期刊文献+
共找到138篇文章
< 1 2 7 >
每页显示 20 50 100
Salvianolate increases heat shock protein expression in a cerebral ischemia-reperfusion injury model 被引量:12
1
作者 Jinnan Zhang Wei Lu +3 位作者 Qiang Lei Xi Tao Hong You Pinghui Xie 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第25期2327-2335,共9页
Stroke remains a worldwide health problem. Salvianolate exerts a protective effect in various mi- crocirculatory disturbance-related diseases, but studies of the mechanisms underlying its protective action have mainly... Stroke remains a worldwide health problem. Salvianolate exerts a protective effect in various mi- crocirculatory disturbance-related diseases, but studies of the mechanisms underlying its protective action have mainly focused on the myocardium, whereas little research has been carried out in brain tissue following ischemia-reperfusion. We assessed the neuroprotective effects of salvianolate in a rat model of cerebral ischemia-reperfusion injury induced using the suture method. At onset and 24 and 48 hours after reperfusion, rats were intraperitoneally injected with salvianolate (18 mg/kg) or saline. Neurological deficit scores at 72 hours showed that the neurological functions of rats that had received salvianolate were significantly better than those of the rats that had received saline. 2,3,5-Triphenyltetrazolium chloride was used to stain cerebral tissue to determine the extent of the infarct area. A significantly smaller infarct area and a significantly lower number of apoptotic cells were observed after treatment with salvianolate compared with the saline treatment. Expression of heat shock protein 22 and phosphorylated protein kinase B in ischemic brain tissue was significantly greater in rats treated with salvianolate compared with rats treated with saline. Our findings suggest that salvianolate provides neuroprotective effects against cerebral ischemia-reperfusion injury by upregulating heat shock protein 22 and phosphorylated protein kinase B expression. 展开更多
关键词 neural regeneration traditional Chinese medicine brain injury salvianolic acid B SALVIANOLATE heatshock protein 22 protein kinase B cerebral ischemia-reperfusion injury apoptosis NEUROPROTECTION NEUROREGENERATION
下载PDF
Protective effects of combined treatment with ciprofol and mild therapeutic hypothermia during cerebral ischemia-reperfusion injury
2
作者 Yi-Chao Wang Meng-Jun Wu +1 位作者 Sheng-Liang Zhou Zhi-Hui Li 《World Journal of Clinical Cases》 SCIE 2023年第3期487-492,共6页
Despite improvement in cardiopulmonary resuscitation(CPR)performance,cardiac arrest(CA)is still associated with poor prognosis.The high mortality rate is due to multi-organ dysfunction caused by cerebral ischemia and ... Despite improvement in cardiopulmonary resuscitation(CPR)performance,cardiac arrest(CA)is still associated with poor prognosis.The high mortality rate is due to multi-organ dysfunction caused by cerebral ischemia and reperfusion injury(I/R).The guidelines for CPR suggest the use of therapeutic hypothermia(TH)as an effective treatment to decrease mortality and the only approach confirmed to reduce I/R injury.During TH,sedative agents(propofol)and analgesia agents(fentanyl)are commonly used to prevent shiver and pain.However,propofol has been associated with a number of serious adverse effects such as metabolic acidosis,cardiac asystole,myocardial failure,and death.In addition,mild TH alters the pharmacokinetics of agents(propofol and fentanyl)and reduces their systemic clearance.For CA patients undergoing TH,propofol can be overdosed,leading to delayed awakening,prolonged mechanical ventilation,and other subsequent complications.Ciprofol(HSK3486)is a novel anesthetic agent that is convenient and easy to administer intravenously outside the operating room.Ciprofol is rapidly metabolized and accumulates at low concentrations after continuous infusion in a stable circulatory system compared to propofol.Therefore,we hypothesized that treatment with HSK3486 and mild TH after CA could protect the brain and other organs. 展开更多
关键词 HSK3486 THERAPEUTIC cerebral ischemia-reperfusion injury HYPOTHESIS
下载PDF
Acupuncture effects on serum myelin basic protein and remyelination following 30 minutes and 2 hours of ischemia in a rat model of cerebral ischemia-reperfusion injury 被引量:1
3
作者 Jiangang Duan Ming Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第4期261-266,共6页
BACKGROUND: Acupuncture treatment on injured cerebral axons has shown to provide efficacy in clinical practice. It is unknown whether acupuncture produces therapeutic effects by protecting injured cerebral myelin in ... BACKGROUND: Acupuncture treatment on injured cerebral axons has shown to provide efficacy in clinical practice. It is unknown whether acupuncture produces therapeutic effects by protecting injured cerebral myelin in ischemic stroke. OBJECTIVE: To test whether acupuncture provides protection for injured cerebral myelin, based on quantitative data from cerebral ischemia-reperfusion rats, and to compare the effects of early and late acupuncture on serum myelin basic protein (MBP) content and remyelination of the ischemic internal capsule.DESIGN, TIME AND SETTING: A randomized, controlled experiment was performed at the Neurobiological Laboratory, Sichuan University from March 2005 to March 2006. MATERIALS: "Hua Tuo" Brand filiform needles were produced by the Medical Instrument Factory of Suzhou, China.METHODS: A total of 52 adult, healthy, male, Sprague Dawley rats were randomly assigned to four groups: control (n = 4), model (n = 16), early acupuncture (n = 16), and late acupuncture (n = 16). The focal cerebral ischemia-reperfusion model was established by middle cerebral artery occlusion in the right hemisphere using the modified thread embolism method in the latter three groups. Early and late acupuncture groups underwent acupuncture after ischemia for 30 minutes and 2 hours using the Xingnaokaiqiao needling method, respectively. Acupoints were "Neiguarf' (PC 6) and "Sanyinjiao" (SP 6) on the bilateral sides, as well as "Shuigou' (DU 26) and "Baihui" (DU 20) with stimulation for 1 minute at each acupoint. Acupuncture at all acupoints was performed two or three times while the needle was retained, once per day. No special handling was administered to the control clroup.MAIN OUTCOME