小鼠模型脑组织中表达的变化。方法选取7 d CD1新生小鼠30只,按随机数字表法分为假手术组(9只)和NHIE模型组(21只),后者制备NHIE动物模型。用TTC染色法检查2组的脑组织梗死面积;DAPI染色观察脑组织病理变化;原位末端标记技术检测脑组织细胞凋亡;荧光免疫组化法检测脑组织中caspase-3表达水平。结果假手术组小鼠脑组织未见梗死灶,脑组织细胞排列致密整齐,TUNEL阳性细胞数[(18.57±4.98)个]和caspase-3阳性细胞数[(9.17±2.14)个]明显低于NHIE模型组的TUNEL阳性细胞数[(209.57±41.27)个]和caspase-3阳性细胞数[(63.33±16.22)个];与假手术组相比,NHIE模型组小鼠的右侧半球可见梗死灶,脑组织细胞大量坏死脱落、周围组织间隙变大。结论 NHIE模型鼠出现的脑组织损伤可能与caspase-3表达增加、脑组织细胞凋亡增加有关。展开更多
The neonatal hypoxic-ischemic encephalopathy(HIE)is an important cause of neurological morbidity and mortality in neonates.Cell therapy is considered a promising method for treating severe neurological disorders such ...The neonatal hypoxic-ischemic encephalopathy(HIE)is an important cause of neurological morbidity and mortality in neonates.Cell therapy is considered a promising method for treating severe neurological disorders such as this one.Stem cells have the capacity for self-renewal and differentiation into certain cell lineages.The present study was aimed to find out the most beneficial route of bone marrow-derived mesenchymal stem cells(BMSCs)administration for the attenuation of experimentally induced HIE in neonatal rats.Sixty neonatal rats were divided randomly into four groups.Group 1:control group.Group 2:rats were exposed to bilateral ligation of cephalic arteries.Group 3:rats were exposed to bilateral ligation of cephalic arteries and then underwent intravenous(IV)BMSC injection.Group 4:rats were exposed to bilateral ligation of cephalic arteries and then underwent intracerebroventricular(ICV)BMSC injection.The animals were evaluated by(a)neurobehavioral tests;(b)histopathology,i.e.,histological and immuno-histochemical studies;and(3)gene expression studies.The BMSC treated groups(3 and 4)showed improvement in neurobehavioral tests,histopathological studies,and gene expression,as compared to non-injected lesioned rats(Group 2)with better improvement in Group 4(ICV injections)than in Group 3(IV injections).展开更多
文摘In order to investigate the protective effect of hypoxic preconditioning on the cerebral ischemia-reperfusion injury, the expression of Bcl-2 and Bax was detected by using immunohistochemical staining after 3 h cerebral ischemia followed by 1, 6, 12, 24 and 48 h reperfusion respectively in rats treated with or without hypoxic preconditioning before cerebral ischemia. In addition, the apoptosis of neural cells and the behavioral scores for neurological functions recovery were evaluated by TUNEL staining and "crawling method", respectively. Compared with control group (cerebral ischemia-reperfusion without hypoxic preconditioning), the expression of Bcl-2 was significantly increased, but that of Bax decreased in the hypoxic preconditioning group (cerebral ischemiareperfusion with hypoxie preconditioning), both P〈0.05. The pre-treatment with hypoxic preconditioning could reduce the apoptosis of neural cells and promote the neurological function recovery as compared to control group. It was suggested that hypoxic preconditioning may have protective effects on the cerebral ischemia-reperfusion injury by inhibiting the apoptosis of neural cells, increase the expression of Bcl-2 and decrease the expression of Bax.