MEASURES: For each group, remyelination of the internal capsule was observed by Pal-Weigert's myelin staining and serum MBP content was detected using enzyme-linked immunosorbent assay method on days 1,3, 5, and 7 following ischemia-reperfusion injury.RESULTS: Compared with the control group, massive demyelination of the internal capsule occurred, and serum MBP content increased in the model group (P 〈 0.05). Compared with the model group, the extent of demyelination in the internal capsule was less distinct and serum MBP content was significantly less in the early and late acupuncture group (P 〈 0.01 ). Compared with the late acupuncture group, serum MBP content reached a peak later and the peak value was less in the early acupuncture group. CONCLUSION: Results suggest that acupuncture exerts a protective effect on injured cerebral myelin in ischemia-reperfusion rats by reducing serum MBP content and promoting remyelination. The study also suggests that the effect of early acupuncture is superior to late acupuncture. 展开更多
关键词 ACUPUNCTURE focal cerebral ischemia-reperfusion serum myelin basic protein REMYELINATION brain injury neural regeneration
下载PDF
Acacetin protects against cerebral ischemia-reperfusion injury via the NLRP3 signaling pathway 被引量:26
4
作者 Juan Bu Shen Shi +8 位作者 Hui-Qin Wang Xiao-Shan Niu Zong-Feng Zhao Wei-Dong Wu Xiao-Ling Zhang Zhi Ma Yan-Jun Zhang Hui Zhang Yi Zhu 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第4期605-612,共8页
Acacetin(5,7-dihydroxy-4′-methoxyflavone), a potential neuroprotective agent, has an inhibitory effect on lipopolysaccharide-induced neuroinflammatory reactions. However, whether acacetin has an effect on inflammator... Acacetin(5,7-dihydroxy-4′-methoxyflavone), a potential neuroprotective agent, has an inhibitory effect on lipopolysaccharide-induced neuroinflammatory reactions. However, whether acacetin has an effect on inflammatory corpuscle 3(NLRP3) after cerebral ischemia-reperfusion injury has not been fully determined. This study used an improved suture method to establish a cerebral ischemia-reperfusion injury model in C57BL/6 mice. After ischemia with middle cerebral artery occlusion for 1 hour, reperfusion with intraperitoneal injection of 25 mg/kg of acacetin(acacetin group) or an equal volume of saline(0.1 mL/10 g, middle cerebral artery occlusion group) was used to investigate the effect of acacetin on cerebral ischemia-reperfusion injury. Infarct volume and neurological function scores were determined by 2,3,5-triphenyltetrazolium chloride staining and the Zea-Longa scoring method. Compared with the middle cerebral artery occlusion group, neurological function scores and cerebral infarction volumes were significantly reduced in the acacetin group. To understand the effect of acacetin on microglia-mediated inflammatory response after cerebral ischemia-reperfusion injury, immunohistochemistry for the microglia marker calcium adapter protein ionized calcium-binding adaptor molecule 1(Iba1) was examined in the hippocampus of ischemic brain tissue. In addition, tumor necrosis factor-α, interleukin-1β, and interleukin-6 expression in ischemic brain tissue of mice was quantified by enzyme-linked immunosorbent assay. Expression of Iba1, tumor necrosis factor-α, interleukin-1β and interleukin-6 was significantly lower in the acacetin group compared with the middle cerebral artery occlusion group. Western blot assay results showed that expression of Toll-like receptor 4, nuclear factor kappa B, NLRP3, procaspase-1, caspase-1, pro-interleukin-1β, and interleukin-1β were significantly lower in the acacetin group compared with the middle cerebral artery occlusion group. Our findings indicate that acacetin has a protective effect on cerebral ischemia-reperfusion injury, and its mechanism of action is associated with inhibition of microglia-mediated inflammation and the NLRP3 signaling pathway. 展开更多
关键词 nerve REGENERATION ACACETIN cerebral ischemia-reperfusion injury microglia NLRP3 inflammasome inflammatory FACTOR INFARCT volume signaling pathway nuclear factor-κB neuroprotection neural REGENERATION
下载PDF
Neuroprotective effect of penehyclidine hydrochloride on focal cerebral ischemia-reperfusion injury 被引量:13
5
作者 Cuicui Yu Junke Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第7期622-632,共11页
Penehyclidine hydrochloride can promote microcirculation and reduce vascular permeability. However, the role of penehyclidine hydrochlodde in cerebral ischemia-reperfusion injury remains unclear. In this study, in viv... Penehyclidine hydrochloride can promote microcirculation and reduce vascular permeability. However, the role of penehyclidine hydrochlodde in cerebral ischemia-reperfusion injury remains unclear. In this study, in vivo middle cerebral artery occlusion models were established in experimental rats, and penehyclidine hydrochloride pretreatment was given via intravenous injection prior to model establishment. Tetrazolium chloride, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling and immunohistochemical staining showed that, penehyclidine hydrochloride pretreatment markedly attenuated neuronal histopathological changes in the cortex, hippocampus and striatum, reduced infarction size, increased the expression level of BcI-2, decreased the expression level of caspase-3, and inhibited neuronal apoptosis in rats with cerebral ischemia-reperfusion injury. Xanthine oxidase and thiobarbituric acid chromogenic results showed that penehyclidine hydrochloride upregulated the activity of superoxide dismutase and downregulated the concentration of malondialdehyde in the ischemic cerebral cortex and hippocampus, as well as reduced the concentration of extracellular excitatory amino acids in rats with cerebral ischemia-reperfusion injury. In addition, penehyclidine hydrochloride inhibited the expression level of the NR1 subunit in hippocampal nerve cells in vitro following oxygen-glucose deprivation, as detected by PCR. Experimental findings indicate that penehyclidine hydrochloride attenuates neuronal apoptosis and oxidative stress injury after focal cerebral ischemia-reperfusion, thus exerting a neuroprotective effect. 展开更多
关键词 neural regeneration brain injury penehyclidine hydrochloride cerebral ischemia-reperfusion injuryischemic cerebrovascular disease APOPTOSIS excitatory amino acid oxygen free radicals superoxide dismutase N-methyI-D-aspartate receptor middle cerebral artery occlusion oxygen-glucose deprivation photographs-containing paper NEUROREGENERATION
下载PDF
Experimental Study on the Protection of Agrimony Extracts from Different Extracting Methods against Cerebral Ischemia-Reperfusion Injury 被引量:3
6
作者 Huiyuan Zhu Yulong Bie +3 位作者 Jiang Wang Jing Gao Bingyue Yang Haitong Wan 《Chinese Medical Sciences Journal》 CAS CSCD 2017年第4期239-247,共9页
Objective To study the protective effect of agrimony extracts from different extracting methods on cerebral ischemia-reperfusion injury in rats, in order to optimize the extraction scheme of agrimony.Methods Male rats... Objective To study the protective effect of agrimony extracts from different extracting methods on cerebral ischemia-reperfusion injury in rats, in order to optimize the extraction scheme of agrimony.Methods Male rats were randomly assigned into seven groups: 1. Sham-operated group, 2. Untreated MCAO group (MCAO), 3. Petroleum ether extract of Agrimonia pilosa treated MCAO group (PEA), 4. Ethyl acetate extract of Agrimonia pilosa treated MCAO group (EAEA), 5. Ethanol extract of Agrimonia pilosa treated MCAO group (EEA), 6. Water extract of Agrimonia pilosa treated MCAO group (WEA), 7. Nimodipine treated MCAO group (NP). Intragastrical drug administration (i.g) was performed at 0 and 6 hours after MCAO.Neurological function tests were performed after reperfusion for 24 hours, then the brain was removed for the evaluations of the cerebral infarction volume (percentage of total brain volume) by immunohistochemistry,histological changes (hematoxylin-eosin staining), Na+/K+-ATPase, Ca2+-ATPase (modified method of Svoboda and Mosinger), mRNA expression of Tumor suppressor gene (P53) and hot shock protein (HSP70)(quantitative real-time PCR).Results The neurological function of MCAO group had significantly higher scores than the sham group (P<0.01). The WEA group showed a significantly lower neurological score than the MCAO group (P<0.05),indicating the protective effect of WEA on neurological deficits. The mean infarction volumes of WEA (13.5±6.6%, F=4.75, P<0.01), EEA (19.90±6.90%, F=5.23, P<0.01), PEA (20.40±5.30%, F=4.68,P<0.01) and EAEA (22.50±10.50%, F=6.25, P<0.05) group were all significantly smaller than that of MCAO group (29.40±6.50%). HE staining demonstrated that, compared to the treated groups, the infarcted cerebral tissue of MCAO group had more swelling neural cells, lighter stained nucleus, fewer and irregularly distributed neurons. The activity of Na+/K+-ATPase and Ca2+-ATPase reduced in the MCAO group (3.67±0.48 U/mg,1.28±0.26 U/mg, respectively), and were significantly higher in WEA group (7.56±0.85 U/mg, F=12.65,P=0.010; 3.59±0.22 U/mg, F=8.32, P=0.041, respectively). The MCAO group showed significantly elevated P53 and HSP70 mRNA expressions compared to the sham group (P<0.01, P<0.05). P53 mRNA expressions in Agrimony extracts treated groups were significantly lower than that of the MCAO group (all P<0.01), with the WEA group showing the greatest difference from MCAO group. The HSP70 mRNA level of the treated groups were not significantly different from that of the MCAO group.Conclusions Treatment using water extracts of agrimony can promote the best functional and metabolic recovery for rat model of cerebral ischemia-reperfusion injury, which maybe relate with the upregulation of energy metabolism in nerve cells after MCAO. 展开更多
关键词 Agrimonia pilosa middle cerebral ARTERY OCCLUSION (MCAO) energy metabolism ischemia-reperfusion injury rat
下载PDF
Effect of minocycline on cerebral ischemia-reperfusion injury 被引量:4
7
作者 Yuanyin Zheng Lijuan Xu +4 位作者 Jinbao Yin Zhichao Zhong Hongling Fan Xi Li Quanzhong Chang 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第10期900-908,共9页
Minocylcine, a tetracycline derivate, has been shown to cross the blood-brain barrier and enter the central nervous system. In this study, cerebral ischemia-reperfusion injury models were established using the suture ... Minocylcine, a tetracycline derivate, has been shown to cross the blood-brain barrier and enter the central nervous system. In this study, cerebral ischemia-reperfusion injury models were established using the suture method, and minocycline was immediately injected intraperitoneally after cerebral ischemia-repeffusion (22.5 mg/kg, initially 45 mg/kg) at a 12-hour interval. Results showed that after minocycline treatment, the volume of cerebral infarction was significantly reduced, the number of surviving cell in the hippocampal CA1 region increased, the number of apoptotic cells decreased, the expression of caspase-3 and poly(adenosine diphosphate-ribose) polymerase-1 protein was down-regulated, and the escape latency in the water maze test was significantly shortened compared with the ischemia-reperfusion group. Our experimental findings indicate that minocycline can protect against neuronal injury induced by focal ischemia-reperfusion, which may be mediated by the inhibition of caspase-3 and poly(adenosine diphosphate-ribose) polymerase-1 protein expression. 展开更多
关键词 neural regeneration brain injury MINOCYCLINE cerebral ischemia-reperfusion HIPPOCAMPUS poly(adenosine diphosphate-ribose) polymerase-1 caspase-3 apoptosis grants-supported paper NEUROREGENERATION
下载PDF
Amyloid beta-peptide worsens cognitive impairment following cerebral ischemia-reperfusion injury 被引量:5
8
作者 Bo Song Qiang Ao +4 位作者 Ying Niu Qin Shen Huancong Zuo Xiufang Zhang Yandao Gong 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第26期2449-2457,共9页