基金supported by National Natural Science Foundation of China,No.81771270(to QP)Inner Mongolia Science Foundation of China,No.2020MS08063(to YQP)+3 种基金Health and Family Planning Scientific Research Plan Project of Inner Mongolia Autonomous Region of China,No.201702138(to YQP)Baotou Science and Technology Plan Project of China,No.2018C2007-4-10(to YQP)Baotou Medical and Health Science and Technology Project of China,No.wsjj2019036(to JY)Baotou Medical College Foundation of China,No.BSJJ201904(to JY)。
文摘Hypoxic preconditioning can protect against cerebral ischemia/reperfusion injury. However, the underlying mechanisms that mediate this effect are not completely clear. In this study, mice were pretreated with continuous, intermittent hypoxic preconditioning;1 hour later, cerebral ischemia/reperfusion models were generated by middle cerebral artery occlusion and reperfusion. Compared with control mice, mice with cerebral ischemia/reperfusion injury showed increased Bederson neurological function scores, significantly increased cerebral infarction volume, obvious pathological damage to the hippocampus, significantly increased apoptosis;upregulated interleukin-1β, interleukin-6, and interleukin-8 levels in brain tissue;and increased expression levels of NOD-like receptor family pyrin domain containing 3(NLRP3), NLRP inflammasome-related protein caspase-1, and gasdermin D. However, hypoxic preconditioning significantly inhibited the above phenomena. Taken together, these data suggest that hypoxic preconditioning mitigates cerebral ischemia/reperfusion injury in mice by reducing NLRP3 inflammasome expression. This study was approved by the Medical Ethics Committee of the Fourth Hospital of Baotou, China(approval No. DWLL2019001) in November 2019.
基金supported by the Project of Scientific Research Fund of Traditional Chinese Medicine of Zhejiang Province(No.2020ZB230).
文摘NLRP3 inflammasome-mediated cell pyroptosis aggravates the development of cerebral ischemia/reperfusion(I/R)injury,and the aim of this study is to investigate the potential utilization of the Chinese medicine,Puerarin,in treating this disease.Through conducting in vitro and in vivo experiments,the present study illustrated that Puerarin regulated LncRNA double homeobox A pseudogene 8(DUXAP8)/miR-223-3p axis to inactivate NLRP3-mediated pyroptotic cell death,resulting in the attenuation of I/R injury.Specifically,the cerebral I/R injury in rat models and hypoxia/reoxygenation(H/R)in primary hippocampus neuron(PHN)cells were inducted,which were subsequently exposed to Puerarin treatment.As expected,we validated that Puerarin suppressed cell pyroptosis and rescued cell viability in I/R rat hippocampus tissues and H/R PHN cells.Next,through bioinformatics analysis,we noticed that miR-223-3p targeted both LncRNA DUXAP8 and NLRP3 mRNA,and both LncRNA DUXAP8 ablation and miR-223-3p overexpression inactivate NLRP3-mediated cell pyroptosis to rescue cell viability in H/R PHN cells.Interestingly,we evidenced that Puerarin restrained LncRNA DUXAP8 expressions,but upregulated miR-223-3p in I/R rat tissues and H/R PHN cells,and the protective effects of Puerarin on H/R PHN cells were abrogated by overexpressing LncRNA DUXAP8 and silencing miR-223-3p.Collectively,we concluded that Puerarin regulated LncRNA DUXAP8/miR-223-3p/NLRP3 signaling cascade to attenuate I/R injury.
基金supported partly by a grant from Natural Science Foundation of China (30973613)
文摘The study aims to investigate the effects of(-)-Linarinic acid(LA) and one of its derivatives(LAd) on brain injury induced by ischemia. Malonaldehyde(MDA) is determined as an index for lipid peroxidation both in vitro and vivo. Mice were pre-treated with LA and LAd for 3 d.Thereafter, they were induced to have incomplete cerebral ischemia with both bilateral carotid artery occlusion and hypotension(BCAOH). In the first part of the in vivo experiment, mice were divided into four groups: sham(control), ischemia, ischemia + LA(200 mg/kg, i.g.) and ischemia + LAd(200 mg/kg, i.g.). In the second part, the dose-response of LAd was investigated at 100, 200 and 400 mg/kg i.g., respectively. A modified neurological severity score was developed for evaluating behavioral deficits of the mice with ischemia. Brains of the mice were excised in order to determinate MDA after ischemia for 6 h. Survival time, survival rate, neurological injury score and MDA level in brains were observed. Results were: 1) The data in vitro showed that both LA and LAd could inhibit the generation of MDA. IC50 values obtained by Probit analysis were 2.9 mM for LAd and 4.88 mM for LA;2) BCAOH could significantly shorten the survival span, reduce the survival rate and cause neurological deficits,which were associated with high level of lipid hydroperoxide production in cerebral tissues;3) LAd decreased lipid peroxidation and improved the neurological outcome more than LA.It is concluded that LAd offers a better neuroprotection than LA against brain damage caused by cerebral ischemia.