Amyloid 13-peptide, a major component of senile plaques in Alzheimer's disease, has been implicated in neuronal cell death and cognitive impairment. Recently, studies have shown that the pathogenesis of cerebral isch... Amyloid 13-peptide, a major component of senile plaques in Alzheimer's disease, has been implicated in neuronal cell death and cognitive impairment. Recently, studies have shown that the pathogenesis of cerebral ischemia is closely linked with Alzheimer's disease. In this study, a rat model of global cerebral ischemia-reperfusion injury was established via occlusion of four arteries; meanwhile, fibrillar amyloid [3-peptide was injected into the rat lateral ventricle. The Morris water maze test and histological staining revealed that administration of amyloid 13-peptide could further aggravate impairments to learning and memory and neuronal cell death in the hippocampus of rats subjected to cerebral ischemia-reperfusion injury. Western blot showed that phosphorylation of tau protein and the activity of glycogen synthase kinase 313 were significantly stronger in cerebral ischemia-reperfusion injury rats subjected to amyloid [3-peptide administration than those undergo- ing cerebral ischemia-repetfusion or amyloid 13-peptide administration alone. Conversely, the activ- ity of protein phosphatase 2A was remarkably reduced in rats with cerebral ischemia-reperfusion injury following amyloid 13-peptide administration. These findings suggest that amyloid 13-peptide can potentiate tau phosphorylation induced by cerebral ischemia-reperfusion and thereby aggravate cognitive impairment. 展开更多
关键词 neural regeneration brain injury cerebral ischemia-reperfusion Alzheimer's disease amyloid 13-peptides tau proteins glycogen synthase kinase 313 protein phosphatase 2A PHOSPHORYLATION grants-supported paper NEUROREGENERATION
下载PDF
Expression of nerve growth factor precursor, mature nerve growth factor and their receptors during cerebral ischemia-reperfusion injury 被引量:3
9
作者 Guoqian He Jian Guo +4 位作者 Jiachuan Duan Wenming Xu Ning Chen Hongxia Li Li He 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第22期1701-1708,共8页
We investigated nerve growth factor precursor (proNGF) and mature NGF expression in ischemic and non-ischemic cortices after cerebral ischemia-reperfusion injury. In both ischemic and non-ischemic cortices, proNGF w... We investigated nerve growth factor precursor (proNGF) and mature NGF expression in ischemic and non-ischemic cortices after cerebral ischemia-reperfusion injury. In both ischemic and non-ischemic cortices, proNGF was found to be present in the extracellular space and cytoplasm. In addition, mature NGF was expressed in extracellular space, but with a very low signal. In ischemic cortex only, proNGF was significantly decreased, reaching a minimal level at 1 day. Mature NGF was increased at 4 hours, then reached a minimal level at 3 days. The p75 neurotrophin receptor (p75NTR) was significantly decreased after ischemia, and increased at 3 days after ischemia. These results confirmed that proNGF was the predominant form of NGF during the pathological process of cerebral ischemia-repeffusion injury. In addition, our findings suggest that ischemic injury may influence the conversion of proNGF to mature NGF, and that proNGF/p75NTR may be involved in reperfusion injury. 展开更多
关键词 cerebral ischemia-reperfusion injury nerve growth factor precursor mature nerve growth factor p75 neurotrophin receptor cell apoptosis
下载PDF
Effects of ligustrazine on somatosensory evoked potential in normal rabbits and rabbits with cerebral ischemia-reperfusion injury 被引量:1
10
作者 Deshan Liu Shuli Wang Yuanyuan Hao 《Neural Regeneration Research》 SCIE CAS CSCD 2006年第1期81-83,共3页
BACKGROUND: Somatosensory evoked potential (SEP) has become a method with higher sensitivity and specificity than electroencephalogram in detecting the brain function and the region, range and degree of ischemia. H... BACKGROUND: Somatosensory evoked potential (SEP) has become a method with higher sensitivity and specificity than electroencephalogram in detecting the brain function and the region, range and degree of ischemia. However, the effects of ligustrazine on SEP is still not clear. OBJECTIVE : To study the protective effects of ligustrazini injection on cerebral ischemia-reperfusion injury.DESIGN: Auto-control study, random grouping.SETTING: Qilu Hospital of Shandong University.MATERIALS: The experiment was completed in the Cerebral Functional Room of Qilu Hospital Affiliated to Shandong University from March 2002 to June 2004. A totally of 24 healthy Harbin rabbits were randomly divided into blank control group (n=8), model control group (n=8) and ligustrazine treatment group (n=8). Hydrochloric ligustrazine injection, 40 mg/2 mL each ampoule, was provided by the Third Pharmaceutical Factory of Beijing (certification: 93035236273). The main component was hydrochloric ligustrazine and the chemical name was 2, 3, 5, 6-tetramethyl pyrazine hydrochloride. METHODS:① Modeling method: The bilateral common carotid artery ligation was adopted to make the model. ② Index of cerebral functional lesion evaluated with SEP during ischemia-reperfusion: DISA 2000C neuromyoeletrometer provided by Dantec Electronics Ltd, Denmark was used to detect SEP. ③ Interventional process: Blank control group: The latencies and amplitudes of SEP were measured before injection with 1.5 mg/kg ligustrazine and at the points of 15 minutes, 20 minutes, 30 minutes, 60 minutes, 90 minutes and 120 minutes after injection. Ligustrazine treatment group: Rabbits were injected with 1.5 mg/kg ligustrazine, and those of model control group were injected the same volume of saline. Thirty minutes later, the bilateral common carotid artery of the rabbits all had been ligated for 30 minutes, and then reperfused for 120 minutes. The latencies and amplitudes of SEP were measured before injection, before ligation, at the points of 1 minute, 5 minutes, 10 minutes, 15 minutes, 20 minutes, 25 minutes and 30 minutes after ligation, and at the points of 5 minutes, 10 minutes, 15 minutes, 20 minutes, 30 minutes, 60 minutes, 90 minutes and 120 minutes after reperfusion.④ Evaluating criteria: Normal values of P-wave latencies and amplitudes were (19.34±3.18) ms and (4.55±1.43)μV. Average value before injection in blank control group and average values before injection, after injection and before ligation in ischemiareperfusion group were regarded as control criteria to evaluate changes of P-wave latencies and amplitudes after experiment. MAIN OUTCOME MEASURES: P-wave latencies and amplitudes of SEP in the three groups.RESULTS : A total of 24 rabbits were involved in the final analysis without any loss.① Blank control group: The P-wave latencies delayed markedly at each time point after injection. Compared with that before injection, there was a significant difference (P 〈 0.05-0.01). The P-wave amplitudes did not fluctuate noticeably all the time after injection, but significantly decreased when compared with those before injection (P 〈 0.05-0.01). ② Ischemia-reperfusion group: The P-wave latencies delayed and amplitudes decreased in the rabbits with cerebral ischemia-reperfusion at all points of time during cerebral ischemia-reperfusion, and there was significant difference when compared with the levels before ischemia (P 〈 0.05). When ligustrazine was injected, the latencies and amplitudes changed less, and as compared with the levels before ischemia, the difference was not significant (P〉 0.05).CONCLUSION:① Ligustrazine can inhibit P-wave latencies and amplitudes of SEP of normal rabbits.②Ligustrazine can improve P-wave latencies and amplitudes of SEP of rabbits with cerebral ischemia-reperfusion injury. 展开更多
关键词 Effects of ligustrazine on somatosensory evoked potential in normal rabbits and rabbits with cerebral ischemia-reperfusion injury
下载PDF
Neuroprotective effect of cerebroprotein hydrolysate on cerebral ischemia-reperfusion injury mice
11
作者 SHI Cai-yun AN Zi-xuan LI Wei 《中国药理学与毒理学杂志》 CAS 北大核心 2021年第9期674-675,共2页
OBJECTIVE To investigate the neuroprotective effect of cerebroprotein hydroly⁃sate(CH)on cerebral ischemia-reperfusion injury in mice.METHODS A total of 60 male SPF Kunming mice were randomly divided,reforming longa m... OBJECTIVE To investigate the neuroprotective effect of cerebroprotein hydroly⁃sate(CH)on cerebral ischemia-reperfusion injury in mice.METHODS A total of 60 male SPF Kunming mice were randomly divided,reforming longa method into sham group(sham),model group(tMCAO,reforming longa method),CH 0.2 and 0.5 g·kg-1 groups and positive drug control group(edaravone 0.008 g·kg-1).Neurological deficit score were performed 24 h after opera⁃tion.Mice with scores ranged between 1 and 3 were included in subsequent experiments.Each group had 8 mice.CH edaravone and normal sa⁃line were ip injected for 5 d.The tMCAO group and the sham group were administered the same amount of normal saline as administration groups.TTC staining was used to measure the volume of cerebral infarction;ELISA was per⁃formed to detect the levels of interleukin-6(IL-6),interleukin-1β(IL-1β),brain-derived neurotrophic factor(BDNF)and interferon-γ(IFN-γ)in serum and penumbra.RESULTS TTC staining results showed that there was no infarction in sham group.Compared with tMCAO group,the infarct volume in each administration group was signifi⁃cantly decreased(P<0.01).ELISA results showed that IL-6,IL-1βand IFN-γin serum and penumbra were of significant difference between tMCAO group and sham group(P<0.01),and BDNF was significantly decreased(P<0.01).Compared with tMCAO group,IL-6,IL-1βand IFN-γin serum and ischemic penumbra were sig⁃nificantly decreased in all administration groups(P<0.01),while the content of BDNF was in⁃creased in CH 0.2 g·kg-1 group and edaravone 0.008 g·kg-1 group(P<0.05),and other groups were significantly increased(P<0.01).CONCLU⁃SION CH could reduce the cerebral infarction vol⁃ume and improve the nerve injury caused by cerebral ischemia-reperfusion.The mechanism was related to inhibit the expression of IL-6,IL-1βand IFN-γand increase the expression of BDNF possibly. 展开更多
关键词 cerebral ischemia-reperfusion injury cerebroprotein hydrolysate
下载PDF
Protective Effect of GRK2 and Effect of Sanguis Draconis Flavones on Focal Cerebral Ischemia-Reperfusion Injury in Rats
12
作者 Rui LI Huiyu JIA +2 位作者 Deyun JIA Min SI Dewu JIA 《Medicinal Plant》 CAS 2019年第4期44-48,50,共6页
[Objectives] To explore the protective effect of Sanguis Draconis flavones (SDF) on rat focal cerebral ischemia-reperfusion injury (CIRI) models established by middle cerebral artery occlusion (MCAO).[Methods] A total... [Objectives] To explore the protective effect of Sanguis Draconis flavones (SDF) on rat focal cerebral ischemia-reperfusion injury (CIRI) models established by middle cerebral artery occlusion (MCAO).[Methods] A total of 60 healthy adult male Sprague-Dawley rats were selected. They were evenly and randomly divided into sham group, model group, edaravone group (12 mg/kg) and SDF group (360 mg/kg), and administered intragastrically and intraperitoneally. The middle cerebral artery of each rat was blocked by suture-occluded method to establish a CIRI model. After ischemia for 2 h and reperfusion for 48 h, the pathological injury on the ischemic side was observed by HE staining;the neuron and myelin sheath structure was observed by transmission electron microscopy;the expression of G protein-coupled receptor kinase 2 (GRK2) was preserved by immunohistochemistry;and the transfer of GRK2 was detected by western-blot.[Results] After 48 h of CIRI, the nuclei of the penumbral cortical neurons shrank, the chromatin was unevenly distributed, the nuclear membrane was dissolved and the mitochondria in the cytoplasm were swollen and vacuolated. The myelin layer was disordered. With this change, the distribution of GRK2 subcellular cells in the penumbra of the injured lateral cortex transferred from the cytoplasm to the membrane. SDF can effectively restore neuronal and myelin sheath structural damage and reduce the functional (membrane coupling) expression of GRK2.[Conclusions] GRK2 may be an effective target for SDF to protect the impaired blood-brain barrier (BBB) in CIRI. 展开更多
关键词 Sanguis DRACONIS flavones cerebral ischemia-reperfusion injury G protein-coupled receptor kinase 2 Blood-brain barrier Matrix METALLOPROTEINASES
下载PDF
Protective effect of ultrashortwave versus radix salviae miltiorrhizae on brains of rats with cerebral ischemia-reperfusion injury
13
作者 Lixin Zhang Zhiqiang Wang +2 位作者 Zhiqiang Zhang Xiuhua Yuan Xiaojie Tong 《Neural Regeneration Research》 SCIE CAS CSCD 2006年第2期158-160,共3页