文摘Bumetanide has been shown to lessen cerebral edema and reduce the infarct area in the acute stage of cerebral ischemia. Few studies focus on the effects of bumetanide on neuroprotection and neurogenesis in the chronic stage of cerebral ischemia. We established a rat model of cerebral ischemia by injecting endothelin-1 in the left cortical motor area and left corpus striatum. Seven days later, bumetanide 200 μg/kg/day was injected into the lateral ventricle for 21 consecutive days with a mini-osmotic pump. Results demonstrated that the number of neuroblasts cells and the total length of dendrites increased, escape latency reduced, and the number of platform crossings increased in the rat hippocampal dentate gyrus in the chronic stage of cerebral ischemia. These findings suggest that bumetanide promoted neural precursor cell regeneration, dendritic development and the recovery of cognitive function, and protected brain tissue in the chronic stage of ischemia.
文摘目的观察半胱氨酸天冬氨酸蛋白酶(caspase)-3在新生儿缺氧缺血性脑病(NHIE)小鼠模型脑组织中表达的变化。方法选取7 d CD1新生小鼠30只,按随机数字表法分为假手术组(9只)和NHIE模型组(21只),后者制备NHIE动物模型。用TTC染色法检查2组的脑组织梗死面积;DAPI染色观察脑组织病理变化;原位末端标记技术检测脑组织细胞凋亡;荧光免疫组化法检测脑组织中caspase-3表达水平。结果假手术组小鼠脑组织未见梗死灶,脑组织细胞排列致密整齐,TUNEL阳性细胞数[(18.57±4.98)个]和caspase-3阳性细胞数[(9.17±2.14)个]明显低于NHIE模型组的TUNEL阳性细胞数[(209.57±41.27)个]和caspase-3阳性细胞数[(63.33±16.22)个];与假手术组相比,NHIE模型组小鼠的右侧半球可见梗死灶,脑组织细胞大量坏死脱落、周围组织间隙变大。结论 NHIE模型鼠出现的脑组织损伤可能与caspase-3表达增加、脑组织细胞凋亡增加有关。
文摘The neonatal hypoxic-ischemic encephalopathy(HIE)is an important cause of neurological morbidity and mortality in neonates.Cell therapy is considered a promising method for treating severe neurological disorders such as this one.Stem cells have the capacity for self-renewal and differentiation into certain cell lineages.The present study was aimed to find out the most beneficial route of bone marrow-derived mesenchymal stem cells(BMSCs)administration for the attenuation of experimentally induced HIE in neonatal rats.Sixty neonatal rats were divided randomly into four groups.Group 1:control group.Group 2:rats were exposed to bilateral ligation of cephalic arteries.Group 3:rats were exposed to bilateral ligation of cephalic arteries and then underwent intravenous(IV)BMSC injection.Group 4:rats were exposed to bilateral ligation of cephalic arteries and then underwent intracerebroventricular(ICV)BMSC injection.The animals were evaluated by(a)neurobehavioral tests;(b)histopathology,i.e.,histological and immuno-histochemical studies;and(3)gene expression studies.The BMSC treated groups(3 and 4)showed improvement in neurobehavioral tests,histopathological studies,and gene expression,as compared to non-injected lesioned rats(Group 2)with better improvement in Group 4(ICV injections)than in Group 3(IV injections).