BACKGROUND: HOW to control the effect of oxygen-derived free radicals on development of cerebral injury and cerebral edema is a key factor for treating cerebral ischemia-reperfusion injury. OBJECTIVE: To observe and... BACKGROUND: HOW to control the effect of oxygen-derived free radicals on development of cerebral injury and cerebral edema is a key factor for treating cerebral ischemia-reperfusion injury. OBJECTIVE: To observe and compare the protective effects, synergistic action and mechanisms of ultrashortwave (USW) and radix salviae miltiorrhizae (RSM) on the focal cerebral ischemia-reperfusion injuries in rats. DESIGN: Randomized controlled animal study SEI-FING: Department of Rehabilitation Medicine, First Hospital affiliated to China Medical University MATERIALS: A total of 160 healthy Wistar rats of both genders and aged 18-20 weeks weighing 250-300 g of clean grade were selected in this study. 5 mL/ampoule RSM injection fluid was produced by the First Pharmaceutical Corporation of Shanghai (batch number: 011019, 0.01 mug). The USW therapeutic device was produced by Shanghai Electronic Device Factory with the frequency of 40.68 MHz and the maximal export power of 40 W. The first channel of power after modulation was 11 W. METHODS: The experiment was carried out in the Rehabilitation Medicine Department of the First Hospital affiliated to China Medical University from May 2002 to January 2003. Focal ischemia-reperfusion model was established in rats by reversible right middle cerebral artery occlusion with filament. Right cerebral ischemia was for 2 hours and then with 24 hours reperfusion. The scores of neurological deficits were evaluated by 0 to 4 scales. After surgery, 64 successful rats models were divided into four groups according to digital table: control group, USW group, RSM group and RSM + USW group with 16 cases in each group. Rats in control group were intraperitoneally injected with the same volume of saline (0.1 mL/g); rats in USW group were given small dosage of USW on head for 10 minutes at 6 hours after reperfusion; rats in RSM group were intraperitoneally injected with 0.01 mL/g RSM solution at 30 minutes before reperfusion; rats in RSM + USW group were intraperitoneally injected with 0.01 mL/g RSM parenteral solution at 30 minutes before reperfusion and given small dosage of USW on head for 10 minutes once at 6 hours after reperfusion; sixteen rats in sham operation group did not receive any treatment. All 80 rats were taken brains at 24 hours after reperfusion to measure wet and dry weights to calculate water content: Cerebral water content (%) = (1-dry/wet weight) × 100%. Superoxide dismutase (SOD) activity was measured by hydroxylamine method and malondialdehyde (MDA) content was measured by TBA photometric method. MAIN OUTCOME MEASURES : Cerebral water content, SOD activity and MDA content RESULTS: All 160 rats except 80 failing in modeling were involved in the final analysis. (① The cerebral water content of left hemisphere made no significant difference (P 〉 0.05). The cerebral water content of right hemisphere in the control group and the three treatment groups was obviously higher than that of the sham operation group [(81.26±0.77)%, (79.74±0.68)%, (79.76±0.81)%, (79.61±0.79)%, (77.43±0.61)%, P 〈 0.05]. The cerebral water content of right hemisphere in the three treatment groups was obviously lower than that of the control group (P〈 0.05). There was no significant difference among the three treatment groups (P 〉 0.05). ② Compared with the control group, SOD activity (right) of the control group decreased obviously (P 〈 0.05), while MDA content increased obviously (P 〈 0.05). SOD activity in the three therapeutic groups increased obviously, while MDA content decreased obviously (P 〈 0.05); there was no significant difference among the three treatment groups (P 〉 0.05). CONCLUSION: ① USW and RSM therapy have neuroprotective effects against focal cerebral ischemia-reperfusion injuries by means of decreasing cerebral water content and MDA and increasing the activity of SOD. ② Synergistic action was not observed between these two therapeutic methods. 展开更多
关键词 Protective effect of ultrashortwave versus radix salviae miltiorrhizae on brains of rats with cerebral ischemia-reperfusion injury
下载PDF
Improved methodology for efficient establishment of the myocardial ischemia-reperfusion model in pigs through the median thoracic incision 被引量:1
14
作者 Liuhua Zhou Jiateng Sun +14 位作者 Tongtong Yang Sibo Wang Tiankai Shan Lingfeng Gu Jiawen Chen Tianwen Wei Di Zhao Chong Du Yulin Bao Hao Wang Xiaohu Lu Haoliang Sun Meng Lv Di Yang Liansheng Wang 《The Journal of Biomedical Research》 CAS CSCD 2023年第4期302-312,共11页
To investigate the feasibility and effectiveness of establishing porcine ischemia-reperfusion models by ligating the left anterior descending(LAD)coronary artery,we first randomly divided 16 male Bama pigs into a sham... To investigate the feasibility and effectiveness of establishing porcine ischemia-reperfusion models by ligating the left anterior descending(LAD)coronary artery,we first randomly divided 16 male Bama pigs into a sham group and a model group.After anesthesia,we separated the arteries and veins.Subsequently,we rapidly located the LAD coronary artery at the beginning of its first diagonal branch through a mid-chest incision.Then,we loosened and released the ligation line after five minutes of pre-occlusion.Finally,we ligated the LAD coronary artery in situ two minutes later and loosened the ligature 60 min after ischemia.Compared with the sham group,electrocardiogram showed multiple continuous lead ST-segment elevations,and ultrasound cardiogram showed significantly lower ejection fraction and left ventricular fractional shortening at one hour and seven days post-operation in the model group.Twenty-four hours after the operation,cardiac troponin T and creatine kinase-MB isoenzyme levels significantly increased in the model group,compared with the sham group.Hematoxylin and eosin staining showed the presence of many inflammatory cells infiltrating the interstitium of the myocardium in the model group but not in the sham group.Masson staining revealed a significant increase in infarct size in the ischemia/reperfusion group.All eight pigs in the model group recovered with normal sinus heart rates,and the survival rate was 100%.In conclusion,the method can provide an accurate and stable large animal model for preclinical research on ischemia/reperfusion with a high success rate and homogeneity of the myocardial infarction area. 展开更多
关键词 coronary artery ligation myocardial ischemia-reperfusion injury Bama pig animal model
下载PDF
Gradual Clamping Reduced Ischemia-Reperfusion Injury in an Isolated Rat Heart Model 被引量:2
15
作者 Hongbin Feng Hongli Wang +2 位作者 Yang Zhao Zhinan Zheng Sanqing Jin 《World Journal of Cardiovascular Surgery》 2016年第6期79-86,共8页
Objectives: We hypothesized that the organisms and their organs or tissues could adapt themselves to the gradual changes of environment for surviving or reducing damage. This study explored whether gradual clamping (G... Objectives: We hypothesized that the organisms and their organs or tissues could adapt themselves to the gradual changes of environment for surviving or reducing damage. This study explored whether gradual clamping (GC) could reduce myocardial ischemia-reperfusion (IR) injury in rat heart. Methods: Twelve rats were randomized to IR group and GC group, then the hearts were isolated and perfused with Langendorff apparatus. Before cardioplegia, the perfusion was stopped abruptly in IR group while slowly with 5-minute in GC group. The hearts were subjected to 30-minute ischemia and 60-minute reperfusion. The left ventricular develop pressure (LVDP) and systolic pressure (LVSP), the maximal rate of the increase and decrease of left ventricular pressure (+dp/dt<sub>max</sub>, ﹣dp/dt<sub>max</sub>) were measured by polygraph system at different time points. The recovery of the variables was expressed as the ratio of these values at individual time point after reperfusion to the baseline respectively. Results: The recovery of LVDP after reperfusion was better than that in IR group (P = 0.034). No significant difference in the recovery of LVSP, +dp/dtmax and ﹣dp/dt<sub>max</sub> between groups was observed. Conclusions: Gradual clamping could improve the recovery of LVDP after IR, suggesting that gradual clamping could reduce myocardial IR injury. 展开更多
关键词 Gradual Clamping ischemia-reperfusion injury Gradual Adaptation Rat Heart model
下载PDF
Characteristics of traumatic brain injury models:from macroscopic blood flow changes to microscopic mitochondrial changes 被引量:1
16
作者 Ding-Ding Yang Xiang-Dong Wan +8 位作者 An-Di Chen Zi-Qian Yan Yi-Fan Lu Jun-Chen Liu Ya-Zhou Wang Jing Wang Yan Zhao Sheng-Xi Wu Guo-Hong Cai 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第10期2268-2277,共10页
Controlled cortical impingement is a widely accepted method to induce traumatic brain injury to establish a traumatic brain injury animal model.A strike depth of 1 mm at a certain speed is recommended for a moderate b... Controlled cortical impingement is a widely accepted method to induce traumatic brain injury to establish a traumatic brain injury animal model.A strike depth of 1 mm at a certain speed is recommended for a moderate brain injury and a depth of>2 mm is used to induce severe brain injury.However,the different effects and underlying mechanisms of these two model types have not been proven.This study investigated the changes in cerebral blood flow,differences in the degree of cortical damage,and differences in motor function under different injury parameters of 1 and 2 mm at injury speeds of 3,4,and 5 m/s.We also explored the functional changes and mitochondrial damage between the 1 and 2 mm groups in the acute(7 days)and chronic phases(30 days).The results showed that the cerebral blood flow in the injured area of the 1 mm group was significantly increased,and swelling and bulging of brain tissue,increased vascular permeability,and large-scale exudation occurred.In the 2 mm group,the main pathological changes were decreased cerebral blood flow,brain tissue loss,and cerebral vasospasm occlusion in the injured area.Substantial motor and cognitive impairments were found on day 7 after injury in the 2 mm group;at 30 days after injury,the motor function of the 2 mm group mice recovered significantly while cognitive impairment persisted.Transcriptome sequencing showed that compared with the 1 mm group,the 2 mm group expressed more ferroptosis-related genes.Morphological changes of mitochondria in the two groups on days 7 and 30 using transmission electron microscopy revealed that on day 7,the mitochondria in both groups shrank and the vacuoles became larger;on day 30,the mitochondria in the 1 mm group became larger,and the vacuoles in the 2 mm group remained enlarged.By analyzing the proportion of mitochondrial subgroups in different groups,we found that the model mice had different patterns of mitochondrial composition at different time periods,suggesting that the difference in the degree of damage among traumatic brain injury groups may reflect the mitochondrial changes.Taken together,differences in mitochondrial morphology and function between the 1 and 2 mm groups provide a new direction for the accurate classification of traumatic brain injury.Our results provide reliable data support and evaluation methods for promoting the establishment of standard mouse controlled cortical impingement model guidelines. 展开更多
关键词 cerebral blood flow cognitive impairments controlled cortical impingement ferroptosis mitochondrial dysfunction motor impairments mouse model traumatic brain injury
下载PDF
Blood microRNAs as potential diagnostic and prognostic markers in cerebral ischemic injury 被引量:10
17
作者 Bridget Martinez Philip V.Peplow 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第9期1375-1378,共4页
MicroRNAs are a family of small, genome-encoded endogenous RNAs that are transcribed but are not translated into proteins. They serve essential roles in virtually every aspect of brain function, including neurogenesis... MicroRNAs are a family of small, genome-encoded endogenous RNAs that are transcribed but are not translated into proteins. They serve essential roles in virtually every aspect of brain function, including neurogenesis, neural development, and cellular responses leading to changes in synaptic plasticity. They are also implicated in neurodegeneration and neurological disorders, in responses to hypoxia and ischemia, and in ischemic tolerance induced by ischemic preconditioning. In recent developments, miRNA expres- sion profiling has been examined in stroke, and these studies indicate that miRNAs have emerged as key mediators in ischemic stroke biology. Both increased and decreased miRNA levels may be needed either as prevention or treatment of stroke. Novel approaches are being developed to get miRNA related therapeu- tics into the brain across an intact blood-brain barrier, including chemical modification, use of targeting molecules and methods to disrupt the blood-brain barrier. 展开更多
关键词 blood microRNAs diagnostic biomarkers prognostic biomarkers cerebral ischemic injury ischemicstroke human patients rat and mouse models
下载PDF
Hydrogen sulfide intervention in focal cerebral ischemia/reperfusion injury in rats 被引量:6
18
作者 Xin-juan Li Chao-kun Li +4 位作者 Lin-yu Wei Na Lu Guo-hong Wang Hong-gang Zhao Dong-liang Li 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第6期932-937,共6页
The present study aimed to explore the mechanism underlying the protective effects of hydrogen sulfide against neuronal damage caused by cerebral ischemia/reperfusion. We established the middle cerebral artery occlusi... The present study aimed to explore the mechanism underlying the protective effects of hydrogen sulfide against neuronal damage caused by cerebral ischemia/reperfusion. We established the middle cerebral artery occlusion model in rats via the suture method. Ten minutes after middle cerebral artery occlusion, the animals were intraperitoneally injected with hydrogen sulfide donor compound sodium hydrosulfide. Immunofluorescence revealed that the immunoreactivity of P2X7 in the cerebral cortex and hippocampal CA1 region in rats with cerebral ischemia/reperfusion injury decreased with hydrogen sulfide treatment. Furthermore, treatment of these rats with hydrogen sulfide significantly lowered mortality, the Longa neurological deficit scores, and infarct volume. These results indicate that hydrogen sulfide may be protective in rats with local cerebral ischemia/reperfusion injury by down-regulating the expression of P2X7 receptors. 展开更多
关键词 nerve regeneration brain injury hydrogen sulfide cerebral ischemia/reperfusion injury P2X7 receptor 2 3 5-triphenyl-2H-tetrazolium chloride staining animal model protection sodiumhydrosulfide immunofiuorescence middle cerebral artery occlusion NSFC grant neural regeneration
下载PDF
Establishing a rat model of spastic cerebral palsy by targeted ethanol injection 被引量:5
19
作者 Yadong Yu Liang Li +2 位作者 Xinzhong Shao Fangtao Tian Qinglu Sun 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第34期3255-3262,共8页
Spastic cerebral palsy is generally considered to result from cerebral cortical or pyramidal tract damage. Here, we precisely targeted the left pyramidal tract of 2-month-old Sprague-Dawley rats placed on a stereotaxi... Spastic cerebral palsy is generally considered to result from cerebral cortical or pyramidal tract damage. Here, we precisely targeted the left pyramidal tract of 2-month-old Sprague-Dawley rats placed on a stereotaxic instrument under intraperitoneal anesthesia. Based on the rat brain stereotaxic map, a 1-mm hole was made 10 mm posterior to bregma and 0.8 mm left of sagittal suture. A microsyringe was inserted perpendicularly to the surface of the brain to a depth of 9.7 mm, and 15 wL of ethanol was slowly injected to establish a rat model of spastic cerebral palsy. After modeling, the rats appeared to have necrotic voids in the pyramidal tract and exhibited typical signs and symptoms of flexion spasms that lasted for a long period of time. These findings indicate that this is an effective and easy method of establishing a rat model of spastic cerebral palsy with good reproducibility. Ethanol as a chemical ablation agent specifically and thoroughly damages the py- ramidal tract, and therefore, the animals display flexion spasms, which are a typical symptom of the disease. 展开更多
关键词 neural regeneration brain injury spastic cerebral palsy animal models ETHANOL pyramidal tractstereotaxic instrument targeted injection modeling methods NEUROREGENERATION
下载PDF
An animal model of cerebral palsy induced by prenatal exposure to lipopolysaccharide and hypoxia 被引量:4
20
作者 Gang Chen Yanrong HU +8 位作者 Wei Liu Jiang Li Linbao Wen Jianxin Li Lihui Zhao Xiaopeng Yang Yi Zhu Zhenzhu Sun Guangming Chi 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第14期1100-1103,共4页
BACKGROUND: Neonatal cerebral palsy is mainly caused by prenatal factors. At present, an animal model of prenatal infection and early postnatal hypoxia does not exist. OBJECTIVE: To observe morphology and motor perf... BACKGROUND: Neonatal cerebral palsy is mainly caused by prenatal factors. At present, an animal model of prenatal infection and early postnatal hypoxia does not exist. OBJECTIVE: To observe morphology and motor performance following prenatal infection and hypoxic insult-induced brain damage of neonatal rats to verify the feasibility to establish a model of cerebral palsy. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at the Laboratories of Xinjiang Center for Disease Control and Prevention from September 2007 to June 2008. MATERIALS: The hypoxic incubator was purchased from Shanghai Pediatric Medical Institute, China. Lipopolysaccharide (LPS, Escherichia coil, 055: B5) was purchased from Sigma-Aldrich (St. Louis, MO, USA). METHODS: A total of 27 Wistar rats, aged 7 days, were randomly assigned to sham-surgery group (n = 15) with no carotid artery incision or hypoxia treatment, hypoxia/ischemia (H/I) group (n = 12) undergoing ligature of the right common carotid artery followed by exposure to hypoxia at postnatal day 7 (P7), and LPS/H group (n = 19), in which pregnant rats were exposed in utero to LPS followed by prenatal hypoxia at embryonic day 16. MAIN OUTCOME MEASURES: Behavior, compound muscle action potential, and pathological changes were observed in 28-day-old rats. RESULTS: The footprint repeat space showed that left limb footprint repeatability in the H/I and LPS/H groups was lower than in the sham-surgery group (P 〈 0.05). The space between the footprints was larger and unstable. Hind limb quadricep compound muscle action potential in the H/I and LPS/H groups showed lower wave amplitude compared with the sham-surgery group (P〈 0.05) Hematoxylin and eosin staining showed irregular cells around the ventricle, as well as periventricular leukomalacia. CONCLUSION: An animal model of cerebral palsy was established, which simulated the human condition most likely associated with occurrence of this disease. This model could be used for experimental studies related to cerebral palsy. 展开更多
关键词 inflammation HYPOXIA animal model cerebral palsy periventricular leukomalacia brain injury neural regeneration
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部